
UNIVERSITÀ DEGLI STUDI DI NAPOLI “FEDERICO II”

Dipartimento di Ingegneria Elettrica e Tecnologie dell’Informazione

Corso di Laurea in Informatica

Graded Modalities in Strategic Reasoning

Relatori:

Prof. Aniello Murano

Dott. Fabio Mogavero

Co-relatore:

Prof. Luigi Sauro

Candidato:

Vadim Malvone

N97/132

Anno Accademico 2013/14

Contents

Abstract iii

1 Introduction 1

2 Graded Modalities in Formal Verification 9

2.1 Graded in Closed Systems . 10

2.1.1 Preliminaries . 10

2.1.2 Graded Computation Tree Logic . 11

2.1.3 Decision Problems on GCTL . 13

2.2 Graded in Open Systems . 15

2.2.1 Graded in Module Checking . 16

2.2.2 Graded ATL . 21

3 Graded Strategy Games 26

3.1 Game Framework . 26

3.1.1 Arenas . 27

3.1.2 Extensions . 30

3.1.3 Schemas . 31

3.1.4 Games . 32

3.2 Graded Strategy Logic . 33

3.2.1 Syntax . 33

3.2.2 Semantics . 35

3.2.3 Binding Fragments . 37

4 Strategy Equivalence 39

4.1 Elementary Requirements . 40

4.2 Play Requirements . 40

i

CONTENTS

4.3 Strategy Requirements . 42

4.4 Boolean Requirements . 46

4.5 Example . 49

4.5.1 Example in GSL[1G] . 49

4.5.2 Example in GSL[CG] . 50

4.5.3 Example in GSL[DG] . 52

4.5.4 Scheduler . 55

5 Game Type Conversion 59

5.1 From GSG[1G, kVAR] To GSG[1G, TB, kAG/VAR] 60

5.1.1 Normalization . 60

5.1.2 Minimization . 62

5.1.3 Conversion . 65

5.2 From GSG[BG] To SG[BG] . 69

6 Determinacy and Fulfilling 75

6.1 Determinacy . 75

6.2 The Fulfilling Problem . 81

7 Conclusion 84

ii

Abstract (in Italian)

I metodi formali sono uno strumento ampiamente utilizzato per la specifica e la verifica di

sistemi. Tra i metodi di verifica la tecnica di maggior successo è sicuramente il model checking.

Concepito alla fine degli anni 70, il model checking permette di verificare la correttezza di un

sistema rispetto ad una certa proprietà controllando che un modello del sistema soddisfi una

rappresentazione formale della proprietà. Il model checking è stato dapprima introdotto per sistemi

monolitici per i quali il modello è spesso rappresentato in termini di Kripke structure e la specifica

attraverso una logica temporale. Le logiche temporali sono un particolare tipo di logiche modali che

permettono di analizzare proprietà che variano nel tempo senza introdurre il tempo esplicitamente.

Negli ultimi anni, sulle logiche temporali sono state ampiamente studiate le modalità graded.

Nelle logiche temporali classiche, tali modalità sono state ottenute sostituendo i quantificatori

esistenziali Eψ e universali Aψ con quelli della forma E≥gψ (ci sono almeno g percorsi) e A<gψ

(a meno di g percorsi). Dato un modello monolitico K di un sistema, per valutare la verità di

una formula graded, è necessario contare il numero di diverse computazioni che soddisfano ψ in

K. Nel caso più generale di sistemi multi-agente, le computazioni valide corrispondono ai play

indotti dall’interazione degli agenti in base alle proprie strategie. In questo ambito, le modalità

graded permettono di determinare quante strategie un agente può sfruttare per soddisfare una certa

proprietà.

In questa tesi definiamo la nozione di Graded Strategy Game (GSG) come un’estensione del

framework Strategy Game (SG) recentemente introdotto per descrivere giochi in cui il solution

concept è definito come una formula di Strategy Logic (SL). Quest’ultima è una logica potente

per il ragionamento strategico, nel quale le strategie sono esplicitamente trattate come oggetti del

primo ordine. Formalmente, SG si compone di tre entità: un’arena, che riassume le regole del

gioco, un’estensione che descrive le proprietà di interesse, e uno schema, che riporta i ruoli degli

agenti e le loro interazioni. Un GSG si ottiene tramite un’estensione graded di SL (GSL) come

logica per descrivere i solution concept. Questa logica utilizza gli operatori strategici esistenziale

〈〈x ≥ g〉〉ψ e universale [[x < g]]ψ per richiedere se ci sono almeno g o tutte a meno di g strategie

iii

Abstract

x soddisfano ψ. Inoltre per associare una strategia x a uno specifico agente a usiamo un operatore

di binding (a, x).

L’introduzione formale di GSL richiede una notevole quantità di lavoro per la definizione

di una relazione di equivalenza sugli assegnamenti strategici. La caratteristica fondamentale di

questa relazione è quella di classificare come equivalenti tutti gli assegnamenti che riflettono lo

stesso “ragionamento strategico” anche se possono avere strutture diverse. Per dare un’intuizione

di cosa intendiamo, si considerino due assegnamenti e le corrispondenti strategie coinvolte. Si

supponga che tali strategie si differenziano solo per storie mai incontrate da un play a causa di una

combinazione specifica di azioni degli agenti. Risulta evidente che questi assegnamenti inducono

gli stessi comportamenti, il che significa riflettere lo stesso ragionamento strategico, pertanto è

naturale impostarli come equivalenti.

Oltre all’introduzione formale di GSG, in questa tesi abbiamo studiato le versioni graded

corrispondenti ai frammenti one-goal e boolean-goal di SG. Questi frammenti sono stati denominati

GSG[1G] e GSG[BG] e sono stato oggetto di studio in relazione a problemi classici sulla teoria

dei giochi. Nello specifico, abbiamo analizzato la conversione da un gioco concorrente alla sua

versione turn-based in GSG[1G] e la conversione da un gioco GSG[BG] a SG[BG]. Per la prima

conversione è stato necessario costruire una nuova arena e, di conseguenza, una nuova estensione.

Abbiamo diviso questo processo in tre fasi. La prima, detta normalizzazione, riduce il numero

di agenti al numero di variabili. La seconda, detta di minimizzazione, riduce lo spazio delle

azioni, eliminando quelle ridondanti. La terza esegue la costruzione di un gioco turn-based. Per la

seconda conversione, l’arena non cambia mentre l’estensione è arricchita con nuove proprietà. La

trasformazione principale riguarda il solution concept visto che da GSL occorre passare ad SL.

Per fare questo sono state introdotte due funzioni, una di trasformazione sulla formula ed un’altra

utilizzata per la relazione d’equivalenza tra assegnamenti.

Un aspetto fondamentale per i nostri risultati riguarda la determinatezza sui giochi GSG. In

particolare abbiamo introdotto una prova per giochi con solution concept in GSL[1G]. Vale la pena

ricordare che questa proprietà è stata dimostrata per il classico gioco Boreliano turn-based, ma la

prova applicata in tale situazione non può essere applicata direttamente al nostro tipo di gioco. Per

dare una prova delle sostanziali differenze tra i due framework, è utile osservare che in SG una

iv

Abstract

formula del tipo 〈〈x〉〉[[y]]ψ implica [[y]]〈〈x〉〉ψ, mentre in GSG 〈〈x≥ g1〉〉[[y < g2]]ψ non implica

[[y<g2]]〈〈x≥g1〉〉ψ. La proprietà di determinatezza che dimostriamo è ℘ψ ⇒ ℘′ψ, dove il prefisso

di quantificazione ℘′ è ottenuto da ℘, mettendo tutti i quantificatori esistenziali prima di quelli

universali e preservando l’ordine relativo tra i quantificatori dello stesso tipo.

Da una variante delle prova di determinatezza abbiamo potuto definire il problema decisionale

per i giochi studiati, detto fulfillment. Il fulfillment rappresenta una generalizzazione del model

checking. Per chiarire meglio il concetto, in termini di proporzioni potremmo dire che il model

checking sta ai sistemi chiusi come il fulfillment sta ai giochi che abbiamo definito. In particolare,

abbiamo dimostratato come il problema del fulfilling per GSG[1G] su predicati di reachability e

safety risulta essere PTIME-COMPLETE nella dimensione sia dell’arena che del solution concept.

v

1
Introduction

The problem of the correctness of systems is particularly felt in hardware and software design,

especially in the context of critical systems. When we talk about a critical system, we mean one in

which failure is not an option. Mainly, these systems are divided into: safety critical, where errors

can cost lives; mission critical, where unreliability can cost in terms of objectives; business critical,

where failure can cost in loss of money.

In recent decades, there have been several examples of critical systems with significant unex-

pected behavior having disastrous consequences. In the eighties, for example, several people were

killed and seriously injured by a system malfunction of Therac-25, a radiation machine used in

the medical field. Specifically, the malfunction has been produced by flaws in the software and

in a wrong interface with the hardware machine. As an other example, in 1995 the new Denver

airport designed to be at the forefront with its complex computerized system for baggage handling

was forced to open 16 months after the date set due to flaws in the system. The malfunctioning of

the software has result in a cost of 3.2 million of dollar. Another example is the shuttle Arianne 5,

launched into space in 1996, has a flagship of the European Space Programme. After 36.7 seconds

of flight, the system has diverted its route and exploded right after. The disaster was caused by a

program of the navigation system that attempted to cast a long int into short int. The cost of the

1

1. Introduction

damage was approximately one million of Euros, not counting the loss of reputation.

Describing the above examples let us to realize that verifying the correctness of a system, prior

to its use, is a vital aspect. The main methods for software verification are: testing, simulation,

deductive verification, and formal verification. Testing is an operation carried out throughout the

development phase in which the produced system is checked to find any faults, and if so, to resolve

them before release. Although widely used, this technique presents many disadvantages due to

its empirical structure. First of all, it only works on a real implementation of the system. This

means that to correct a error in the system design we may need to implement the whole system

from scratch. Thus, it would trigger a wasting of time and money. It requires to be tested on a large

amount of data, that is all possible behaviors that the system can exhibit. Obviously, to retrieve

all such data is not an easy task, as well as the set of all possible system behaviors is clearly to

big to be feasibly tested. Infact, in some cases, this number is exponentially larger than the size

of the system (consider for example real-time and concurrent systems). On the other hand, in the

safety and business critical systems described above, a whole check is a "must", since it is not

possible to miss out any behavior that could hide a dangerous and unknown bug. Simulation is

similar to testing except that the verification process is performed on an abstract model of the

system. This is an advantage as errors can be discovered before the system is implemented, saving

a lot of money and time. Conversely, under this approach there is no guarantee that all possible

executions are simulated. This means that both testing and simulation can detect errors but can not

determine its absence. Deductive verification uses axioms and proof rules to verify the correctness

of the system. This method is very expensive regarding time execution and therefore is mainly

used for highly sensitive systems. To face with the disadvantages of all above methods, several

methodologies have been proposed. Among others, formal methods result to be very useful. This

approach provides a formal-based methodology to model systems, specify properties, and verify

that a system satisfies a given specification. Basically, in order to check the correctness of a system

with respect to a desired behavior, we consider a model M of the system, a formal specification ϕ

of its behavior, and a formal technique to show that M meets ϕ. The latter is done by means of

suitable decision procedures. Using formal methods, beside checking system incorrectness, one

can also get a counterexample that certifies it. In particular, a counterexample will give information

2

1. Introduction

regarding which part of the design contains a bug.

Formal verification has several advantages over testing. First of all it works on a model of the

system rather than using a real implementation. This means that in case of an error in the system

design, it can be repaired immediately, reducing the high cost of correcting errors in a digital

design after its production. Second, this method is exhaustive, as it allows to check the system

with respect to all its possible behaviors, in any possible environment. This avoids the common

problem in testing of overlooking some critical executions that could hide unexpected errors.

Indeed, verification is an automatic method. Another advantage regarding formal methods relies on

the possibility of using formal specification languages to express the desired properties of a system.

This is fundamental to gain a non ambiguity characterization in what it is meant for an execution

to be correct. Finally, system correctness is reduced to some well-founded decision procedures,

which enforce a rigorous checking. In formal verification, the specification is usually based on

modal logics and specifically on temporal logics. Modal logics study different “modes” of truth

that determine a more involved value structure with respect to simple Boolean values. Temporal

logics are a special type of modal logics, originally developed by philosophers to investigate the

ways in which the time can be used in natural language speaking. In particular, temporal logics can

describe the order of events without introducing the time explicitly. Therefore, it can formalize

opportunely how the system evolves during the time, and this makes this logic very appropriate

to the formal verification task. In temporal logics, we mainly distinguish between linear- and

branching-time logics, which reflect the underlying nature of the time we consider. In linear-time

logics, at each moment there is only one possible future moment, while in branching-time logics,

time has a tree-like structure and, at each moment, time may split into several courses representing

different possible futures. Accordingly, the semantic of linear logics is given with respect to

linear structures while for branching logics we use branching structures. Temporal modalities of

a temporal logic reflect the kind of time assumed in the semantics. Thus, in a linear-time logic,

temporal modalities are provided for describing events along a single time line. In contrast, in a

branching-time logic, the modalities reflect the branching nature of time by allowing existential

and universal quantifiers over possible futures. In literature, many types of temporal logics have

been considered, in both linear- and branching-time. Between them, the most popular ones are

3

1. Introduction

the linear-time temporal logic LTL [Pnu77], the branching-time temporal logic CTL [CE81], and

their extension CTL? [EH86].

An outstanding development in the area of temporal logics has been the discovery of algorithmic

methods to verify properties of finite-state systems represented by Kripke structure K.

Kripke structures also represent the underlaying structure on which to define the semantics for

temporal logics. Hence, the formal verification of a system modeled by K with respect a temporal

logic specification ϕ can be rephrased as “Is K a model of ϕ?”, which explains the name model

checking, as it was coined by Clarke and Emerson in [CE81], used to denote this problem and the

verification methods derived from this point of view. Another interesting question to answer in

temporal logic is whether a given formula ϕ is satisfiable or not, that is, if there exists a Kripke

structure that is a model of ϕ. Thus, this decision problem can be used to verify whether the

specification of a system can be implemented.

Mainly, two main modalities are considered to perform model checking and satisfiability

in practice. The first option is a classical use of ad-hoc algorithms. For example, the PSPACE-

COMPLETE recursive algorithms have been carried out to solve the model checking and satisfiability

problems for the linear-time logic LTL. Similarly, for CTL, it has been shown a linear algorithm

for model checking and a EXPTIME-COMPLETE algorithm for the satisfiability questions. The

second option involves instead a systematic use of the automata-theoretic approach on infinite

objects. In particular, we operate a translation from a temporal logic formula ϕ to an automaton

ensuring bijection between the models of ϕ and the (infinite) objects recognized by the constructed

automaton. In this way, we reduce the satisfiability problem to the emptiness problem of the

automaton. The model checking question, instead, reduces to the emptiness problem of the

intersection between the automaton corresponding to the system and the one for the complement

of the property.

In the multi-agent system design and verification, temporal logics have recently assumed

a prominent role for the strategic reasoning [AHK02, JvdH04, CHP10, MMV10, Lor10, vE13].

Specifically, classical temporal logics have been extended in such a way that they can check

open system reliability. This has been done by rephrasing the decision question as an interaction

among different players in a game-strategic setting, which may compete or collaborate for the

4

1. Introduction

achievement of specific goals. One of the most important developments in this field is Alternating-

Time Temporal Logic (ATL?, for short), introduced by Alur, Henzinger, and Kupferman [AHK02].

ATL? allows to reason about strategies of agents having the satisfaction of temporal goals as payoff

criterion. Formally, it is obtained as a generalization of CTL?, in which the existential E and

the universal A path quantifiers are replaced with strategic modalities of the form 〈〈A〉〉 and [[A]],

where A is a set of agents. Despite its expressiveness, ATL? suffers from the strong limitation

that strategies are treated only implicitly in the semantics of such modalities. This restriction

makes the logic less suited to formalize several important solution concepts, such as the Nash

Equilibrium. These considerations led to the introduction and study of Strategy Logic (SL, for

short) [CHP07, MMV10], a more powerful formalism for strategic reasoning. As a key aspect,

this logic treats strategies as first-order objects that can be determined by means of the existential

〈〈x〉〉 and universal [[x]] quantifiers, which can be respectively read as “there exists a strategy x”

and “for all strategies x”. Remarkably, in SL [MMV10], a strategy is a generic conditional plan

that at each step prescribes an action on the base of the history of the play. Therefore, this plan

is not intrinsically glued to a specific agent, but an explicit binding operator (a, x) allows to link

an agent a to the strategy associated with a variable x. Unfortunately, the high expressivity of SL

comes at a price. Indeed, it has been shown that the model-checking problem for SL becomes

non-elementary complete and the satisfiability undecidable. To gain back elementariness, several

fragments of SL, strictly subsuming ATL? have been considered. Among the others, One-Goal

Strategy Logic (SG[1G], for short) considers SL formulas in a special prenex normal form having a

single temporal goal at a time. For a goal, it is specifically meant a sequence of bindings followed

by a temporal logic formula. It has been shown that for SG[1G] both the model checking question

and the satisfiability problem are 2-EXPTIME-COMPLETE, as it is for ATL. If one allows for a

Boolean combination of goals, then the resulting logic is named Boolean goal Strategy Logic

(SG[BG]), for which the satisfiability problem has been proved to be undecidable, while the exact

complexity of the model checking problem is an open question.

A common aspect about all logics mentioned above is that quantifications are made either

existential or universal or combinations of both. Per contra, there are several real scenarios in

which “more precise” quantifications are crucially needed. For example, in a planning scenario it

5

1. Introduction

maybe useful know that more than one possible paths exists to reach a specific target. As another

example, in formal verification setting knowing how many path fail to satisfy a path formula can

accelerate the process of correcting them. Finally, in the security scenario assuming that one can

control up to n computations, one may want to know whether all but n computations are safe. See

also [BMM12], for other argumentations. This has attracted the interest of the formal verification

community to graded modalities. They have been first studied in classic modal logic [Fin72] and

then imported in the field of knowledge representation to allow quantitative bounds on the set of

individuals satisfying a certain property. In particular, they are considered as counting quantifiers

in first-order logics [GOR97] and number restrictions in description logics [HB91].

The first applications of graded modalities in formal verification concern closed systems.

Specifically, in [KSV02], graded µCALCULUS has been introduced in order to express statements

about a given number of immediately accessible worlds. Successively [FNP09, BMM09, BMM10,

BMM12], the notion of graded modalities have been extended in order to handle a number of

paths instead of successive worlds. In particular, in [BMM12] graded CTL (GCTL, for short),

an extension of CTL with graded path modalities, has been introduced along with a suitable

axiomatization of a counting.

In open systems verification, we are aware of just two cases in which graded modalities have

been investigated: the module checking with respect to graded µCALCULUS [FMP08] and the

extension of ATL with graded path modalities (GATL, for short) [FNP10]. These two orthogonal

approaches have the merit of introducing, for the first time, a counting on strategies. In particular,

while the former involves a counting on one-step moves among two-agents, the latter allows for a

more sophisticated counting on the histories of the game in a multi-player setting. Nevertheless,

GATL suffer of several limitations. First, not surprisingly, it cannot express powerful game

reasonings due to the limited power of the underline logic ATL. Second, it is based on a very rigid

and restricted counting of existential strategies only.

In this thesis, we overcome the above limitations by introducing and studying Graded Strategy

Game (GSG) as an extension, along with graded quantifiers, of the recently introduced framework

of Strategy Game [MMS14]. Formally, a Strategy Game consists of three entities: the arena,

shaping the rules of the game, the extension describing the property of interest of each possible

6

1. Introduction

play, and the schema, representing the agent roles and their interaction. This formalism turns out

to be a powerful machinery to describe games whose solution concepts are given via a Strategy

Logic sentence. Specifically, a given property is verified (formally fulfilled) by checking whether

an extension satisfies it. Therefore, in Strategy game one can express via Strategy logic whether

an extension admits a strategy or all strategies are capable to fulfill a given solution concept.

Additionally, by means of the existential 〈〈x ≥ g〉〉ϕ and universal [[x < g]]ϕ graded strategy

quantifiers, one can require that there are at least g or all but less than g strategies x satisfying the

property ϕ. Finally, by using these new modalities in SL, we get a graded extension of this logic,

which we call Graded Strategy Logic (GSL, for short) and the generalized mentioned framework

of GSG derives accordingly. Also, as it has been done for SL, we define and study in this thesis

the following fragments of GSL: GSL[BG] and GSL[1G], and the corresponding fragments in

GSG: GSG[BG] and GSG[1G].

The formal introduction of GSL comprises a considerable amount of work for the definition

of a suitable equivalence relation over strategy assignments. The key feature of this relation is to

classify as equivalent all assignments that reflect the same “strategic reasoning”, although they

may have completely different structures. Just to get an intuition about what we mean, consider for

example two assignments and the corresponding involved strategies. Assume now that all such

strategies differ only on histories never met by a play because of a specific combination of agent

actions. Clearly, these assignments induce the same agent behaviors, which means to reflect the

same strategic reasoning. Therefore, it is natural to set them as equivalent, as we do.

Apart from the formal introduction of GSG, classical game-theoretic questions have been also

investigated. Among the others, we study the conversion from concurrent game one-goal to its

turn-based version and, only for Boolean fragment, from GSG to SG. The first conversion requires

to build a new arena and, consequently, a new extension. We divide the conversion in a three-step

process. The first phase, called normalization, reduces the number of agents to the number of

variables. The second phase, called minimization, reduces the space of the actions by merging the

actions that involve the same strategic reasoning. The third and final step performs the construction

of turn-based game. For the second conversion, the arena remains the same, but the extension is

enriched with new predicates. Regarding the solution concept the transformation makes use of

7

1. Introduction

a specifics two functions. The first on takes can of a semantic transformation. The other one is

used to enforce the equivalence among assignments holding for the input target. It is important to

observe that starting with a GSG[1G], the algorithm return in general a SG[BG].

Furthermore, we deal with the determinacy of GSG[1G]. It is worth recalling that this property

has been first proved for classic Borelian turn-based two-player games in [Mar75], but the proof

considered for that setting does not directly apply to our graded games. To give an evidence of the

substantial differences between the two frameworks, it is useful to observe that in SG 〈〈x〉〉[[y]]η

implies [[y]]〈〈x〉〉η, while in GSG the corresponding implication 〈〈x ≥ g1〉〉[[y < g2]]η ⇒ [[y <

g2]]〈〈x≥g1〉〉η does not hold. The determinacy property we are interested in is exactly the converse

direction. More formally, we prove that ℘η ⇒ ℘′η, where the quantification prefix ℘′ is obtained

from ℘, by putting forward all existential quantifiers w.r.t. the universal ones and preserving the

relative order between those of the same kind.

A slight variant of procedure for the determinacy proof may work as a tool to determine the

degrees with which a given GSL[1G] is satisfied. We finally describe the solution of the fulfilling

problem for GSG[1G] with reachability and safety predicates that is PTIME-COMPLETE in the size

of both the arena and the solution concept.

Outline In Chapter 2, we recall graded modalities for closed and open systems. Then, we have

Chapter 3, in which we describe a game-theoretic framework in [MMS14] and we introduce

GSL and define its syntax and semantics, followed by Chapter 4 in which there are studied the

main properties of strategy equivalence relations. In Chapter 5, we describe the two game type

conversions. Finally, in Chapter 6 we construct the grading function for determinacy and the

solution of the fulfilling problem.

8

2
Graded Modalities in Formal Verification

In formal verification one can guarantee system accomplishes a desired behavior by checking

whether a mathematical model of the former conforms with a formal property specifying the latter.

One of the most common framework to specify properties is temporal logic. Specifically, in the

branching setting, temporal logics allow to enforce that there exist or that for all system executions a

certain property holds. These logics have been recently extended under graded modalities allowing

to refine the number of system executions on which to predicate. In the process of modeling the

system, one needs to focus on the main aspects of its behavior. Mainly, we distinguish between

closed and open systems [HP85]. While the behavior of a closed system is completely determined

by the state of the system, the behavior of an open system depends on the ongoing interaction with

its environment [Hoa85]. Unfortunately, the methods used for closed systems are often useless

for open systems. For this reason several ad-hoc methods have been introduced to handle open

systems. The same has happened in the case of graded logics.

In Section 2.1 we analyze the graded modalities for closed systems, in particular we describe

the extension applied to the logic CTL. In Section 2.2 we analyze the concept of graded applied

for µCALCULUS and ATL in the open systems. As far as we know these are the only two cases in

which graded modalities have been applied to open system verification.

9

2. Graded Modalities in Formal Verification 2.1 - Graded in Closed Systems

Finally, we report that most of the material reported in this introductory chapter comes from

the works [BMM09, BMM10, BMM12, FMP08, FNP10] and we refer to them for more details,

examples and motivations.

2.1 Graded in Closed Systems

In this section we talk about the use of graded modalities for the verification of closed systems.

Specifically we will discuss GCTL, an extension of CTL with graded mode, which has been

studied for both the model checking problem that for satisfiability. In this section we recall the

basic concepts and results, organized as follows. In Subsection 2.1.1 we describe the Kripke

structures and other basic concepts. In Subsection 2.1.2 we describe the syntax and semantics of

logic GCTL. Finally, in Subsection 2.1.3 we describe the results for decision problems.

2.1.1 Preliminaries

We introduce some preliminary definitions and further notation used in this section.

Kripke structures. A Kripke structure (KS, for short) is a tuple K ,〈AP,W,R , L, w〉, where

AP is a finite non-empty set of atomic propositions, W is an enumerable non-empty set of worlds,

w0 ∈W is a designated initial world, R ⊆W×W is a transition relation, and L : W→ 2AP is a

labeling function that maps each world to the set of atomic propositions true in that world. A KS

is said total iff it has a total transition relation R, i.e., for all w ∈W, there is w′ ∈W such that

(w,w′) ∈ R. By ‖K‖ , |R| ≤ |W|2 we denote the size of K, which also corresponds to the size

of the transition relation. A finite KS is a structure of finite size.

Tracks and paths. A track in K is a finite sequence of worlds ρ ∈ W∗ such that, for all

0 < i ≤ |ρ|, it holds that ((ρ)i, (ρ)i+1) ∈ R. Furthermore, a path in K is a finite or infinite

sequence of worlds π ∈W∞ such that, for all 0 < i ≤ |π|, it holds that ((π)i, (π)i+1) ∈ R and if

|π| <∞ then there is no world w ∈W such that (lst(π), w) ∈ R (where lst(π) is last world of the

path π), i.e., it is maximal. Intuitively, tracks and paths of a KS K are legal sequences of reachable

worlds inK that can be seen as a partial or complete description of the possible computations of the

10

2. Graded Modalities in Formal Verification 2.1 - Graded in Closed Systems

system modeled by K. A track ρ is said non-trivial iff |ρ| > 0, i.e., ρ 6= ε. We use Trk(K) ⊆W+

and Pth(K) ⊆W∞ to indicate, respectively, the sets of all non-trivial tracks and paths of the KS

K. Moreover, by Trk(K, w) ⊆ Trk(K) and Pth(K, w) ⊆ Pth(K) we denote the subsets of tracks

and paths starting at the world w.

Kripke trees. A Kripke tree (KT, for short) is a KS T =〈AP,W,R , L, w〉, where (i) W ⊆ Dir∗

is a Dir-tree for a given set Dir of directions and (ii), for all t ∈ W and d ∈ Dir, it holds that

t · d ∈W iff (t, t · d) ∈ R.

Bisimulation. Let K1 = 〈AP,W1,R1, L1, w01〉 and K2 = 〈AP,W2,R2, L2, w02〉 be two KSs.

Then, K1 and K2 are bisimilar iff there is a relation ∼ ⊆ W1 ×W2 between worlds, called

bisimulation relation, such that w01∼ w02 and if w1∼ w2 then (i) L1(w1) = L2(w2), (ii) for all

v1 ∈W1 such that (w1, v1) ∈ R1, there is v2 ∈W2 such that (w2, v2) ∈ R2 and v1∼ v2, and (iii)

for all v2 ∈W2 such that (w2, v2) ∈ R2, there is v1 ∈W1 such that (w1, v1) ∈ R1 and v1∼ v2.

Unwinding. Let K = 〈AP,W,R , L, w〉 be a KS. Then, the unwinding of K is the KT KU ,

〈AP,W′,R′, L′, ε〉, where (i) W is the set of directions, (ii) the states in W′ , {ρ ∈W∗ : w0 · ρ ∈

Trk(K)} are the suffixes of the tracks starting in w0, (iii) (ρ, ρ · w) ∈ R′ iff (lst(w0 · ρ), w) ∈ R.

Note that, there is a surjective function unw : W′ →W, called unwinding function, such that

(i) unw(ρ) , lst(w0 · ρ) and (ii) L′(ρ) , L(unw(ρ)), for all ρ ∈W′ and w ∈W. It is easy to note

that a KS is always bisimilar to its unwinding, since the unwinding function is a particular relation

of bisimulation.

2.1.2 Graded Computation Tree Logic

Temporal logics are a special kind of modal logics that provide a formal framework for

qualitatively describing and reasoning about how the truth values of assertions change over time.

First pointed out by Pnueli in 1977 [Pnu77], these logics turn out to be particularly suitable for

reasoning about correctness of concurrent programs [Pnu81].

Depending on the view of the underlying nature of time, two types of temporal logics are mainly

considered [Lam80]. In linear-time temporal logics, such as LTL [Pnu77], time is treated as if

11

2. Graded Modalities in Formal Verification 2.1 - Graded in Closed Systems

each moment in time has a unique possible future. Conversely, in branching-time temporal logics,

such as CTL [CE81] and CTL? [EH86], each moment in time may split into various possible

futures and existential and universal quantifiers are used to express properties along one or all the

possible futures. In modal logics, such as µCALCULUS [Koz83], these kinds of quantifiers have

been generalized by means of graded (worlds) modalities [Fin72, Tob01], which allow to express

properties such as “there exist at least n accessible worlds satisfying a certain formula” or “all but

n accessible worlds satisfy a certain formula”. Despite its high expressive power, the µCALCULUS

is considered some what low-level logic and “unfriendly” logic for users, whereas simpler logics,

such as CTL, can naturally express useful properties of computation trees. Therefore, an interesting

and natural question is how graded modalities can affect CTL expressiveness and decidability.

Moreover in the µCALCULUS, and standard modal logics, existential and universal quantifiers

range over successors, therefore it is easy extend them with number restrictions. On the other side

in CTL the underlying objects are both states and paths. Thus, graded modalities have to cover

both of them. In [BMM12] solve this problem by generalizing the usual graded modalities, which

act locally to words and their successor, to path of worlds, i.e., they allow to express properties

such as “there are at least n classes of paths satisfying a formula”. We call the logic CTL extended

with graded path modalities GCTL, for short.

The graded full computation tree logic (GCTL?, for short) extends CTL? by using two special

path quantifiers, the existential E≥g and the universal A<g, where g ∈ N denotes the corresponding

degree. As in CTL?, these quantifiers can prefix a linear-time formula composed of an arbitrary

Boolean combination and nesting of the temporal operators X“next”, U“until”, and R“release”.

The quantifiers E≥g and A<g can be respectively read as “there exist at least g paths” and “all but

g paths”. The formal syntax of GCTL? follows.

Definition 2.1.1 (GCTL? Syntax). GCTL? state (ϕ) and path (ψ) formulas are defined inductively

as follows:

1. ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | E≥gψ | A<gψ;

2. ψ ::= ϕ | ¬ψ | ψ ∧ ψ | ψ ∨ ψ | Xψ | ψ Uψ | ψ Rψ.

Where p ∈ AP and g ∈ N. GCTL formulas are obtained by forcing each temporal operator

12

2. Graded Modalities in Formal Verification 2.1 - Graded in Closed Systems

occurring into a formula to be coupled with a path quantifier, as in the classical case of CTL.

We now define the semantics of GCTL? w.r.t. a KS K = 〈AP,W,R , L, w〉. For a world

w ∈W, we write K, w |= ϕ to indicate that a state formula ϕ holds on K at w. Moreover, for a

path π ∈ Pth(K), we write K, π |= ψ to indicate that a path formula ψ holds on π. The semantics

of GCTL? state formulas simply extends that of CTL?. In particular, in the definition of graded

quantifiers, we make use of a generic equivalence relation ≡ψK on the set of paths Pth(K) that

depends on both the KSK and the path formula ψ. This equivalence is used to reasonably count the

number of ways a structure has to satisfy a path formula w.r.t. an a priori criterion. The semantics

of the GCTL? path formulas is defined as usual for LTL and is omitted here.

Definition 2.1.2 (GCTL? Semantics). Given a KS K =〈AP,W,R , L, w〉, for all GCTL? state

formulas ϕ and worlds w ∈W, the relation K, w |= ϕ is inductively defined as follows.

1. K, w |= p iff p ∈ L(w), with p ∈ AP.

2. For all state formulas ϕ, ϕ1, and ϕ2, it holds that:

(a) K, w |= ¬ϕ iff not K, w |= ϕ, that is K, w 6|= ϕ;

(b) K, w |= ϕ1 ∧ ϕ2 iff K, w |= ϕ1 and K, w |= ϕ2;

(c) K, w |= ϕ1 ∨ ϕ2 iff K, w |= ϕ1 or K, w |= ϕ2.

3. For a number g ∈ N and a path formula ψ, it holds that:

(a) K, w |= E≥gψ iff |(Pth(K, w, ψ)/≡ψK)| ≥ g;

(b) K, w |= A<gψ iff |(Pth(K, w,¬ψ)/≡¬ψK)| < g;

where Pth(K, w, ψ) , {π ∈ Pth(K, w) : K, π |= ψ} is the set of paths of K starting

in w that satisfy the path formula ψ and (Pth(K, w, ψ)/≡ψK) denotes the quotient set of

Pth(K, w, ψ) w.r.t. the equivalence relation ≡ψK, i.e., the set of all the equivalence classes.

2.1.3 Decision Problems on GCTL

The introduced framework of graded path modalities turns out to be very efficient in terms of

expressiveness and complexity. Indeed, it has been proved that GCTL is more expressive than

13

2. Graded Modalities in Formal Verification 2.1 - Graded in Closed Systems

CTL, it retains the tree and the finite model properties, and its satisfiability problem is solvable

in EXPTIME, therefore it is not harder than that for CTL [EH85]. This, along with the fact

that GCTL is at least exponentially more succinct than graded µCALCULUS (formally defined

in the next section), makes GCTL even more appealing. The upper bound for the satisfiability

complexity result is obtained by exploiting an automata-theoretic approach [KVW00]. To develop

a decision procedure for a logic with the tree model property, one first develops an appropriate

notion of tree automata and studies their emptiness problem. Then, the satisfiability problem for

the logic is reduced to the emptiness problem of the automata. To this aim, has been introduced a

new automaton model: partitioning alternating tree automata (PATA). While a nondeterministic

automaton on visiting a node of the input tree sends exactly one copy of itself to each successor

of the node, an alternating automaton can send several copies of itself to the same successor. In

particular, in symmetric alternating automata [JW95, Wil99] it is not necessary to specify the

direction of the tree on which a copy is sent. In [KSV02], graded alternating tree automata

(GATA) has been introduced as a generalization of symmetric alternating tree automata, in such a

way that the automaton can send copies of itself to a given number n of state successors, either in

existential or universal way, without specifying which successors these exactly are. PATA further

extend GATA in such a way that the automaton can send copies of itself to a given number n of

paths. It has been shown, for each GCTL formula ϕ, it is always possible to build in linear time a

PATA Aϕ along with a Büchi condition (PABT) accepting all the tree models of ϕ. In [BMM09],

addresses the specific case of GCTL where numbers are coded in unary. In particular, it has first

shown that unary GCTL has the tree model property by showing that any formula ϕ is satisfiable

on a Kripke structure iff it has a tree model whose branching degree is polynomial in the size of ϕ.

Then, a corresponding tree automaton model named partitioning alternating Büchi tree automata

(PABT) has been introduced and shown that:

Theorem 2.1.1. Given a GCTL formula ϕ with degree b, we can construct in time O(|ϕ|) a PABT

Aϕ, with O(|ϕ|) states and counting branching bound b, such that L(Aϕ) is exactly the set of all

tree models of ϕ.

Then, by using a nontrivial extension of the Miyano and Hayashi technique [MH84] it has

been shown that:

14

2. Graded Modalities in Formal Verification 2.2 - Graded in Open Systems

Theorem 2.1.2. Let A be a PABT with n states and counting branching bound b. Then, there

exists a NBT A′ with 22n∗(b+1) states and n ∗ b(b+ 1)/2 directions such that A is not empty iff A′

is not as well.

Now, recall that for the NBT A′ with Q′ as state set and branching degree d′ the emptiness

problem is solvable in PTIME [VW86] and, precisely, in O(|Q′|2d
′
) (we directly consider the

one-letter automaton associated to A′). Then, by Theorem 2.1.2, the following result follows.

Theorem 2.1.3. The emptiness problem for a PABTA with n states and counting branching bound

b can be decided in time 2O(n2∗b3).

By Theorems 2.1.1 and 2.1.3, and by n = |ecl(ϕ)| = O(|ϕ|) and b = deg(ϕ) = O(|ϕ|), we

get that the satisfiability problem for GCTL is in EXPTIME and precisely solvable in time 2O(|ϕ|5).

Since GCTL subsumes CTL, the following holds.

Theorem 2.1.4. The satisfiability problem for GCTL is EXPTIME-COMPLETE.

The satisfiability was also analyzed for case of GCTL where numbers are coded in binary. For

simplicity reasoning, we have reported only the unary case.

2.2 Graded in Open Systems

In open systems verification, we are aware of just two cases in which graded modalities

have been investigated. Chronologically, they regard module checking with respect to graded

µ-calculs [FM07, FMP08] specifications and the extension of ATL with graded path modalities

(GATL, for short) [FNP10]. These two orthogonal approaches have the merit of introducing,

for the first time, a counting on strategies. In particular, while the former involves a counting

on one-step moves among two-agents, the latter allows for a more sophisticated counting on

the histories of the game in a multi-player setting. In this Section we report both studies giving

some details about their representation and their solution. This section is organized as follows.

In subsection 2.2.1 we will discuss the graded module checking by presenting the syntax and

semantics of graded µCALCULUS and its resolution. While, in Section 2.2.2 we will discuss

graded ATL and its syntax, semantics, decision problems, and their solutions.

15

2. Graded Modalities in Formal Verification 2.2 - Graded in Open Systems

2.2.1 Graded in Module Checking

In model checking open systems, introduced and called module-checking in [KVW01], one

should check the system with respect to arbitrary environments and should take into account

uncertainty regarding the environment. In such a framework, the open finite–state system is

described by a labeled state–transition graph, called in fact module, whose set of states is partitioned

into system states (where the system makes a transition) and environment states (where the

environment makes a transition). Given a moduleM, describing the system to be verified, and a

temporal logic formula ϕ, specifying the desired behavior of the system, module checking asks

whether for all possible environments, M satisfies ϕ. Therefore, in module checking it is not

sufficient to check whether the full computation tree obtained by unwindingM satisfies ϕ, but

it is also necessary to verify that all trees obtained from the full computation tree by pruning

some subtrees rooted in nodes corresponding to choices disabled by the environment (those trees

represent the interactions of M with all the possible environments), satisfy ϕ. We collect all

such trees in a set named exec(M). It is worth noticing that each tree in exec(M) represents

a “memoryful” behavior of the environment. Indeed, the unwinding of a module M induces

duplication of nodes, which allow different pruning of subtrees. To see an example, consider

a two-drink dispenser machine that serves, upon customer request, tea or coffee. The machine

is an open system and an environment for the system is an infinite line of thirsty people. Since

each person in the line can prefer both tea and coffee, or only tea, or only coffee, each person

suggests a different disabling of the external choices. Accordingly, there are many different possible

environments to consider. In [KV97, KVW01], it has been shown that while for linear–time logics

model and module checking coincide, module checking for specification given in CTL and CTL?

is exponentially harder than model checking in the size of the formula and preserves the linearity

in the size of the model. Indeed, CTL and CTL? module checking is EXPTIME–complete and

2-EXPTIME–complete, respectively.

Among the various formalisms used for specifying properties, a valid candidate is the µ-

calculus, a very powerful propositional modal logic augmented with least and greatest fixpoint

operators [Koz83] (for a recent survey, see also [BS06]). The Graded enriched µ–calculus [BP04]

is the extension of the µ–calculus with graded modalities. Intuitively, graded modalities enable

16

2. Graded Modalities in Formal Verification 2.2 - Graded in Open Systems

statements about the number of successors of a state [KSV02]. It has been shown in [SV01,

BLMV06] that satisfiability Graded enriched µ–calculus is decidable and EXPTIME-complete.

The upper bound result is based on an automata–theoretic approach via graded alternating parity

tree automata (GAPT), along with the fact that this logic enjoys the tree model property. Intuitively,

GAPT generalize alternating automata on infinite trees graded modalities enrich the standard

µ–calculus. Using GAPT and the tree model property, it has been shown in [SV01, BLMV06]

that given a formula ϕ of graded µ-calculus, it is possible to construct a GAPT accepting all trees

models of ϕ. Then, the exponential-upper bound follows from the fact that the emptiness problem

for GAPT is solvable in PTIME [KPV02].

In [FMP08] the module checking problem to the graded µ-calculus has been investigate. To

see an example of module checking a finite-state open system w.r.t. graded µ-calculus specification,

consider again the above two-drink dispenser machine with the following extra feature: “whenever

the customer comes at a choice, he can choose for both”. This property can be formalized by the

graded µ–calculus formula νx.(choose→ 〈1, service〉).

By exploiting an automata–theoretic approach via tree automata, graded µ–calculus module

checking is decidable and solvable in EXPTIME in the size of the formula and PTIME in the size

of the system. Therefore, in the module checking the size of a formula induces an exponential

blow-up w.r.t. the model checking problem. In particular, we reduce the addressed module checking

problem to the emptiness problem (GAPT).

Now, we recall the graded µ–calculus. We refer to [BLMV06] for more technical definitions

and motivating examples.

Graded µ–Calculus. Let AP , Var , and Prog be finite and pairwise disjoint sets of atomic

propositions, propositional variables, and atomic programs (which allow to travel the system along

accessibility relations). The set of graded µ–calculus formulas is the smallest set such that

• true and false are formulas;

• p and ¬p, for p ∈ AP , are formulas;

• x ∈ Var is a formula;

17

2. Graded Modalities in Formal Verification 2.2 - Graded in Open Systems

• if ϕ1 and ϕ2 are formulas, α ∈ Prog, n is a non negative integer, and y ∈ V ar, then the

following are also formulas:

ϕ1 ∨ ϕ2, ϕ1 ∧ ϕ2, 〈n, α〉ϕ1, [n, α]ϕ1, µy.ϕ1(y), and νy.ϕ1(y).

Observe that we use positive normal form, i.e., negation is applied only to atomic propositions.

We call µ and ν fixpoint operators. A propositional variable y occurs free in a formula if it

is not in the scope of a fixpoint operator. A sentence is a formula that contains no free variables.

We refer often to the graded modalities 〈n, α〉ϕ1 and [n, α]ϕ1 as respectively atleast formulas and

allbut formulas and assume that the integers in these operators are given in binary code.

The semantics of the graded µ–calculus is defined with respect to a Kripke structure, i.e., a

tuple K = 〈W,W0, R, L〉 where W is a non–empty set of states, W0 ⊆ W is the set of initial

states, R : Prog → 2W×W is a function that assigns to each atomic program a transition relation

over W , and L : AP → 2W is a labeling function that assigns to each atomic proposition and

nominal a set of states such that the sets assigned to nominals are singletons and subsets of W0. If

(w,w′) ∈ R(α), we say that w′ is an α–successor of w. Informally, an atleast formula 〈n, α〉ϕ

holds at a state w of K if ϕ holds in at least n+ 1 α–successors of w. Dually, the allbut formula

[n, α]ϕ holds in a state w of K if ϕ holds in all but at most n α–successors of w. Note that

¬〈n, α〉ϕ is equivalent to [n, α]¬ϕ, and the modalities 〈α〉ϕ and [α]ϕ of the standard µ–calculus

can be expressed as 〈0, α〉ϕ and [0, α]ϕ, respectively.

To formalize semantics, we introduce valuations. Given a Kripke structure K = 〈W , W0,

R, L〉 and a set {y1, . . . , yn} of variables in Var , a valuation V : {y1, . . . , yn} → 2W is an

assignment of subsets of W to the variables y1, . . . , yn. For a valuation V , a variable y, and a

set W ′ ⊆ W , we denote by V[y ← W ′] the valuation obtained from V by assigning W ′ to y.

A formula ϕ with free variables among y1, . . . , yn is interpreted over K as a mapping ϕK from

valuations to 2W , i.e., ϕK(V) denotes the set of points that satisfy ϕ under valuation V . The

mapping ϕK is defined inductively as follows:

• trueK(V) = W and falseK(V) = ∅;

• for p ∈ AP , we have pK(V) = L(p) and (¬p)K(V) = W \ L(p);

18

2. Graded Modalities in Formal Verification 2.2 - Graded in Open Systems

• for y ∈ Var , we have yK(V) = V(y);

• (ϕ1 ∧ ϕ2)
K(V) = ϕK1 (V) ∩ ϕK2 (V) and (ϕ1 ∨ ϕ2)

K(V) = ϕK1 (V) ∪ ϕK2 (V);

• (〈n, α〉ϕ)K(V) = {w : |{w′ ∈W : (w,w′) ∈ R(α) and w′ ∈ ϕK(V)}| ≥ n+ 1};

• ([n, α]ϕ)K(V) = {w : |{w′ ∈W : (w,w′) ∈ R(α) and w′ 6∈ ϕK(V)}| ≤ n};

• (µy.ϕ(y))K(V) =
⋂
{W ′ ⊆W : ϕK([y ←W ′]) ⊆W ′};

• (νy.ϕ(y))K(V) =
⋃
{W ′ ⊆W : W ′ ⊆ ϕK([y ←W ′])}.

For a state w of a Kripke structure K, we say that K satisfies ϕ at w if w ∈ ϕK. In what

follows, a formula ϕ counts up to b if the maximal integer in atleast and allbut formulas used in ϕ

is b− 1.

Graded µ-Calculus Module Checking. In [FMP08] has been considered open systems, i.e.,

systems that interact with their environment and whose behavior depends on this interaction. The

(global) behavior of such a system is described by a moduleM = 〈Ws,We,W0, R, L〉, which is

a Kripke structure where the set of states W = Ws ∪We is partitioned in system states Ws and

environment states We.

Given a moduleM, we assume that its states are ordered and the number of successors of each

state w is finite. For each w ∈ W , we denote by succ(w) the ordered tuple (possibly empty) of

w’s α-successors, for all α ∈ Prog. WhenM is in a system state ws, then all states in succ(ws)

are possible next states. On the other hand, whenM is in an environment state we, the possible

next states (that are in succ(we)) depend on the current environment. Since the behavior of the

environment is not predictable, we have to consider all the possible sub–tuples of succ(we). The

only constraint, since we consider environments that cannot block the system, is that not all the

transitions from we are disabled.

The set of all (maximal) computations ofM, starting from W0, is described by a (W,Prog)–

labeled tree 〈FM,VM,EM〉, called computation tree, which is obtained by unwindingM in the

usual way. The problem of deciding, for a given branching–time formula ϕ over AP , whether

〈FM, L ◦ VM,EM〉 satisfies ϕ at a root node, denotedM |= ϕ, is the usual model–checking

19

2. Graded Modalities in Formal Verification 2.2 - Graded in Open Systems

problem [CE81, QS81]. On the other hand, for an open system M, the tree 〈FM,VM,EM〉

corresponds to a very specific environment, i.e., a maximal environment that never restricts the set

of its next states. Therefore, when we examine a branching–time formula ϕ w.r.t.M, the formula ϕ

should hold not only in 〈FM,VM,EM〉, but in all tree obtained by pruning from 〈FM,VM,EM〉

subtrees rooted at children of environment nodes, as well as inhibiting some of their jumps to

roots (that is, successor nodes labeled with nominals), if there are any. The set of these tree, which

collects all possible behaviors of the environment, is denoted by exec(M) and is formally defined

as follows. A tree 〈F,V,E〉 ∈ exec(M) iff

• for each wi ∈W0, we have V(i) = wi;

• for each x ∈ F , with V(x) = w, succ(w) = 〈w1, . . . , wn, wn+1, . . . , wn+m〉, and

succ(w) ∩ W0 = 〈wn+1, . . . , wn+m〉, there exists St = 〈w′1, . . . , w′p, w′p+1, . . . , w
′
p+q〉

sub-tuple of succ(w) such that p+ q ≥ 1 and the following hold:

– St = succ(w) if w ∈Ws;

– children(x) = {x · 1, . . . , x · p} and, for 1 ≤ j ≤ p, we have V(x · j) = w′j and

E(x, x · j) = α if (w,w′j) ∈ R(α);

– for 1≤j≤q, let xj∈N such that V(xj)=w′p+j , then E(x, xj)=α if (w,w′p+j)∈R(α).

In the following, we consider tree in exec(M) as labeled with (2AP , P rog), i.e., taking the

label of a node x as L(V(x)). For a moduleM and a formula ϕ of the graded µ–calculus, we

say thatM reactively satisfies ϕ, denotedM |=r ϕ (where “r” stands for reactively), if all tree

in exec(M) satisfy ϕ. The problem of deciding whetherM |=r ϕ is called graded µ–calculus

module checking.

LetM be a module and ϕ an graded µ–calculus formula. We decide the module checking

problem for M against ϕ by building a GAPT AM×6|=ϕ as the intersection of two automata.

Essentially, the first automaton, denoted by AM, is a Büchi automaton that accepts trees of

exec(M), and the second automaton is a GAPT A6|=ϕ that accepts all tree model that do not satisfy

ϕ (i.e, ¬ϕ is satisfied at all initial nodes). Thus,M |=r ϕ iff L(AM×6|=ϕ) is empty. First we recall

some important statements.

20

2. Graded Modalities in Formal Verification 2.2 - Graded in Open Systems

Theorem 2.2.1. [BLMV06] The emptiness problem for a GAPT A = 〈Σ, b, Q, δ, q0, F〉 can be

solved in time linear in the size of Σ and b, and exponential in the index of the automaton and

number of states.

Lemma 2.2.1. [BLMV06] Given two GAPT A1 and A2, there exists a GAPT A such that L(A) =

L(A1) ∩ L(A2) and whose size is linear in the size of A1 and A2.

We now recall a result on GAPT and graded µ-calculus formulas.

Lemma 2.2.2 ([BLMV06]). Given an graded µ-calculus sentence ϕ with ` atleast subsentences

and counting up to b, it is possible to construct a GAPT with O(|ϕ|2) states, index |ϕ|, and

counting bound b that accepts exactly each tree that encodes a tree model of ϕ.

By using the above result, the following statement holds.

Theorem 2.2.2. The module checking problem with respect to graded µ–calculus formulas is

EXPTIME–complete.

2.2.2 Graded ATL

In [FNP09] the quantifiers of ATL, like GCTL, have been enriched with an integer that

represents the degree. This extension has been called graded ATL and now we describe this. First,

we introduce the concept of turn based game. Later, we show the syntax and semantics of graded

ATL. Finally, we give the results on the problem of model checking.

Turn Based Games. A Turn Based Game is a tuple G , (m,St, pl, τ, λ) such that: (i) m > 0

is the number of players; (ii) St is a finite set of states; (iii) pl : St → {1, ...,m} is a function

mapping each state s to the player who owns it; (iv) τ ⊆ St× St is the transition relation and (v)

λ : St→ 2AP is the function assigning to each state s the set of atomic propositions that are true

at s. We assume that games are non-blocking, i.e. each state has at least one successor in τ . In the

following, unless otherwise noted, we consider a fixed game G. A (finite or infinite) path in G is a

(finite or infinite) path in the directed graph (St, τ).

A strategy in G is a pair (X, f), where X ⊆ {1, ...,m} is the team to which the strategy

belongs, and f : St+ → St is a function such that for all ρ ∈ St+, (lst(()ρ), f(ρ)) ∈ τ . Note,

21

2. Graded Modalities in Formal Verification 2.2 - Graded in Open Systems

our strategies are deterministic. For a team X ⊆ {1, ...,m}, we denote by StX the set of states

belonging to team X, i.e. StX = {s ∈ St|pl(s) ∈ X}, and we denote by ¬X the opposite team,

i.e. ¬X = {1, ...,m} \ X. We say that an infinite path ss... in G is consistent with a strategy

σ = (X, f) if for all i ≥ 0, if si ∈ StX then si+ = f(ss...si). We denote by OUTG(s, σ) the

set of all infinite paths in G which start from s and are consistent with σ (we omit the subscript G

when it is obvious from the context). For two strategies σ1 = (X, f) and σ2 = (¬X, g), and a state

s, we denote by OUT(s, σ1, σ2) the unique infinite path which starts from s and is consistent with

both σ1 and σ2.

Syntax and Semantics. The graded alternating-time temporal logics (GATL, for short) extends

ATL by using a special team quantifiers 〈〈X〉〉g, where X ⊆ {1, ...,m} is a team and g ∈ N denotes

the corresponding degree. The formal syntax of GATL follows.

Definition 2.2.1. GATL state (ψ) and path (ϕ) formulas are built inductively from the sets of

atomic propositions AP in the following way, where p ∈ AP is an atomic proposition, X ⊆

{1, ...,m} is a team, and g is a natural number:

1. ψ ::= p | ¬ψ | ψ ∨ ψ | 〈〈X〉〉gϕ;

2. ϕ ::= Xψ | ψ Uψ | Gψ.

The operators U (until), G (globally) and X (next) are temporal operators. The syntax of ATL is

the same as the one of GATL, except that the team quantifier exhibits no natural superscript. Note

that GATL formulas with degrees g = 1 are ATL formulas.

In [FNP09] present two alternative semantics for graded ATL, called off-line semantics and

on-line semantics. GATL have the ability to count how many different strategies (in the off-line

semantics) or paths (in the on-line semantics) satisfy a certain property. Their satisfaction relations

are denoted by |=off and |=on, respectively, and they only differ in the interpretation of the team

quantifier. The meaning of the other operators is invariant in the two semantics. The formal

semantic of GATL follows.

Definition 2.2.2. Let ρ be an infinite path in the game, s be a state, and ψ1 and ψ2 be state

formulas. For x ∈ {on, off}, the satisfaction relations are defined as follows.

22

2. Graded Modalities in Formal Verification 2.2 - Graded in Open Systems

• s |=x p iff p ∈ λ(s),

• s |=x ¬ψ1 iff s 6|=x ψ1,

• s |=x ψ1 ∨ ψ2 iff s |=x ψ1 or s |=x ψ2,

• ρ |=x Xψ1 iff ρ(1) |=x ψ1,

• ρ |=x Gψ1 iff ∀i ∈ N, ρ(i) |=x ψ1,

• ρ |=x ψ1Uψ1 iff ∃j ∈ N, ρ(j) |=x ψ2 and ∀0 ≤ i < j, ρ(i) |=x ψ1.

Off-line semantics. The meaning of the team quantifier is defined as follows, for a path formula ϕ.

• s |=off 〈〈X〉〉gϕ iff there exist g strategies σi = (X, fi) such that for all k 6= j, σk and σj are

(〈〈X〉〉gϕ, off)-dissimilar at s and for all ρ ∈ OUT(s, σk), ρ |=off ϕ.

On-line semantics. The meaning of the team quantifier is defined as follows, for a path formula ϕ.

• s |=on 〈〈X〉〉gϕ iff for all σ′ = (¬X, f) there exist g pairwise (〈〈X〉〉gϕ, on)-dissimilar paths

ρ ∈ OUT(s, σ′) such that ρ |=on ϕ.

In the two semantics was introduced the concept of dissimilar, now illustrate three definitions

that explain this concept. First, we define the property of dissimilarity for two finite paths.

Definition 2.2.3. Two finite paths ρ and ρ
′

are dissimilar iff there exists 0 ≤ i ≤ min{|ρ|, |ρ′ |}

such that ρ(i) 6= ρ
′
(i).

Observe that if ρ is a prefix of ρ
′

, then ρ and ρ
′

are not dissimilar. Now, we analyze the property

of dissimilarity for two infinite paths on a generic graded ATL formula with team quantifier.

Definition 2.2.4. Given a GATL formula 〈〈X〉〉ϕ, where ϕ is a path formula, a team X ⊆

{1, ...,m}, and x∈{on, off}, we say that two infinite paths ρ and ρ
′

are (ϕ, x)-dissimilar iff:

• ϕ = Xψ and ρ(1) 6= ρ
′
(1), or

• ϕ = Gψ and ρ(i) 6= ρ
′
(i) for some i, or

• ϕ = ψ1 U ψ2 and there are two integers j and k such that:

23

2. Graded Modalities in Formal Verification 2.2 - Graded in Open Systems

– ρ(j) |=x ψ2,

– ρ
′
(k) |=x ψ2,

– for all 0 ≤ i < j, ρ(i) |=x ψ1 and ρ(i) |=x 〈〈X〉〉ψ1 Uψ2, and

– for all 0 ≤ h < k, ρ
′
(h) |=x ψ1 and ρ

′
(h) |=x 〈〈X〉〉ψ1 Uψ2, and

– ρ≤j and ρ
′
≤k are dissimilar.

Finally, we analyze the case on two sets of infinite paths.

Definition 2.2.5. Two sets of infinite paths are (ϕ, x)-dissimilar iff one set contains a path which

is (ϕ, x)-dissimilar to all the paths in the other set, and, given a state s, two strategies σ1, σ2 are

(ϕ, x)-dissimilar at s if the sets OUT(s, σ1) and OUT(s, σ2) are (ϕ, x)-dissimilar.

Decision problems. For GATL was studied the model checking problem for both off-line and

on-line semantics. Were developed two algorithms in [FNP09], one for each semantic that solve

the model checking problem for a generic GATL formula. It has been shown that a algorithm for

the off-line semantics is performed in linear time, precisely, the following theorem holds.

Theorem 2.2.3. Given a game G, a state s in G and a graded ATL formula ψ, the graded model

checking problem, s |=off ψ, can be solved in time O(|τ | · |ψ|), where |ψ| is the number of operators

occurring in ψ.

Similarly it was shown that a algorithm for on-line semantic runs in quadratic time, precisely,

the following theorem holds.

Theorem 2.2.4. Given a game G, a state s in G and a graded ATL formula ψ, the graded model

checking problem, s |=on ψ, can be solved in time O(|St| · |τ | · |ψ|), where |ψ| is the number of

operators occurring in ψ.

Finally, from the PTIME hardness of the reachability problem for AND-OR graphs [14], this

corollary follows for both off-line and on-line semantics.

Corollary 2.2.1. The graded ATL model checking problem is PTIME-COMPLETE.

24

2. Graded Modalities in Formal Verification 2.2 - Graded in Open Systems

Now, we evaluate the decision problems on concurrent games. Intuitively, a game G is

concurrent if it is possible to associate any number of agent in any state. In [AHK02], there is a

construction that reduces a concurrent game in a turn-based game with two player. That said, the

following theorem holds.

Theorem 2.2.5. The model-checking problem for graded ATL on concurrent games is

PTIME-COMPLETE, and can be solved in time O(|τ | · |ψ|) in the off-line semantics and in time

O(|τ |2 · |ψ|) in the on-line semantics, for a game with transition function τ and for a formula ψ.

25

3
Graded Strategy Games

In this Chapter, we describe a reformulation of the game-theoretic framework defined in

[MMS14] and introduce an extension of Strategy Logics (SL, for short) with graded modalities

(GSL, for short). The syntax of GSL extends the one of SL by replacing the two classic strategy

quantifiers with their graded version. Similarly, the semantics of GSL differs from the one of

SL on the evaluation of the two quantifiers, in which strategies are counted by means of suitable

equivalence relation. Finally, as it has been done for SL, we define the following four fragments of

GSL: GSL[BG], GSL[1G], GSL[CG], and GSL[DG].

3.1 Game Framework

In this section, we describe a reformulation proposed in [MMS14] of the game-theoretic

framework. Differently from classic approaches, the basic aspects of a game are factorized into

three components: arena, extension, and schema. The arena describes the world where agents

act. The extension specifies the properties of interests of the plays. Finally, a schema abstractly

represents the solution concepts to analyze.

26

3. Graded Strategy Games 3.1 - Game Framework

3.1.1 Arenas

To describe a game, we first need to define the space of its configurations, identify the players,

and declare the necessary rules according to which a play has to evolve. In the classic game of

chess, for example, two people plays on a 8 × 8 chessboard that, together with the positions of

the 32 pieces equally split in the white and black sets, determines all configurations. The style of

moving for each of the 6 different types of pieces, moreover, prescribes the rules that the players

have to follow. In general, the formal description of the dynamics of a game can be done by

means of the concept of arena that combines all the discussed information. It is important to

observe that the configurations cannot be considered as global states of the players, but states of

the world in which they operate. In particular, since we are only interested in games of perfect

information, we are not taking into account the local states of the players when defining their legal

moves [FHMV95].

Definition 3.1.1 (Arena). A multi-agent concurrent arena is a tuple A , 〈Ag,Ac,St, tr〉 ∈

Ar(Ag), where Ag is the finite set of agents, a.k.a. players, Ac is the set of actions, a.k.a. moves,

and St is the non-empty set of states, a.k.a. positions. Assume Dc , Ag ⇀ Ac to be the set

of decisions, i.e., partial functions describing the choices of an action by some agent. Then,

tr : Dc → 2St×St denotes the transition function mapping every decision δ ∈ Dc to a relation

tr(δ)⊆St×St between states. Finally, Ar(Ag) is the class of all arenas over Ag.

Intuitively, an arena can be seen as a generic labeled transition graph [Kel76], where labels

are possibly incomplete agent decisions, which determine the transitions to be executed at each

step of a play in dependence of the choices made by the agents in the relative state. In particular,

incomplete decisions allow us to represent any kind of legal move in a state, where some agents or

a particular combination of actions may not be active. It can be interesting to note that an arena

actually corresponds, in the jargon of modal logic, to a frame representing the naked structure

underlying a model. Observe also that, due to the loose definition of the transition function, an

arena is in general nondeterministic. Indeed, two different but indistinguishable decisions may

enable different transitions for the same state. Even more, a single decision may induce a non-

functional relation. However, due to the focus of this work, we restrict to the case of deterministic

27

3. Graded Strategy Games 3.1 - Game Framework

arenas, by describing later on few conditions that rule out how the transition function has to map

partial decisions to transitions.

An arena A naturally induces a graph G(A) , 〈St,Ed 〉, whose vertexes are represented by

the states and the edge relation Ed ,
⋃
δ∈Dc tr(δ) is obtained by rubbing out all labels on the

transitions. Note that there could be states where no transitions are available, i.e., dom(Ed) ⊂ St.

If this is the case, those ones in St \ dom(Ed) are called sink-states. A path π ∈ Pth , {π ∈ Stω

: ∀i ∈ N . ((π)i, (π)i+1) ∈ Ed} in A is simply an infinite path in G(A). Similarly, the order

|A| , |G(A)| (resp., size ‖A‖ , ‖G(A)‖) of A is the order (resp., size) of its induced graph. As

usual in the study of extensive-form games, finite paths also describe the possible evolutions of a

play up to a certain point. For this reason, they are called in the game-theoretic jargon histories,

whose corresponding set is denoted by Hst , {ρ ∈ St∗ : ∀i ∈ [0, |ρ| − 1[. ((ρ)i, (ρ)i+1) ∈ Ed}.

We now introduce the sets of decisions, agents, and actions that trigger some transition in

a given state s ∈ St by means of the three functions dc : St → 2Dc, ag : St → 2Ag, and

ac : St×Ag→ 2Ac defined as follows:

dc(s) , {δ ∈ Dc : s ∈ dom(tr(δ))};

ag(s) , {a ∈ Ag : ∃δ ∈ dc(s) . a ∈ dom(δ)};

ac(s, a) , {δ(a) ∈ Ac : δ ∈ dc(s) ∧ a ∈ dom(δ)}, for all a ∈ Ag.

These functions can be easily lifted to the set of histories as follows: dc : Hst → 2Dc with

dc(ρ) , dc(lst(ρ)), ag : Hst → 2Ag with ag(ρ) , ag(lst(ρ)), and ac : Hst × Ag → 2Ac with

ac(ρ, a) , dc(lst(ρ), a).

A decision δ∈Dc is coherent w.r.t. a state s∈St (s-coherent, for short), if ag(s)⊆dom(δ) and

δ(a)∈ac(s, a), for all a∈ag(s). By Dc(s)⊆Dc, we denote the set of all s-coherent decisions.

A strategy is a partial function σ ∈ Str , Hst ⇀ Ac prescribing, whenever defined, which

action has to be performed for a certain history of the current outcome. Roughly speaking, it is a

generic conditional plan which specifies “what to do” but not “who will do it”. Indeed, a given

strategy can be used by more than one agent at the same time. We say that σ is coherent w.r.t. an

agent a ∈ Ag (a-coherent, for short) if, in each possible evolution of the game, either a is not

influential or the action that σ prescribes is available to a. Formally, for each history ρ ∈ Hst, it

28

3. Graded Strategy Games 3.1 - Game Framework

holds that either a 6∈ ag(ρ) or ρ ∈ dom(σ) and σ(ρ) ∈ ac(ρ, a). By Str(a) ⊆ Str we denote the

set of a-coherent strategies. Moreover, Str(A) ,
⋂
a∈A Str(a) indicates the set of strategies that

are coherent with all agents in A ⊆ Ag.

A profile is a function ξ ∈ Prf , Ag→a Str(a) specifying a unique behavior for each agent

a ∈ Ag by associating it with an a-coherent strategy ξ(a) ∈ Str(a). Given a profile ξ, to identify

which action an agent a ∈ Ag has chosen to perform on a history ρ ∈ Hst, we first extract the

corresponding strategy ξ(a) and then we determinate the action ξ(a)(ρ), whenever defined. To

identify, instead, the whole decision on ρ, we apply the flipping operator to ξ. We get so a function

ξ̂ : Hst→ Dc such that ξ̂(ρ)(a) = ξ(a)(ρ), which maps each history to the planned decision.

A path π ∈ Pth is a play w.r.t. a profile ξ ∈ Prf (ξ-play, for short) iff, for all i ∈ [0, |π|[, there

exists a decision δ ∈ dc((π)i) such that δ ⊆ ξ̂((π)≤i) and ((π)i, (π)i+1) ∈ tr(δ), i.e. (π)i+1 is

one of the successors of (π)i induced by the decision ξ̂((π)≤i) prescribed by the profile ξ on the

history (π)≤i.

Arenas describe generic mathematical structures, where the basilar game-theoretic notions of

history, strategy, profile, and play can be defined. However, in several contexts, some constraints

rule out how the function tr maps partial decisions to transitions between states. Here, as already

observed, we require that arenas are deterministic. We do this by means of the following constraints:

1. there are no sink-states, i.e., dc(s) 6= ∅, for all s ∈ St;

2. for all s-coherent decisions δ ∈ Dc(s), there exists a set of agents A ⊆ ag(s) such that

δ�A ∈ dc(s);

3. each decision induces a partial function among states, i.e. tr(δ) ∈ St ⇀ St, for all δ ∈ Dc;

4. there are no different but indistinguishable active decisions in a given state s ∈ St, i.e., for all

δ, δ ∈ dc(s) with δ 6= δ, there exist a ∈ dom(δ) ∩ dom(δ) such that δ(a) 6= δ(a).

Given a state s ∈ St, the determinism of the arena ensures that there exists exactly one ξ-play

π starting in s, i.e., fst(π) = s. Such a play is called (ξ, s)-play. For this reason, we use the

play function play : Prf × St → Pth to identify, for each profile ξ ∈ Prf and state s ∈ St, the

corresponding (ξ, s)-play play(ξ, s).

29

3. Graded Strategy Games 3.1 - Game Framework

s
a,c

s
a

s
a,c

s
a,b

s
a,c

s
a

s
a

s
a

20

01

10

02/12/2122

00

11

01/10

00/11

00/11 01/10

22/21/20/02/12

00/11

01/10

0

1

0

1

0

1

0/1

Figure 3.1: ArenaA. Note that the node of the arena are labeled

with its name (in the upper part) and with the subset of player

that are active on its (in the lower part).

Example 3.1.1. As a running ex-

ample, consider the arena A =

〈Ag,Ac, St, tr〉 depicted in Fig-

ure 3.1, where Ag = {a, b, c},

Ac = {0, 1, 2}, and St =

{s, s, s, s, s, s, s, s}. Note

that agent a is active in all states,

agent b only in s, and agent c

in s, s, and s. Moreover, we

have that ac(s, a) = ac(s, b) =

ac(s, a) = ac(s, c) = {0, 1, 2}

and ac(s, a) = ac(s, c) =

ac(s, a) = ac(s, c) = ac(s, a)

= ac(s, c) = ac(s, a) =

ac(s, a) = ac(s, a) = {0, 1}.

3.1.2 Extensions

Besides its dynamics, a game also consists of private objectives or global goals, which typically

require to check some properties over the possible plays. For instance, two relevant conditions in

chess are whether a given play ends up in a checkmate or a stalemate, which determine a winner or

a draw, respectively. Others situations in the same context are the claiming of the fifty-move rule

or the threefold repetition. More in general, play properties may represent fairness, reachability,

safety, or other conditions, usually expressed by means of some kind of temporal language, like

LTL [Pnu77] or the linear µCALCULUS [Var88], which combine atomic propositions over states

with suitable temporal operators. As game theorists usually do, our aim is to separate the strategic

reasoning from the specification of such properties. Therefore, we represent them as generic

Boolean predicates over paths, by introducing the concept of extension.

30

3. Graded Strategy Games 3.1 - Game Framework

Definition 3.1.2 (Extension). An extension is a tuple E ,〈A,Pr, pr〉 ∈ Ex(Ag,Pr), where A ∈

Ar(Ag) is the underlying arena, Pr is the finite non-empty set of predicates, and pr : Pr→ 2Pth

is the predicate function mapping each predicate p ∈ Pr to the set of paths pr(p) ⊆ Pth satisfying

it. Finally, Ex(Ag,Pr) denotes the class of all extensions over Ag and Pr.

Intuitively, an extension classifies the paths trough a set of monadic predicates that describe all

relevant temporal properties for the specific domain under analysis. Coming back to the previous

analogy, the extension is the part of framework corresponding to the model in the classic context of

modal logic.

An extension is Borelian (resp., regular) iff, for each predicate p ∈ Pr, the induced language

pr(p) ⊆ Stω of infinite words over the states is Borelian (resp., regular) [PP04]. In particular, a

predicate p is open (resp., closed) with witness W ⊆ Hst if, for all path π ∈ Pth, it holds that

π ∈ pr(p) iff there is an index i ∈ N (resp., for all indexes i ∈ N) such that (π)≤i ∈W.

Example 3.1.2. As an example, consider the extension E ,〈A,Pr, pr〉, where A is the arena of

Figure 3.1, Pr = {pU , pV }, the open predicate pU has witness U containing those histories that

passing in s, s, or s, and the closed predicate pV has witness V containing the histories ending

in s.

3.1.3 Schemas

Considering again the chess analysis, one can note that we have defined the chessboard

together with the legal moves, i.e., the arena. We have also introduced all relevant properties, such

as checkmate or stalemate, which have to be checked during a play, i.e., the extension. However,

we have not yet completely described the entire game. Indeed, an initial configuration needs to

be specified and, more important, it is necessary to indicate which behavior we expect from the

players. In particular, being chess a zero-sum game, the two participant must be adversary. To do

this in general, we introduce the concept of schema, which abstractly describes the possible roles

and the allowed interactions of the agents, by means of a relation between an extension, with an

associated initial state, and some solution concepts.

31

3. Graded Strategy Games 3.1 - Game Framework

Definition 3.1.3 (Schema). A schema over the sets of agents Ag and predicates Pr is a tuple

S , 〈Cn, |=〉 ∈ Sc(Ag,Pr), where Cn is the non-empty set of solution concepts and |= ⊆

Ex(Ag,Pr)×E StE × Cn is the schema relation describing which solution concepts ϕ ∈ Cn are

fulfilled on an extension E ∈ Ex(Ag,Pr) starting from a given state s ∈ StE , in symbols E , s |= ϕ.

Finally, Sc(Ag,Pr) denotes the class of all schemas over Ag and Pr.

Informally, a schema is a mean to identify the global properties that a game satisfies, by

summarizing in a prescribed suitable way the behaviors the agents exhibit during all possible plays.

3.1.4 Games

By summing up the basic definitions of arena, extension, and schema, we can now describe the

formalization of the concept of game.

Definition 3.1.4 (Game). Let S ∈ Sc(Ag,Pr) be a schema over the sets of agents Ag and

predicates Pr. Then, a game w.r.t. S is a tuple a ,〈E , sI , ϕ〉 ∈ Gm(S), where E ∈ Ex(Ag,Pr)

is the underlying extension, sI ∈ StE is the designated initial state, and ϕ ∈ Cn is the prescribed

solution concept. Finally, Gm(S) denotes the class of all games over S.

To conclude with the exposition of game-theoretic framework, we need to introduce the

fundamental concept of fulfillment, which prescribe how to determine the outcome of the game.

Definition 3.1.5 (Fulfillment). A game a = 〈E , sI , ϕ〉 ∈ Gm(S) w.r.t. a schema S = 〈Cn,

|=〉 ∈ Sc(Ag,Pr) over the sets of agents Ag and predicates Pr is fulfilled iff E , sI |= ϕ. The

fulfillment problem is to decide whether a is fulfilled.

Intuitively, a game is fulfilled if all involved agents can play together, on the board described

by the arena contained into the extension E starting from the initial position sI , in such a way to

verify the solution concept ϕ. Observe that this problem is an abstract generalization of the classic

model checking of a language against a structure, here represented via ϕ and (E , sI), respectively.

32

3. Graded Strategy Games 3.2 - Graded Strategy Logic

3.2 Graded Strategy Logic

As observed in [MMS14], a schema can be seen as an interface that allows to describe the

notion of fulfillment of a game in a completely abstract way. Obviously, we need a formal language

to implement such an interface and the more expressive it is the wider the class of strategic

reasonings we can grasp is as well. To this aim, we introduce Graded Strategy Logic (GSL, for

short), an extension of a particular version of Strategy Logic (SL, for short) [MMV10, MMS14]

that allows to reason about the number of strategies that an agent may exploit in order to satisfy a

given temporal goal.

3.2.1 Syntax

GSL extends SL by replacing the two classic strategy quantifiers 〈〈x〉〉 and [[x]], where x

belongs to a countable set Vr of variables, with their graded version 〈〈x≥g〉〉 and [[x<g]], where

the finite number g ∈ N denotes the corresponding degree. Intuitively, these quantifiers are read

as “there exist at least g strategies” and “all but less than g strategies”. Moreover, GSL syntax

comprises a set Pr of predicates to expresses properties over paths, a binding operator to link

strategies to agents, and Boolean connectives.

Definition 3.2.1 (GSL Syntax). GSL formulas are built inductively by means of the following

context-free grammar, where a ∈ Ag, p ∈ Pr, x ∈ Vr, and g ∈ N:

ϕ := p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | 〈〈x ≥ g〉〉ϕ | [[x < g]]ϕ | (a, x)ϕ.

As usual, to provide the semantics of a predicative logic, it is necessary to define the concept

of free and bound placeholders of a formula. As for SL, since strategies can be associated to both

agents and variables, we need the set of free agents/variables free(ϕ) as the subset of Ag ∪ Vr

containing (i) all agents a for which there is no binding (a, x) before the occurrence of a predicate

p and (ii) all variables x for which there is a binding (a, x) but no quantification 〈〈x ≥ g〉〉 or

[[x < g]].

Definition 3.2.2 (GSL Free Agents/Variables). The set of free agents/variables of a GSL formula

is given by the function free : GSL → 2Ag∪Vr defined as follows:

33

3. Graded Strategy Games 3.2 - Graded Strategy Logic

1. free(p) , Ag, where p ∈ Pr;

2. free(¬ϕ) , free(ϕ);

3. free(ϕ1 ∨ ϕ2) , free(ϕ1) ∪ free(ϕ2);

4. free(ϕ1 ∧ ϕ2) , free(ϕ1) ∪ free(ϕ2);

5. free(〈〈x ≥ g〉〉ϕ) , free(ϕ) \ {x};

6. free([[x < g]]ϕ) , free(ϕ) \ {x};

7. free((a, x)ϕ) , free(ϕ), if a 6∈ free(ϕ), where a ∈ Ag and x ∈ Vr;

8. free((a, x)ϕ) , (free(ϕ) \ {a}) ∪ {x}, if a ∈ free(ϕ), where a ∈ Ag and x ∈ Vr.

A formula ϕ without free agents (resp., variables), i.e., with free(ϕ)∩Ag = ∅ (resp., free(ϕ)∩

Vr = ∅)), is named agent-closed (resp., variable-closed). A sentence is a both agent- and variable-

closed formula.

Since a variable x may be bound to more than a single agent at the time, we also need the

subset shr(ϕ, x) of Ag containing those agents for which a binding (a, x) occurs in ϕ.

Definition 3.2.3 (GSL Shared Variables). The set of shared variables of a GSL formula with

respect to variable is given by the function shr : GSL ×Vr→ 2Ag defined as follows:

1. shr(p, x) , ∅, where p ∈ Pr;

2. shr(¬ϕ, x) , shr(ϕ, x);

3. shr(ϕ1 ∨ ϕ2, x) , shr(ϕ1, x) ∪ shr(ϕ2, x);

4. shr(ϕ1 ∧ ϕ2, x) , shr(ϕ1, x) ∪ shr(ϕ2, x);

5. shr(〈〈x ≥ g〉〉ϕ, x) , shr(ϕ, x);

6. shr([[x < g]]ϕ, x) , shr(ϕ, x);

7. shr((a, y)ϕ, x) , shr(ϕ, x), if a 6∈ free(ϕ) or y 6= x, where a ∈ Ag and y ∈ Vr;

8. shr((a, x)ϕ, x) , shr(ϕ, x) ∪ {a}, if a ∈ free(ϕ), where a ∈ Ag;

34

3. Graded Strategy Games 3.2 - Graded Strategy Logic

3.2.2 Semantics

Similarly to SL, the interpretation of a GSL formula requires a valuation for its free placehold-

ers. This is done via assignment, i.e., a partial function χ ∈ Asg , (Vr ∪ Ag) ⇀ Str mapping

variables and agents to strategies. An assignment χ is complete iff it is defined on all agents,

i.e., χ(a) ∈ Str(a), for all a ∈ Ag ⊆ dom(χ). In this case, it directly identifies the profile χ�Ag

given by the restriction of χ to Ag. In addition, χ[e 7→ σ], with e ∈ Vr ∪ Ag and σ ∈ Str,

is the assignment defined on dom(χ[e 7→ σ]) , dom(χ) ∪ {e} that differs from χ only on the

fact that e is associated with σ. Formally, χ[e 7→ σ](e) = σ and χ[e 7→ σ](e′) = χ(e′), for all

e′ ∈ dom(χ)\{e}. Finally, given a formulaϕ, we say that χ isϕ-coherent iff (i) free(ϕ) ⊆ dom(χ),

(ii) χ(a) ∈ Str(a), for all a ∈ dom(χ) ∩ Ag, and (iii) χ(x) ∈ Str(a), for all x ∈ dom(χ) ∩ Vr

and a ∈ shr(ϕ, x).

We now define the semantics of a GSL formula ϕ w.r.t. an extension E , one of its states s, and

a ϕ-coherent assignment χ. In particular, we write E , χ, s |= ϕ to indicate that ϕ holds at s in E

under χ. The semantics of formulas involving predicates, Boolean connectives, and agent bindings

are defined as in SL. The definition of graded strategy quantifiers, instead, makes use of a generic

equivalence relation ≡ϕE,s on assignments that depends on the extension, the state, and the formula

under exam. This equivalence is used to reasonably count the number of strategies that satisfy a

formula starting from a given state, w.r.t. an a priori fixed criterion. Observe that we use a relation

on assignments instead of a more direct one on strategies, since the classification may also depend

on the context determined by the strategies previously quantified. In Chapter 4, we will come back

on the properties the equivalence has to satisfy in order to be used in the semantics of GSL.

Definition 3.2.4 (GSL Semantics). Let E be an extension, s ∈ St one of its states, and ϕ a GSL

formula. Then, for all ϕ-coherent assignments χ ∈ Asg, the relation E , χ, s |= ϕ is inductively

defined on the structure of ϕ as follows.

1. For every p ∈ Pr, it holds that E , χ, s |= p iff play(χ�Ag, s) ∈ pr(p).

2. For all formulas ϕ, ϕ1 and ϕ2, it holds that:

(a) E , χ, s |= ¬ϕ iff E , χ, s 6|= ϕ;

35

3. Graded Strategy Games 3.2 - Graded Strategy Logic

(b) E , χ, s |= ϕ1 ∧ ϕ2 iff E , χ, s |= ϕ1 and E , χ, s |= ϕ2;

(c) E , χ, s |= ϕ1 ∨ ϕ2 iff E , χ, s |= ϕ1 or E , χ, s |= ϕ2.

3. For each x ∈ Vr, g ∈ N, and ϕ ∈ GSL, it holds that:

(a) E , χ, s |= 〈〈x ≥ g〉〉ϕ iff |({χ[x 7→ σ] : σ ∈ ϕ[E , χ, s](x)}/≡ϕE,s)| ≥ g;

(b) E , χ, s |= [[x < g]]ϕ iff |({χ[x 7→ σ] : σ ∈ ¬ϕ[E , χ, s](x)}/≡¬ϕE,s)| < g;

where η[E , χ, s](x) , {σ ∈ Str(shr(η, x)) : E , χ[x 7→ σ], s |= η} is the set of shr(η, x)-

coherent strategies that, being assigned to x in χ, satisfy η.

4. For each a ∈ Ag, x ∈ Vr, and ϕ ∈ GSL, it holds that:

E , χ, s |= (a, x)ϕ iff E , χ[a 7→ χ(x)], s |= ϕ.

Intuitively, by using the graded existential quantifier 〈〈x ≥ g〉〉ϕ, we can count how many

different equivalence classes w.r.t. ≡ϕE,s there are over the set of assignments {χ[x 7→ σ] :

σ ∈ ϕ[E , χ, s](x)} extending χ that satisfy ϕ. The universal quantifier [[x ≥ g]]ϕ is simply the

dual of 〈〈x ≥ g〉〉ϕ and it allows to count how many classes w.r.t. ≡¬ϕE,s there are over the set of

assignments {χ[x 7→ σ] : σ ∈ ¬ϕ[E , χ, s](x)} extending χ that do not satisfy ϕ. It is important

to note that, all GSL formulas with degree 1 are SL formulas, and vice versa. Note that the

satisfaction of a sentence ϕ does not depend on assignments, hence we omit them and write

E , s |= ϕ.

In order to complete the description of the semantics, we now give the classic notions of model

and satisfiability of an GSL sentence. Let ϕ be a GSL formula and E an extension having A as an

underlying arena with a set of states St comprising s0 as an initial state. Then, E is a model of an

GSL sentence ϕ, in symbols E |= ϕ, if E , ∅, s0 |= ϕ. In general, we also say that E is a model for

ϕ on a generic s ∈ St, in symbols E , s |= ϕ, if E , ∅, s |= ϕ. An GSL sentence ϕ is satisfiable if

there is a model for it.

To complete with the semantic properties of GSL, we give the concepts of implication and

equivalence between GSL formulas.

Definition 3.2.5 (GSL Implication and Equivalence). For all GSL formulas ϕ1 and ϕ2 with

free(ϕ1) = free(ϕ2), we say that ϕ1 implies ϕ2, in symbols ϕ1 ⇒ ϕ2, if, for all extensions E ,

36

3. Graded Strategy Games 3.2 - Graded Strategy Logic

states s, and χ ∈ Asg(free(ϕ1), s), it holds that if E , χ, s |= ϕ1 then E , χ, s |= ϕ2. Consequently,

we say that ϕ1 is equivalent to ϕ2, in symbols ϕ1 ≡ ϕ2, if both ϕ1 ⇒ ϕ2 and ϕ2 ⇒ ϕ1 hold.

Once the sets of agents and predicates are fixed, GSL induces a schema SGSL, where the

set of solution concepts is GSL itself, i.e., its set of sentences, and the schema relation is given

by the definition of its semantics. A Graded Strategy Game is a game w.r.t. SGSL, whose set is

denoted by GSG , Gm(SGSL). In what follows, we also consider some constraints on the number

of agents/variables or the type of arenas and predicates. More specifically, TB indicates that we

restrict to turn-based arenas, and kVAR (resp., kAG) bounds the maximal number of variables (resp.,

agents) in a formula to k. For example, GSG[1G, TB, 2AG/VAR] is the fragment of GSG restricted

to GSL[1G] solution concepts, turn-based arenas, and with at most two agents and variables.

3.2.3 Binding Fragments

We now consider some fragments of GSL that allow to formalize interesting game properties

not expressible in other logics. A quantification prefix over a set V⊆Vr of variables is a finite

word ℘ ∈ {〈〈x ≥ g〉〉, [[x < g]] : x ∈ V ∧ g ∈ N}|V| of length |V| such that each variable

x ∈ V occurs just once in ℘. A binding prefix over a set of variables V is a word [∈ {(a, x)

: a ∈ Ag ∧ x ∈ V}|Ag| such that each agent a ∈ Ag occurs exactly once in [. By Bn we

indicate the set of all binding prefixes. With Qn(V) we indicate the set of quantification prefixes

over V. We now have all tools to define the syntactic fragments we want to analyze, which we

name, respectively, Boolean-Goal, Conjunctive-Goal, Disjunctive-Goal, and One-Goal Graded

Strategy Logic (GSL[BG], GSL[CG], GSL[DG], and GSL[1G] for short). For goal we mean an GSL

agent-closed formula of the kind [ϕ, with Asg ⊆ free(ϕ), being [∈ Bn(Vr) a binding prefix. The

idea GSL[BG] is that, the formulas, after quantification prefix, may have more goals related with

boolean operators. The GSL[CG] (resp., GSL[DG]) w.r.t. GSL[BG], after quantification prefix, may

have more goals but related only with conjunctive operator (resp. disjunctive operator). Finally,

GSL[1G] forces the use of a different quantification prefix for each single goal in the formula.

Definition 3.2.6 (Binding fragments). GSL[BG] formulas are defined by the following context-free

grammar:

37

3. Graded Strategy Games 3.2 - Graded Strategy Logic

ϕ := ℘φ | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ,

φ := [ψ | ¬φ | φ ∧ φ | φ ∨ φ,

ψ := p | ¬ψ | ψ ∧ ψ | ψ ∨ ψ.

where ℘ ∈ Qn(free(ψ)), [∈ Bn, and p ∈ Pr. Moreover, the fragments obtained by replacing the

second row with φ := [ψ | φ ∧ φ, φ := [ψ | φ ∨ φ, of φ := [ψ, are called GSL[CG], GSL[DG],

and GSL[1G] respectively.

In the sequel, we also consider some constraints on the number of agents/variables or the type

of arenas and predicates. More specifically, TB indicates that we restrict to turn-based arenas, and

kVAR (resp. kAG) bounds the maximal number of variables (resp. agents) in a formula to k.

38

4
Strategy Equivalence

Our definition of GSL semantics makes use of an arbitrary equivalence relation on assignments.

This choice introduce flexibility in its description, since one can come up with different semantics

by opportunely choosing different equivalences. In this Chapter, we focus on a particular relation

whose key feature is to classify as equivalent all assignments that reflect the same “strategic

reasoning”, although they may have completely different structures. Just to get intuition about

what we mean, consider for example two assignments and the corresponding involved strategies.

Assume now that all such strategies differ only on histories never met by a play because of a specific

combination of agent actions. Clearly, these assignments induce the same agent behaviors, which

means to reflect the same strategic reasoning. Therefore, it is natural to set them as equivalent, as

we do.

The remaining part of this Chapter is organized as follows. First, in Section 4.1, we introduce

two basic properties of equivalence on strategies, namely syntax independent and satisfiability

matching. In Section 4.2, we deal with the equivalence relation related to open and closed

predicates. Then, in Section 4.3, we extend the study to the strategy operators. In Section 4.4, we

give two consistency properties on the Boolean connectives ∧ and ∨. Finally, it is worth observing

that it is possible to derive the equivalences for predicates belonging to any level of the Borel

39

4. Strategy Equivalence 4.1 - Elementary Requirements

hierarchy, by opportunely using conjunctions and disjunctions of equivalences for predicates of

lower levels.

4.1 Elementary Requirements

In this section, we introduce the property of syntax independence and satisfiability matching,

that are two basic concept that our equivalence relation must have.

Suppose we have two equivalent formulas ϕ1 and ϕ2. We need to require that, whenever two

assignments are equivalent w.r.t. ϕ1, they are equivalent w.r.t. ϕ2, as well. The formal definitions

of this concept follows.

Definition 4.1.1 (Syntax Independence). An equivalence relation on assignments ≡·E,s is syntax

independent iff, for any pairs of equivalent formulasϕ1 andϕ2 w.r.t≡ andϕ1-coherent assignments

χ,χ ∈ Asg we have that χ ≡ϕ

E,sχ iff χ ≡ϕ

E,sχ.

Consider two assignments χ and χ. The equivalence relation is established in such a way

that if χ and χ are equivalent with respect to a formula ϕ, either both satisfy ϕ or none of them

does it. We called this properties satisfiability matching and the formal definition follows.

Definition 4.1.2 (Satisfiability Matching). An equivalence relation on assignments ≡·E,s is satisfi-

ability matching if, for any ϕ and ϕ-coherent assignments χ, χ , we have that if χ ≡ϕE,sχ then

either E , χ, s |= ϕ and E , χ, s |= ϕ or E , χ, s 6|= ϕ and E , χ, s 6|= ϕ.

4.2 Play Requirements

We now formalize the equivalence relation for the basic case of atomic properties over paths.

In particular, Definition 4.2.1 handles open predicates and, as a particular case, the reachability

properties, while Definition 4.2.2 considers closed predicates and, consequently, the safety prop-

erties. As it will be clear in the following, the two definitions are symmetric, due to the intrinsic

nature of the involved concepts.

Before disclosing the two formalizations, we would like first to give an intuition on how the

relation acts on a generic predicate p. Our aim is to evaluate the equivalence of two assignments

40

4. Strategy Equivalence 4.2 - Play Requirements

χ and χ w.r.t. their agreement on its verification. Specifically, in case both χ and χ do not

satisfy p, it is reasonable to think that they are equivalent as they induce two plays that, although

possibly different, are irrelevant for p, i.e., none of them belongs to the set of paths satisfying it.

Conversely, if one satisfies the predicate, while the other does not, in accordance with the idea to

set as equivalent those assignments that reflect the same strategic reasoning, χ and χ are intended

to be not equivalent.

It is left to analyze the case in which both assignments satisfy p. If the latter is an open

predicate, the plays π and π induced by χ and χ must have two possibly different prefixes

belonging to the witness set U of p. Having said that, it is reasonable to evaluate their equivalence

by restricting the attention to the common prefix ρ = prf(π, π). Indeed, if also ρ has a prefix

that belongs to U, this can be used as a witness for both the memberships π, π ∈ pr(p). In such a

case, we set χ and χ to be equivalent. Otherwise, there are necessarily different witnesses for

the two memberships and, so, we set the corresponding assignments as non-equivalent.

Definition 4.2.1 (Open-Play Consistency). An equivalence relation on assignments ≡·E,s is open-

play consistent if, for any open predicate p with witness U ⊆ Hst and p-coherent assignments

χ, χ ∈ Asg, we have that if E , χ, s 6|= p and E , χ, s 6|= p then χ≡pE,sχ, otherwise, χ≡pE,sχ

iff there is a history ρ ∈ Hst with ρ ≤ prf(play(χ�Ag, s), play(χ�Ag, s)) such that ρ ∈ U.

Example 4.2.1. Consider the extension E related to the arena A depicted in Figure 3.1, the

state s ∈ St, and the open predicate pU . Moreover, let χ, χ, χ ∈ Asg({a, b, c}) be three

assignments on which we want to check the equivalence. In particular, assume that each χi

associates a strategy σαi with the agent α∈{a, b, c} as defined in the following: σa//(s),2,

σa/(ρ) =σb//(ρ
′) =σc(ρ

′),0, and σa(ρ) =σc/(ρ
′),1, for all ρ∈Hst \ {s} and ρ′∈Hst.

Now, it is easy to see that χ ≡pU
E,sχ but χ 6≡pU

E,sχ. Indeed, χ, χ, and χ induce the plays

π = ssss
ω, π = sss(ss)

ω, and π = sss
ω, respectively, where ρ = sss =

prf(π, π) and ρ = ss = prf(π, π) are the corresponding common histories. Thus, ρ

belongs to the witness U of pU , while ρ does not.

We now give the intuition behind the equivalence of two assignments χ and χ w.r.t. a closed

predicate p. First recall that, if both of them satisfy p, all prefixes of the induced plays π and π

41

4. Strategy Equivalence 4.3 - Strategy Requirements

must belong to the witness V of p. Now, as for open predicates, consider their common prefix

ρ = prf(π, π). It is obvious that, if all histories extending ρ belong to V, we can use ρ itself as

a witness for the two memberships π, π ∈ pr(p), since there is no way to violate the property

described by p, once a play reaches ρ. In this case, we set χ and χ to be equivalent. Otherwise,

the reason why both the assignments satisfy the predicate necessarily reside in the part the two

plays differ, so, we set them as non-equivalent.

Definition 4.2.2 (Closed-Play Consistency). An equivalence relation on assignments≡·E,s is closed-

play consistent if, for any closed predicate p with witness V ⊆ Hst and p-coherent assignments

χ, χ ∈ Asg, we have that if E , χ, s 6|= p and E , χ, s 6|= p then χ≡pE,sχ, otherwise, χ≡pE,sχ

iff, for each history ρ ∈ Hst with prf(play(χ�Ag, s), play(χ�Ag, s)) ≤ ρ, it holds that ρ ∈ V.

Example 4.2.2. Consider again the extension E , the state s, and the closed predicate pV . More-

over, let χ, χ, χ ∈ Asg({a, b, c}) be three assignments on which we want to check the equiv-

alence. In particular, assume that each χi associates a strategy σαi with the agent α∈{a, b, c}

as defined in the following: σa//(ρ) , 0, σa/(ss) = σa/(ss) = σb/(ρ
′) = σc(ρ

′) , 1,

and σa(ss) = σa(ss) = σb(ρ
′) = σc/(ρ

′), 2, for all ρ∈Hst \ {ss, ss} and ρ′ ∈Hst.

Now, it holds that χ ≡pV
E,sχ but χ 6≡pV

E,sχ. Indeed, χ and χ induce exactly the same play

π = sss
ω. On the contrary, χ induces the play π = ss

ω. Thus, the common history

ρ=s=prf(π, π) has an extension that does not belong to V.

4.3 Strategy Requirements

At this point, we can study the formalization of the equivalence relation for the strategy

constructs. First, in Definition 4.3.1, we address the binding operator that results to be the

most intuitive case, as it just involves a redefinition of the assignments under analysis. Then,

in Definition 4.3.2 and 4.3.3, we move to the existential and universal strategy quantifiers that

represent the core of our counting technique.

The semantics of a formula ϕ = (a, x)η intuitively asserts that ϕ holds under an assignment

χ once the inner part η is satisfied by associating the agent a to the strategy χ(x). Therefore, the

42

4. Strategy Equivalence 4.3 - Strategy Requirements

equivalence of two assignments χ and χ w.r.t. ϕ necessarily depends on that of their extensions

on a w.r.t. η.

Definition 4.3.1 (Binding Consistency). An equivalence relation on assignments ≡·E,s is binding

consistent if, for any given formula ϕ = (a, x)η and ϕ-coherent assignments χ, χ ∈ Asg, we

have that χ ≡ϕE,sχ iff χ[a 7→ χ(x)]≡ηE,sχ[a 7→ χ(x)].

Example 4.3.1. To gain insight on the above definition consider the formulas ϕ1 = [pU and

ϕ2 = [pU , where [ , (a, x)(b, y)(c, z), [ , (a, x)(b, y)(c, x), and pU is the open predicate

of the extension E . Moreover, let χ, χ ∈ Asg({x, y, z}) be two assignments that associate,

respectively, the strategies σα and σα to the variable α ∈ {x, y, z} as defined in the following:

σ
/
x (s) , 2, σx(ρ) = σ

/
y (ρ′) , 0, and σx(ρ) = σ

/
z (ρ′) , 1, for all ρ ∈ Hst \ {s}

and ρ′ ∈ Hst. Now, it is easy to see that χ ≡ϕ

E,sχ but χ 6≡ϕ

E,sχ. Indeed, χ ◦ [, χ ◦ [,

χ ◦ [, and χ ◦ [ induce the plays π = sss(ss)
ω, π = sss

ω, π = sss(ss)
ω,

π =ssss
ω, respectively, where ρ=ss=prf(π, π


) and ρ = sss=prf(π, π


) are

the corresponding common histories. Thus, ρ belongs to the witness U of pU , while ρ does not.

Before proceeding with the analysis of the remaining logic constructs, it is important to make

an observation about the dual nature of the existential and universal quantifiers w.r.t. the counting

over strategies. We do this by exploiting the classic game-semantics metaphor originally proposed

for first-order logic by Lorenzen and Hintikka, where the choice of an existential variable is

done by a player called ∃ and that of the universal ones by its opponent ∀. Consider a formula

〈〈x≥g1〉〉[[x<g2]]η, having 〈〈y≥h1〉〉η1 and [[y<h2]]η2 as two subformulas. When player ∃

chooses the h1 different strategies y to satisfy η1, it has also to maximize the number of strategies

x verifying [[x<g2]]η to be sure that the constraint ≥ g1 is not violated. At the same time, player

∀ tries to do exactly the opposite while choosing the h2 different strategies y not satisfying η2,

i.e., to maximize the number of strategies x falsifying η in order to violate the constraint < g2.

With this observation in mind, we can now deal with the relation for the existential quantifier.

Two assignments χ and χ are equivalent w.r.t. a formula ϕ = 〈〈x≥g〉〉η if player ∃ is not able

to find a strategy σ among those satisfying η, to associate with the variable x, that allows the

corresponding extensions of χ and χ on x to induce different behaviors w.r.t. η.

43

4. Strategy Equivalence 4.3 - Strategy Requirements

Definition 4.3.2 (Existential Consistency). An equivalence relation on assignments ≡·E,s is existen-

tially consistent if, for any given formula ϕ = 〈〈x≥g〉〉η and ϕ-coherent assignments χ, χ ∈ Asg,

we have that χ ≡ϕE,sχ iff, for each strategy σ ∈ η[E , χ, s](x) ∪ η[E , χ, s](x), it holds that

χ[x 7→ σ]≡ηE,sχ[x 7→ σ].

Example 4.3.2. Again, to see an application on the above, consider a formula ϕ = 〈〈z ≥ 2〉〉[pU ,

with [= (a, x)(b, y)(c, z), pU is the open predicate of the extension E . Moreover, let χ, χ, χ ∈

Asg({x, y}) be three assignments that associate, respectively, the strategies σαi to the variable

α ∈ {x, y} as defined in the following: σx(ρ) = σx(ρ
′) =σ

y

//(s),0, σx(ρ) =σx(ss),1,

and σxi (s),2, for allρ ∈ Hst(s)\{s} and ρ′ ∈ Hst(s)\{s, ss}. Under these assignments

we show that χ and χ are existential consistent while χ and χ are not.

We start analyzing the existential consistency for χ and χ. First observe that χ ≡ϕE,sχ iff

all strategies σ that satisfy [p on χ or χ are such that χ and χ restricted to σ are equivalent

with respect to [p. Moreover the set of these strategies for z is {σz, σz}, where σz(ρ) = 0 and

σz(ρ) = 1, with ρ ∈ Hst(s). First, let us analyze the equivalence relation under the strategy

σz assigned to variable z. We have that χ ◦ [and χ ◦ [induce the plays π = ssss
ω
 and

π = ss(ss)
ω, respectively, where ρ = ss = prf(π, π) is the corresponding common

histories. Thus, ρ does not belong to the witness U of pU . So, χ and χ are not existential

consistent as required. It remains to analyze the existential consistency for χ and χ. As before we

want to check that all strategies σ that satisfy [p on χ or χ are such that χ and χ restricted

to σ are equivalent with respect [p. Moreover, the set of these strategies are as before. We start

analyzing the equivalence relation under the strategy σz assigned to z. We have that χ ◦ [induce

the play π = sss
ω
 , and ρ = sss = prf(π, π) is the corresponding common histories.

Thus, ρ belongs to the witness U of pU . Now, we apply the same reasoning for σ. We get

that χ ◦ [and χ ◦ [induce the plays π = sss(ss)
ω and π = ssss

ω
 , respectively,

where ρ=sss=prf(π, π) is the corresponding common histories. Thus, ρ belongs to the

witness U of pU . So, χ and χ are existential consistent as required and the ends the example.

We conclude by dealing with the relation for the universal quantifier. Two assignments χ and

χ are equivalent w.r.t. a formula ϕ = [[x<g]]η if the following holds: for each strategy σ player

∀ chooses among those satisfying η under χ, there is a strategy σ this player can choose among

44

4. Strategy Equivalence 4.3 - Strategy Requirements

those satisfying η under χ and vice versa, such that, once the two strategies are associated to the

variable x, they make the corresponding extensions of χ and χ equivalent w.r.t. η. This means

that the parts of the arena that are reachable when the two assignments are fixed contain exactly

the same information w.r.t. the verification of the inner formula.

Definition 4.3.3 (Universal Consistency). An equivalence relation on assignments ≡·E,s is univer-

sally consistent if, for any given formula ϕ = [[x < g]]η and ϕ-coherent assignments χ, χ ∈ Asg,

we have that χ ≡ϕE,sχ iff, for each i ∈ {1, 2} and strategy σi ∈ η[E , χi, s](x), there is a strategy

σ−i ∈ η[E , χ−i, s](x) such that χ[x 7→ σ]≡ηE,sχ[x 7→ σ].

Example 4.3.3. To see an application on the above, consider formula ϕ = [[y < 2]][pU , where

[= (a, x)(b, y)(c, x) and pU is the open predicate of the extension E . Moreover, let χ, χ, χ ∈

Asg({x}) be three assignments that associate, respectively, the strategies σαi to the variable

α ∈ {x} as defined in the following: σx(ρ
′) = σx(ρ) , 0, σx(ρ

′) , 1, and σx/(s) , 2, for all

ρ ∈ Hst(s), and ρ′ ∈ Hst(s) \ {s}. Under these assignments we show that χ and χ are

universal consistent while χ and χ are not.

Let us start analyzing the universal consistency for χ and χ. Observe that, χ ≡ϕE,sχ iff

for every strategy that satisfies [pU on χ (resp., χ) there is a strategy that satisfies [pU on

χ (resp., χ) and χ and χ respectively restricted to such strategies are equivalent over [pU .

So, the set of strategy that satisfy [pU is the same for χ and χ, and it is composed by σy and

σ
y
 , where σy(s) = 0 and σy(s) = 2. Now, we verify the equivalence for σy . We have that

χ ◦ [and χ ◦ [induce the plays π =ssss
ω
 , and π =sss(ss)

ω, respectively, where

ρ = sss = prf(π, π

) is the corresponding common histories. Thus, the common prefix

belong to the witness U of pU . Now, let us analyze the statement with represent to σy . We have

that χ ◦ [and χ ◦ [induce the plays π = ss
ω
 , and π = s(ss)

ω, respectively, where

ρ=ss=prf(π, π

) is the corresponding common histories. Thus, the common prefix belong

to the witness U of pU . In conclusion, we have that χ and χ are universal consistent. We now

analyze the universal consistency regarding χ and χ. By applying a similar reasoning as above,

we have that the set of strategy that satisfy [pU for χ is the same of the above, while the set for

χ is composed by σy and σy , where σy(s) = 0 and σy(s) = 1. We start with σy for both

assignments. We have that χ ◦ [induce the play π =sss
ω
 . So, ρ=s=prf(π, π) is the

45

4. Strategy Equivalence 4.4 - Boolean Requirements

corresponding common histories. Thus, ρ does not belong to the witness U of pU . Now, we verify

with σy for χ. By applying the same semantics reasoning, we have that χ ◦ [induce the play

π =sss
ω
 . So, ρ=s=prf(π, π) is the corresponding common histories. Thus, ρ does

not belong to the witness U of pU . So χ and χ are not universal consistent. Directly from this we

have that χ and χ are not universal consistent.

4.4 Boolean Requirements

At this point, we can reason about properties that an equivalence has to satisfy w.r.t. the positive

Boolean formulas. Specifically we give properties that must hold w.r.t. conjunction and disjunction.

Suppose we have two GSL formulas ϕ1 and ϕ2. A request property is that both numbers of

assignments that are equivalent w.r.t. ϕ1 and ϕ2 are not less than those ones that are equivalent w.r.t.

their conjunction. Hence, we need that assignments equivalent w.r.t. both ϕ1 and ϕ2 are equivalent

w.r.t. ϕ1 ∧ ϕ2 too, otherwise, each equivalence class for ϕ1 and ϕ2 may provide more than one

equivalence class for ϕ1 ∧ ϕ2 allowing the latter formula to have more assignments. Moreover,

we would like that, among the assignments that are equivalent for ϕ1 (resp., ϕ2), the number of

those equivalent for ϕ2 (resp., ϕ1) is equal to those for ϕ1 ∧ ϕ2. Hence, we need that assignments

equivalent w.r.t. ϕ1 ∧ ϕ2 are also equivalent w.r.t. both ϕ1 and ϕ2.

Definition 4.4.1 (Conjunctive Consistency). An equivalence relation on assignments ≡·E,s is

conjunctive consistent if, for any given formula ϕ = ϕ1 ∧ ϕ2 and ϕ-coherent assignments

χ, χ ∈ Asg, we have that χ ≡ϕ∧ϕ

E,s χ iff χ ≡ϕ

E,sχ and χ ≡ϕ

E,sχ.

46

4. Strategy Equivalence 4.4 - Boolean Requirements

s
a

s
b,c

s
b,c

s
a

s
a

s
a

s
a

0 1

10/01 00/11 01/10

11 00

0/1 0/1 0/1 0/1

Figure 4.1: Arena ADG. Note that the node of the arena are

labeled with its name (in the upper part) and with the subset of

player that are active on its (in the lower part).

Example 4.4.1. Consider the exten-

sion E related to the arena ADG de-

picted in Figure 4.1, the state s ∈

St, and a formula ϕ = [1pU ∧ [2pV ,

with [1 = (a, y)(b, x)(c, z), [2 =

(a, x)(b, z)(c, y). Pr = {pU , pV },

the open predicate pU has witness

U containing those histories ending

in s or s, and the closed predi-

cate pV has witness V containing the

histories ending in s or s. More-

over, let χ, χ, χ ∈ Asg({x, y, z})

be three assignments on which we want to check the equivalence. In particular, assume that

each χi associates a strategy σαi with the variable α ∈ {x, y, z} as defined in the following:

σx//(ρ) = σ
y
(ρ) = σz/(ρ) , 0, σy/(ρ) = σz(ρ) , 1, for all ρ ∈ Hst. Now, it holds that

χ ≡ϕE,sχ but χ 6≡ϕE,sχ.

First observe that, χ≡ϕE,sχ iff χ≡[pUE,s χ ∧χ≡[pVE,s χ. Now, χ ◦ [, χ ◦ [, χ ◦ [, and

χ ◦ [ induce the plays π =sss
ω, π =sss

ω, π =sss
ω, π =sss

ω, respectively,

where ρ = ss = prf(π, π

) and ρ = ss = prf(π, π


) are the corresponding common

histories. Thus, ρ belongs to the witness U of pU , and ρ has all extension that belong to the

witness V of pV .

It remains to analyze the conjunctive consistency for χ and χ. By applying the same

semantics reasoning of the above, we have that χ ◦ [ and χ ◦ [ induce the plays π=sss
ω,

π = sss
ω, respectively, where ρ

′
 = s = prf(π, π


) and ρ

′
 = ss = prf(π, π


) are the

corresponding common histories. Thus, ρ
′
 does not belong to the witness U of pU then χ and χ

are not conjunctive consistent.

Now, we discuss the equivalence relation w.r.t. the disjunction.

47

4. Strategy Equivalence 4.4 - Boolean Requirements

Definition 4.4.2 (Disjunctive Consistency). An equivalence relation on assignments ≡·E,s is

disjunctive consistent if, for any given formula ϕ = ϕ1 ∨ϕ2 and ϕ-coherent assignments χ, χ ∈

Asg, we have that χ ≡ϕ∨ϕ

E,s χ iff the followings holds:

1. E , χ, s |= ϕi iff E , χ, s |= ϕi ∀i ∈ {1, 2}

2. If E , χ, s |= ϕi then χ ≡ϕi

E,sχ ∀i ∈ {1, 2}

s
a,b

s
a

s
b

s
a,c

s
a

s
a

s
b

01/10

00

11

0/1

0

1

11 00

01/10

0/1 0/1

0

1

Figure 4.2: Arena ACG. Note that the node of the arena

are labeled with its name (in the upper part) and with the

subset of player that are active on its (in the lower part).

Example 4.4.2. Consider the extension

E related to the arena ACG depicted in

Figure 4.2, the state s ∈ St, and a

formula ϕ = [1pV ∨ [2pU , with [1 =

(a, x)(b, y)(c, z), [2 = (a, y)(b, x)(c, z).

Pr = {pU , pV }, the open predicate pU

has witness U containing those histories

ending in s, s, or s and the closed

predicate pV has witness V containing

the histories ending in s. Moreover, let

χ, χ, χ ∈ Asg({x, y, z}) be three as-

signments on which we want to check the

equivalence. In particular, assume that each χi associates a strategy σαi with the variable

α ∈ {x, y, z} as defined in the following: σx(ρ
′) = σ

y
(ρ′) = σz(ρ) , 0, σx/(ρ) = σx(s) =

σ
y

/(ρ)=σ
y
(s)=σz/(ρ),1, for all ρ∈Hst, ρ′∈Hst\{s}. Under these assignments we show

that χ and χ are disjunctive consistent while χ and χ are not. First observe that, χ ≡ϕE,sχ

iff the followings holds:

1. E , χ, s |= [ipi iff E , χ, s |= [ipi ∀i ∈ {1, 2};

2. If E , χ, s |= [ipi then χ ≡[ipiE,s χ ∀i ∈ {1, 2}.

48

4. Strategy Equivalence 4.5 - Example

We have that, χ ◦ [, χ ◦ [, χ ◦ [, and χ ◦ [ induce the plays π=sss
ω, π=sss

ω,

π = sss
ω, π = sss

ω, respectively, where ρ = ss = prf(π, π

) and ρ = sss =

prf(π, π

) are the corresponding common histories. Now, π and π are not belongs to pr(pV)

whereas π and π are belongs to pr(pU), also ρ belongs to the witness U of pU . Therefore, χ

and χ are disjunctive consistent as required.

Now, we analyze the disjunctive consistency for χ and χ. By applying the same semantics

reasoning of the above, we have that χ ◦ [ and χ ◦ [ induce the plays π = sss
ω, π =

sss
ω, respectively, where ρ

′
 = sss

ω = prf(π, π

) and ρ

′
 = ss = prf(π, π


) are the

corresponding common histories. Now, π and π are not belongs to pr(pV) whereas π and π

are belongs to pr(pU), but ρ
′
 is not belong to the witness U of pU . Therefore, χ and χ are not

disjunctive consistent as required and this concludes the example.

4.5 Example

In this Section we illustrate four examples of the semantics application, and consequently of

equivalence relation, on composed formulas, so as to analyze the interactions. In Subsection 4.5.1

we analyze the model in the Figure 3.1 with two formulas in GSL[1G] and comparing the obtained

results. In Subsection 4.5.2 we use the model in Figure 4.2 to analyze a formula in GSL[CG]. In

Subsection 4.5.3 we give an example of a formula in GSL[DG] on the model in the Figure 4.1.

For clarity, in this last example we show two tables that contain a terminal state in each cell,

there will be a cell for each possible combination of strategies on the players involved. Finally, in

Subsection 4.5.4 we give a concrete example w.r.t. the scheduling problem.

4.5.1 Example in GSL[1G]

To make practice with the equivalence for the strategy constructs, consider again the arenaA de-

picted in Figure 3.1 and the associated extension E having the open predicate pU . Moreover, let ϕ =

℘[pU be a GSL[1G] formula with ℘ = 〈〈x ≥ g1〉〉[[y < g2]]〈〈z ≥ g3〉〉 and [= (a, x)(b, y)(c, z).

Then, it can be showed that E , s |= ϕ with (g1, g2, g3) = (6, 3, 2), while E , s 6|= ϕ with

(g1, g2, g3) = (1, 2, 2). Thus, there exist six strategies σxi not equivalent associated to the variable

49

4. Strategy Equivalence 4.5 - Example

x, where σx(ρ) = σx(s) = σx(ρ
′) = σx(ρ

′) , 0, σx(ρ) = σx(ρ
′) = σx(ρ

′) = σx(s) , 1, and

σx(s) = σx(s) , 2 for all ρ ∈ Hst(s) and ρ′ ∈ Hst(s) \ {s}. The variable y has three

strategies σyj not equivalent where σy(ρ) = 0, σy(ρ) = 1, and σy(ρ) = 2, for all ρ ∈ Hst(s).

Finally, the variable z has two strategies σzk not equivalent, where σz(ρ) = 0 and σz(ρ) = 1, for

all ρ ∈ Hst(s). It is not hard to see that the above strategies, once assigned to the variable x,

result to be (along their corresponding assignment) not-equivalent among them.

Below we illustrate the strategy equivalence on assignments σx and σx . Let ϕ′ = 〈〈z ≥

2〉〉(a, x)(b, y)(c, z)p. We have that χ1[x 7→ σx] ≡
[[y<]]ϕ′
E,s χ2[x 7→ σx] iff for every strategy that

satisfies ϕ′ on χ (resp., χ) there is a strategy that satisfies ϕ′ on χ (resp., χ) and χ and χ

respectively restricted to such strategies are equivalent over ϕ′. So, the set of strategy that satisfy ϕ′

is the same for χ and χ, and it is composed by σy and σy . Now, we verify the equivalence for σy

on χ and χ. Thus, for the existential consistency we have that χ ≡ϕ
′

E,sχ iff all strategies σ that

satisfy [pU on χ or χ are such that χ and χ restricted to σ are equivalent with respect to [p.

Moreover the set of these strategies for z is {σz, σz}. For the strategy σz of z, the assignments

are not equivalent. In fact, we have two different paths that are ssss
ω and ss(ss)

ω,

respectively. Now, we verify the equivalence for σy on χ and σy on χ. Thus, the set of strategies

for z is that above. For the strategy σz of z, the assignments are not equivalent. In fact, we have two

different paths that are ssssω and s(ss)
ω, respectively. So, σx and σx are not equivalent.

Differently, the formula ϕ it is not satisfied with g1 = 3, g2 = 2, and g3 = 2, since there exist

three strategies for x but, excluding a strategy for y, there are not two strategies for z.

Now, we analyze the formula ψ = ℘′[′pU where ℘′ = 〈〈x ≥ g4〉〉[[y < g5]] and [′ =

(a, x)(b, y)(c, x). We have that ψ is satisfied with g4 = 3 and g5 = 2 but it is not satisfied for

g4 = 6 and g5 = 3, since the agents a and c accomplish the same strategy as they are binding at

the same variable x and then there are not six strategies that one not equivalent for the agent a. The

checking of semantics proceeds as above.

4.5.2 Example in GSL[CG]

Consider the arena ACG depicted in Figure 4.2 associated to the extension E , 〈A,Pr, pr〉

where there are an open predicate pU and a closed predicate pV . Pr = {pU , pV }, the predicate

50

4. Strategy Equivalence 4.5 - Example

pU has witness U containing those histories ending in s, s, s, or s and the predicate pV

has witness V containing the histories ending in s or s. Moreover, let ϕ = ℘([1pU ∧ [2pV)

be a GSL[CG] formula, where ℘ = 〈〈x ≥ g1〉〉[[y < g2]][[z < g3]], [1 = (a, x)(b, y)(c, z), and

[2 = (a, y)(b, x)(c, z). Thus, there exist three strategies σxi not equivalent associated to the variable

x, where σx(ρ) = σx(ρ
′) , 0, σx(ρ) = σx(s) , 1, for all ρ ∈ Hst(s) and ρ′ ∈ Hst(s) \ {s}.

The variable y has three strategies σyj where σy(ρ) = σ
y
(ρ′) , 0, σy(ρ) = σ

y
(s) , 1, for all

ρ ∈ Hst(s) and ρ′ ∈ Hst(s) \ {s}. Finally, the variable z has two strategies σzk not equivalent,

where σz(ρ) , 0 and σz(ρ) , 1, for all ρ ∈ Hst(s). It is not hard to see that the above

strategies, once assigned to the variable x, result to be (along their corresponding assignment)

not-equivalent among them. Now, we evaluate the equivalences on σx and σx associated to χ and

χ, respectively. First, we used, for simplicity, a three new formulas ϕ′, ϕ′′, and ϕ′′′ that represent

[[y < g2]][[z < g3]][1pU ∧ [2pV , [[z < g3]][1pU ∧ [2pV , and [1pU ∧ [2pV , respectively. We have

that, χ1 ≡ϕ
′

E,sχ2 iff for every strategy that satisfies ϕ′′ on χ (resp., χ) there is a strategy that

satisfies ϕ′′ on χ (resp., χ) and χ and χ respectively restricted to such strategies are equivalent

over ϕ′′. So, the set of strategy that satisfy ϕ′′ is the same for χ and χ, and it is composed by

σ
y
 and σy . Now, we verify the equivalence for σy for both assignments. χ ≡ϕ

′′

E,sχ iff for every

strategy that satisfies ϕ′′′ on χ (resp., χ) there is a strategy that satisfies ϕ′′′ on χ (resp., χ)

and χ and χ respectively restricted to such strategies are equivalent over ϕ′′. So, the set of

strategy that satisfy ϕ′′′ is the same for χ and χ, and it is composed by σz . For the strategy

σz , we have that χ ≡ϕ
′′′

E,sχ iff χ ≡[pUE,s χ ∧ χ ≡[pVE,s χ′. We have that χ ◦ [1 and χ ◦ [1

induce the plays π = sss
ω, and π = sss

ω, respectively, where ρ = ss = prf(π, π)

is the corresponding common histories. Hence, the common prefix ss are not belongs to UpU .

Now, we verify the equivalence for σy to χ and σy to χ. χ ≡ϕ
′′

E,sχ iff for every strategy that

satisfies ϕ′′′ on χ (resp., χ) there is a strategy that satisfies ϕ′′′ on χ (resp., χ) and χ and χ

respectively restricted to such strategies are equivalent over ϕ′′. So, the set of strategy that satisfy

ϕ′′′ is composed by σz for χ. We have that χ ≡ϕ
′′′

E,sχ iff χ ≡[pUE,s χ ∧ χ ≡[pVE,s χ′. We have

that χ ◦ [1 induce the play π =sss
ω, where ρ =ss = prf(π, π) is the corresponding

common histories. Hence, the common prefix ss are not belongs to UpU . So, χ and χ are not

equivalent. Fixed a strategy σx for x, we evaluate the equivalences on σy and σy associated to χ

51

4. Strategy Equivalence 4.5 - Example

and χ, respectively. First, we used, for simplicity, a two new formulas ϕ′ and ϕ′′ that represent

〈〈z ≥ g3〉〉[1¬pU ∨ [2¬pV , [1¬pU ∨ [2¬pV , respectively. We have that χ1≡ϕ
′

E,sχ2 iff all strategies

σ that satisfy ϕ′′ on χ or χ are such that χ and χ restricted to σ are equivalent with respect to

ϕ′′. Since the strategy for z is irrelevant for the two assignments is easy to see that χ and χ are

equivalent. Then, it can be showed that E , s |= ϕ with (g1, g2, g3) = (3, 2, 2), while E , s 6|= ϕ

with (g1, g2, g3) = (1, 1, 1).

4.5.3 Example in GSL[DG]

Consider the arena ADG depicted in Figure 4.1 associated to the extension E , 〈A,Pr, pr〉

where there is a closed predicate pV and an open predicate pU . Moreover, let ϕ = ℘([1pV ∨ [2pU)

be a disjunctive GSL formula, where ℘ = [[x < g1]]〈〈y ≥ g2〉〉[[z < g3]], [1 = (a, y)(b, x)(c, z),

and [2 = (a, x)(b, z)(c, y). Pr = {pU , pV }, the predicate pU has witness U containing those

histories ending in s, or s and the predicate pV has witness V containing the histories ending in

s. Thus, there exist eight strategies σxi not equivalent associated to the variable x, where σx(ρ) =

σx(ρ
′′) = σx(ρ

′′′) = σx(s) = σx(ρ
′) = σx(ss) = σx(ss) , 0, σx(ss) = σx(ss) =

σx(ρ
′) = σx(s) = σx(ρ

′′′) = σx(ρ
′′) = σx(ρ) , 1, for all ρ ∈ Hst(s), ρ′ ∈ Hst(s) \ {s},

ρ′′ ∈ Hst(s) \ {ss}, and ρ′′′ ∈ Hst(s) \ {ss}. The variable y has four strategies σyj

where σy(ρ) = σ
y
(s) = σ

y
(ρ′) , 0, σy(ρ′) = σ

y
(s) = σ

y
(ρ) , 1 for all ρ ∈ Hst(s) and

ρ′ ∈ Hst(s) \ {s}. Finally, the variable z has two strategies σzk not equivalent, where σz(ρ) , 0

and σz(ρ) , 1, for all ρ ∈ Hst(s). It is not hard to see that the above strategies, once assigned to

the variable x, result to be (along their corresponding assignment) not-equivalent among them.

In the Table 4.1 and Table 4.2 we find the last state of each play induced by chosen strategies

from three agents. Now, if x chose one of the strategies σx , σx , σx , or σx , for satisfy the formula y

must choose or σy or σy , whereas z must choose σz for σx or σx while must choose σz for σx

or σx . Whereas, if x choose one of the strategies σx , σx , σx , or σx for satisfy the formula y may

choose any strategies, whereas z must choose σz or σz with respect to the choice of y. Based on the

above, we have that the formula ϕ is satisfied with (g1, g2, g3) = (1, 1, 2), (g1, g2, g3) = (3, 1, 1),

and (g1, g2, g3) = (2, 4, 2), which we will call ϕ1, ϕ2, and ϕ3, respectively. We show this in the

following. For ϕ1 is trivial, just look at the table. In order to verify ϕ2 we must prove that the

52

4. Strategy Equivalence 4.5 - Example

σ
x σ

x σ
x σ

x σ
x σ

x σ
x σ

x

σ
y σ

z s s s s s s s s

σ
y σ

z s s s s s s s s

σ
y σ

z s s s s s s s s

σ
y σ

z s s s s s s s s

σ
y σ

z s s s s s s s s

σ
y σ

z s s s s s s s s

σ
y σ

z s s s s s s s s

σ
y σ

z s s s s s s s s

Table 4.1: Table of the assignments with binding [

σ
x σ

x σ
x σ

x σ
x σ

x σ
x σ

x

σ
y σ

z s s s s s s s s

σ
y σ

z s s s s s s s s

σ
y σ

z s s s s s s s s

σ
y σ

z s s s s s s s s

σ
y σ

z s s s s s s s s

σ
y σ

z s s s s s s s s

σ
y σ

z s s s s s s s s

σ
y σ

z s s s s s s s s

Table 4.2: Table of the assignments with binding [

strategies σx , σx , σx , σx assigned to χ, χ, χ, and χ, respectively, are pairwise not equivalent.

First, we used, for simplicity, a three new formulas ϕ′, ϕ′′, and ϕ′′′ that represent [[y < 1]]〈〈z ≥

1〉〉[1¬pV ∧ [2¬pU , 〈〈z ≥ 1〉〉[1¬pV ∧ [2¬pU , and [1¬pV ∧ [2¬pU , respectively. For generic i

and j, we have that χi ≡ϕ
′

E,sχj iff for every strategy that satisfies ϕ′′ on χi (resp., χj) there is a

strategy that satisfies ϕ′ on χj (resp., χi) and χi and χj respectively restricted to such strategies are

equivalent over ϕ′′. Now, we prove that (for strategy that satisfy the above restriction) χi ≡ϕ
′′

E,sχj

iff all strategies σ that satisfy ϕ′′′ on χ or χ are such that χ and χ restricted to σ are equivalent

with respect to ϕ′′′. Finally, by conjunctive consistency we have that χi ≡ϕ
′′′

E,sχj iff χi ≡[¬pVE,s χj

and χi ≡[¬pUE,s χj From the tables it is easy to note that χ1 and χ2 are equivalent and χ3 and χ4 are

53

4. Strategy Equivalence 4.5 - Example

equivalent, but χ1 and χ3 are not equivalent. Now, we show that χ1 and χ3 are not equivalent. By

apply the equivalence relation on universal quantifier, we have that the set of strategies for variable

y that verify the sub-formula ϕ′′ is {σy , σy , σy , σy} for both assignments. For χ restricted for the

strategy σy there are not exist the strategy σyk on χ3, that satisfy ϕ′, such that χ ≡ϕ
′

E,sχ3. In fact,

for χ restricted on σy we have that χ≡ϕ
′

E,sχ iff all strategies σzk that satisfy ϕ′′′ on χ or χ are

such that χ and χ restricted to σzk are equivalent with respect to ϕ′′′. For z = σz we have that,

χ ◦ [, χ ◦ [, χ ◦ [, and χ ◦ [ induce the plays π=sss
ω, π=sss

ω, π=sss
ω,

π = sss
ω, respectively, where ρ = ss = prf(π, π


) and ρ = sss

ω = prf(π, π

) are

the corresponding common histories. Thus, ρ belongs to the witness U of ¬pU , while ρ does not

belongs to the witness V of ¬pV . Similar reasoning is carried out to other strategy.

In order to verify ϕ3 we must prove that the strategies σx , σx , σx , σx assigned to χ, χ, χ,

and χ, respectively, are pairwise not equivalent. From the tables it is easy to note that the four

assignments are equivalent. Now, we show that χ1 and χ3 are equivalent. By apply the equivalence

relation on universal quantifier, we have that the set of strategies for variable y that verify the

sub-formula ϕ′′ are {σy , σy} for both assignments. From the tables it is easy to note that χ1 and

χ3 are equivalent. In fact, these strategies induce the same plays! At this point, in order to verify

ϕ3 given a strategy for x, between those not excluded (for example σx), we must prove that the

strategies σy , σy , σy , σy assigned to χ, χ, χ, and χ, respectively, are pairwise not equivalent.

First, we used, for simplicity, a two new formulas ϕ′ and ϕ′′ that represent [[z < 2]][1pV ∨ [2pU ,

[1pV ∨ [2pU , respectively. For generic i and j, we have that χi ≡ϕ
′

E,sχj iff for every strategy that

satisfies ϕ′′ on χi (resp., χj) there is a strategy that satisfies ϕ′′ on χj (resp., χi) and χi and χj

respectively restricted to such strategies are equivalent over ϕ′′. By apply the equivalence relation

on universal quantifier, we have that the set of strategies for variable z that verify the sub-formula

ϕ′′ are {σz , σz} for χ, {σz} for χ and χ, and {σz} for χ. We define with χ and χ the two

assignments on σz and σz , respectively. By the disjunctive consistency we have that χi≡ϕ
′′

E,sχj iff

the followings holds:

• E , χi, s |= [kph iff E , χj , s |= [kph ∀k ∈ {1, 2} and h ∈ {U, V }

• If E , χi, s |= [kph iff χi ≡[kphE,sχj ∀k ∈ {1, 2} and h ∈ {U, V }

54

4. Strategy Equivalence 4.5 - Example

For i = 1, j = 2, and k = 1 we have that χ ◦ [, χ ◦ [, induce the plays π = sss
ω,

π = sss
ω, respectively. Now, π is not belong to pr(pV) whereas π belongs to pr(pV).

Therefore, χ and χ are not equivalent.

For i = 1, j = 3, and k = 1 we have that χ ◦ [, χ ◦ [, induce the plays π = sss
ω,

π=sss
ω, respectively. Now, π belongs to pr(pV) whereas π is not. Therefore, χ and χ

are not equivalent.

For i = 1, j = 4, and k = 1 we have that χ ◦ [, induces the play π=sss
ω. Now, π

belongs to pr(pV) whereas π is not. Therefore, χ and χ are not equivalent.

For i = 2, j = 3, and k = 1 we say that π belongs to pr(pV) whereas π is not. Therefore,

χ and χ are not equivalent.

For i = 2, j = 4, and k = 1 we say that π belongs to pr(pV) whereas π is not. Therefore,

χ and χ are not equivalent.

For i = 3, j = 4, and k = 1 we say that π and π are not belong to pr(pV). So, we must

analyze for k = 2, we have that χ ◦ [, χ ◦ [, induce the plays π = sss
ω, π = sss

ω,

respectively. Now, π and π belong to pr(pV). But, the common histories ss is not belong to

UpU . So, χ and χ are not equivalent and this concludes the example.

4.5.4 Scheduler

Consider the arena AS depicted in Figure 4.3 associated to the extension E ,〈A,Pr, pr〉. It

represents a model of a simple scheduler system in which two processes, P and P, can require

the access to a shared resource, like a processor, and an arbiter W is used to solve all conflicts that

may arise when contending requests are made. The processes use four actions to interact with the

system: i for idle, r for request, f for free/release, and a for abandon/relinquish. The first means

that the process does not want to change the current situation in which entire system reside. The

second is used to request the resource, when this is not yet owned, while the third releases it, when

this is not needed anymore. Finally, the last is asserted by a process that, although it has requested

the resource, did not obtain it and so it decided to relinquish the request. The whole scheduler

system can reside in the following six states: I, 1, 2, 1/2, 2/1 and W. The idle state I indicates

that none of the process owns the resource. The state k, with k ∈ {1, 2}, indicates that process

55

4. Strategy Equivalence 4.5 - Example

I

1 2

1/2 2/1

W

PP 7→ii

PP 7→ri PP 7→ir

PP 7→rr

PP 7→ii

PP 7→fi

PP7→fr

PP7→ir

PP 7→ii

PP 7→if

PP7→rf

PP 7→ri

WPP 7→1ii

PP 7→ia

PP 7→aa

PP 7→ai

WPP 7→2ii

APP 7→iii

PP 7→fa

APP 7→2ii

PP 7→ia
PP 7→fi

APP 7→iii

PP 7→af

APP 7→1ii

APP 7→1ii
PP 7→if

Figure 4.3: Scheduler ArenaAS .

56

4. Strategy Equivalence 4.5 - Example

Pk is using the resource. The 1/2 (resp. 2/1) states indicates that the process P(resp., P) has

the resource while the process P (resp., P) requires it. Finally, the arbitrage state W represents

the situation in which an action from the arbiter is required in order to solve a conflict between

contending requests. For readability reasons, a decision is graphically represented by a→ c, where

a is a sequence of agents and c is a sequence of corresponding actions. For example PP → ir

indicates that agents P and P take actions i and r, respectively.

Formally, AS is the arena〈Ag,Ac, St, tr〉, where all components but the transition function

are set as follows: Ag = {W, P, P}, Ac = {i, r, f, a, 1, 2}, and St = {I, 1, 2, 1/2, 2/1, W}. For

the sake of simplicity, the transition are depicted in Figure 4.3 and is not listed here textually.

In addition, we have that ag(s) = {P, P}, for all s ∈ {I, 1, 2}, and ag(s) = {P, P, A} for

all s ∈ {1/2, 2/1, W}. Moreover, for all k ∈ {1, 2} we have that ac(I, Pk) = {i, r}, ac(k, Pk) =

{i, f}, ac(k, P−k) = {i, r}, ac(W, A) = {1, 2}, ac(W, Pk) = {i, a}, ac(k/(3 − k), A) =

{i, 3− k}, ac(k/(3− k), Pk) = {i, f}, ac(k/(3− k), P−k) = {i, a}.

Consider the formula ϕ = ℘[p, with ℘ = 〈〈x ≥ g1〉〉[[y < g2]][[z < g3]] and [= (A, x)(P, y)

(P, z), where p is the open predicate that represents the situation in which one of the two processes

has obtained the resource. Formally, p has witness U = I+ ·(1+2)+(I+ ·W)+ ·(1+2+1/2+2/1).

Then, it can be showed that E , I |= ϕ with (g1, g2, g3) = (k, 1, 2) for all k ≥ 0, while E , I 6|= ϕ

with (g1, g2, g3) = (1, 1, 1).

To verify that the formula 〈〈x ≥ 1〉〉[[y < 1]][[z < 1]][p is not satisfied, we verify that the

negated formula [[x < 1]]〈〈y ≥ 1〉〉〈〈z ≥ 1〉〉[¬p is satisfied. Actually, we verify the even stronger

formula 〈〈y ≥ k〉〉〈〈z ≥ 1〉〉[[x < 1]][¬p, for all k ≥ 0. Now, the closed predicate ¬p has witness

V = (I+ · W)∗ · I∗ \ {ε}. For all π ∈ pr(¬p), there exists a strategy σ¬p such that, for all j ∈ N it

holds:

σ¬p(π≤j) ,


i, if πj = I and πj+1 = I;

r, if πj = I and πj+1 = W;

a, otherwise.

Two strategies σ¬p(π) and σ¬p(π), for π, π ∈ pr(¬p) with π 6= π are evidently non

equivalent with respect to 〈〈z ≥ 1〉〉[[x < 1]][¬p. Indeed the agent P to satisfy the formula must

57

4. Strategy Equivalence 4.5 - Example

choose the same strategy of agent P. In this case, the strategy for the arbiter A is irrelevant.

In fact, for all (¬p)-coherent assignments χπ ∈ Asg such that χπ(y) = χπ(z) = σ¬p(π) for

π ∈ pr(¬p) we have that play(χπ[x 7→ σ] ◦ [, I) = π, for all σ ∈ Str. Now, it is clear to see that

χπ 6≡
[[x<]][¬p
E,I χπ since there surely exists an history ρ ∈ Hst with prefix prf(π1, π2) ≤ ρ such

that ρ 6∈ V. As observed above, agent P necessarily needs to use the same strategy of P to satisfy

the formula. Therefore, the formula 〈〈y ≥ k〉〉〈〈z ≥ 2〉〉[[x < 1]][¬p is not satisfied, because there

are not two strategy for the agent P once that P has chose is one. The last reasoning leads us to

claim that the formula 〈〈x ≥ k〉〉[[y < 1]][[z < 2]] is satisfied on E , for all k ≥ 0. Indeed, consider

the infinite set on strategies {σi : ∀i ∈ N} defined as follows, for all ρ ∈ Hst:

σi(ρ) ,


2, if ρ ∈ (I? · W)i;

1, otherwise.

It easy observe that E , χi, I |= [[y < 1]][[z < 2]][p where χi(x) = σi, for all i ∈ N. Indeed,

the unique strategy that P can use to verify ¬p can be excluded due to the degree 2 of the

universal quantifier [[z < 2]]. Moreover, we can be observe that χi and χj are not equivalent w.r.t.

[[y < 1]][[z < 2]][p, for all i, j ∈ N and i 6= j.

58

5
Game Type Conversion

In this Chapter, we show how to transform a game in a simpler equivalent one. This is done

in order to solve efficiently the proposed game question. First, in Section 5.1, we introduce the

conversion from GSG[1G, kVAR] to GSG[1G, TB,kAG/VAR]. For this conversion we need to build

a new arena and, consequently, a new extension. We divide this in three-step process. The first

phase, called normalization, reduces the number of agents to the number of variables. The second

phase, called minimization, reduces the space of the actions. The third and final step performs the

construction of turn-based game. Second, in Section 5.2, we define the conversion from GSG[BG]

to SG[BG]. For this conversion, the arena remains the same, but the extension is enriched with

new predicates. Regarding the solutions concepts the transformation makes use of a specifics two

functions. The first on takes can of a syntactic transformation. The other one is used to enforce the

equivalence among assignments holding for the input target. It is important to observe that starting

with a GSG[1G], the algorithm return in general a SG[BG]. It is for this reason that we introduce

an ad hoc translation regarding GSG[1G].

59

5. Game Type Conversion 5.1 - From GSG[1G, kVAR] To GSG[1G, TB, kAG/VAR]

5.1 From GSG[1G, kVAR] To GSG[1G, TB, kAG/VAR]

In this Section, we show how to transform a game from concurrent to turn-based games. It

is worth recalling that similar reductions have been also used to solve questions related to GATL

in [FNP10] and the one-goal fragment of SL in [MMS14]. However, none of them can be used for

GSL[1G]. The main reason resides in the fact that in both mentioned cases, the reduction always

results in a two-player game, where the two players represent a collapsing of all existential and

universal modalities, respectively. Conversely, in GSL[1G] we need to maintain a multi-player

setting in the construction. This is due to the fact that GSL[1G] uses graded strategies (in addition

to SL) and an equivalence relation that allows for a more powerful methodology (than the one used

in GATL) to count strategies. In particular, regarding the latter, it is worth recalling that in GATL

strategies are grouped w.r.t. the actions taken by the agents, while in GSL[1G] we consider instead

the underling strategic reasoning. Thus, we introduce an ad hoc transformation of the concurrent

game under exam into a multi-player turn-based one, which has the peculiarity of retaining the

same number of variables, but can collapse equivalent actions. More precisely, starting with a game

having k variables, we end in a game with k agents and k variables. The proposed conversion is

divided in three parts. The first, called normalization, regards the elimination of the binding. The

second, named minimization, is the elimination of redundant actions. Finally, the third is the real

transformation of the game in a turn-based one.

5.1.1 Normalization

In this Subsection, we introduce the concept of normalized arena w.r.t. a given binding. The

aim is to show how to turn an arena A in a new one A• in which all agents associated with the

same variable are merged into a single player. Basically, by applying the normalization we restrict

our attention to the part of A that is effectively involved in the verification check of the formula

w.r.t. a binding [. From a technical point of view, the normalization consists of two steps. The first

transforms the set of variables into the set of agents; this means that all bindings become identities

of the kind (x, x). The second involves the transition function, which is augmented in order to

associate decisions to the right agent (via the binding).

60

5. Game Type Conversion 5.1 - From GSG[1G, kVAR] To GSG[1G, TB, kAG/VAR]

Construction 5.1.1 (Arena Normalization). From an arena A=〈Ag,Ac,St, tr〉 and a binding

prefix [∈Bn(Ag), we build the normalized arenaA• ,〈Ag•,Ac,St, tr•〉, where the new agents in

Ag• , rng([) are all variables bound by [and the new transition function tr•(δ•)(s) , tr(δ•◦[)(s)

simply maps a state s ∈ St and a new active decision δ• ∈ dc•(s) , {δ• ∈ Dc• : δ• ◦ [∈ dc(s)}

into the successor tr(δ• ◦ [)(s) of s following the original decision δ• ◦ [∈ Dc.

To normalize the game, we simply need to normalize its arena, as well as change the underling

solution concept as now agents and variables names coincide. Intuitively, the new solution concept

differs from the original one for its bindings, which now are all identities.

Construction 5.1.2 (Game Normalization). From a GSG[1G, kVAR] a =〈E , sI , ϕ〉 with extension

E = 〈A,Pr, pr〉 and solution concept ϕ = ℘[ψ, we build the normalized GSG[1G, kAG/VAR]

a• ,〈E•, sI , ϕ•〉 with extension E• ,〈A•,Pr, pr〉 and solution concept ϕ• , ℘
∏
x∈rng([)(x, x)ψ,

where the arena A• is built as in Construction 5.1.1.

From the structure of the formula, one can easily prove by induction the following statement.

Theorem 5.1.1 (Normalization). For each GSG[1G, kVAR] a, there is a normalized

GSG[1G, kAG/VAR] a• such that a is fulfilled iff a• is.

61

5. Game Type Conversion 5.1 - From GSG[1G, kVAR] To GSG[1G, TB, kAG/VAR]

s
x

s
x

s
x

s
x,y

s
x

s
x

s
a

s
a

20

01

10

02/12/2122

00

11

0/1

0/1

2

0/1

0

1

0

1

0

1

0/1

Figure 5.1: Normalized Arena A• built on Arena A.

Example 5.1.1. Consider the game

a = 〈E , s0, ϕ〉 with extension E =

〈A,Pr, pr〉, the state s ∈ St, and

solution concept ϕ = ℘[pU , where

℘ = 〈〈x ≥ 3〉〉[[y < 2]] and [=

(a, x)(b, y)(c, x). Moreover, let A =

〈Ag,Ac, St, tr〉 the related arena de-

picted in Figure 3.1. We want to

build a normalized game a• from

a. First, the new arena is A• ,

〈Ag•,Ac, St, tr•〉, where the set of

new agents is Ag• , {x, y} and,

for the sake of simplicity, the tran-

sition are depicted in Figure 5.1 and

will not listed here textually. Finally,

the normalized GSG[1G, kAG/VAR]

a• ,〈E•, s0, ϕ•〉 is composed by ex-

tension E• , 〈A•,Pr, pr〉 and solu-

tion concept ϕ• , 〈〈x ≥ 3〉〉[[y <

2]](x, x)(y, y)pU .

5.1.2 Minimization

As for previous considerations, actions involving the same strategic reasoning need to be

merged together. We accomplish this by constructing a new arena that maintains just one represen-

tative for each class of equivalence actions. The formal construction follows.

Given an arena A = 〈Ag,Ac, St, tr〉, one of its states s ∈ St, and a quantification prefix

℘ ∈ Qn(ag(s)), we can define an equivalence relation δ ≡℘s δ between decisions δ, δ ∈ Dc

62

5. Game Type Conversion 5.1 - From GSG[1G, kVAR] To GSG[1G, TB, kAG/VAR]

with ag(s) \ vr(℘) ⊆ dom(δ), dom(δ) that locally mimics the behavior of the one between

assignments previously discussed. Intuitively, it allows to determine whether two different moves

of a set of agents are actually mutually substitutable w.r.t. the strategy quantification of interest.

Formally, we have that:

1) for the empty quantification prefix ε, it holds that δ ≡εsδ iff tr(δ)(s) = tr(δ)(s);

2) δ ≡
〈〈a≥g〉〉℘
s δ iff, for all active actions c ∈ ac(s, a), it holds that δ[a 7→ c]≡℘s δ[a 7→ c];

3) δ ≡
[[a<g]]℘
s δ iff, for all indexes i ∈ {1, 2} and active actions ci ∈ ac(s, a), there exists an

active action c−i ∈ ac(s, a) such that δ[a 7→ c]≡℘s δ[a 7→ c].

At this point, we can introduce an equivalence relation between the active actions c, c ∈ ac(s, a)

of an agent a ∈ ag(s), once a partial decision δ ∈ Dc with {a′ ∈ ag(s) : a′ <℘ a} ⊆ dom(δ) of

the agents already quantified is given. Formally, c ≡
〈〈a≥g〉〉℘
s,δ c iff δ[a 7→ c] ≡℘s δ[a 7→ c] and

c ≡
[[a<g]]℘
s,δ c iff δ[a 7→ c]≡℘s δ[a 7→ c], where ℘ represent the dual prefix of ℘. Intuitively, the

two actions c, c are equivalent w.r.t. δ iff agent a can use indifferently one of the two to extend δ,

without changing the set of successor of s it can force to reach.

We can now introduce the concept of minimization of an arena, in which the behavior of each

agent is restricted in such a way that he can only choose the representative element from each

class of equivalence actions. Before moving to the formal definition, as an additional notation we

introduce ℘≥a that takes in input a prefix of quantification ℘ and returns the fragment of prefix

starting from a.

Construction 5.1.3 (Arena Minimization). From an arena A =〈Ag,Ac, St, tr〉 normalized w.r.t.

a binding prefix [∈ Bn(Ag) and a quantification prefix ℘ ∈ Qn(rng([)), we build the minimized

arena A� , 〈Ag,Ac,St, tr�〉, where the new transition function tr� is defined as follows. First,

assume Λ(s, δ, a) ⊆ ac(s, a) to be a subset of active actions for the agent a ∈ ag(s) on the state

s ∈ St such that, for each c ∈ ac(s, a), there is exactly one c′ ∈ Λ(s, δ, a) with c≡℘≥a

s,δ c
′, where the

quantification prefix ℘≥a is obtained as suffix from a onward of ℘. Intuitively, Λ(s, δ, a) is one of

the minimal sets of actions needed by the agent a in order to preserve the essential structure of the

arena. At this point, let dc�(s) , {δ ∈ dc(s) : ∀a ∈ dom(δ) . δ(a) ∈ Λ(s, δ�{a′∈dom(δ):a′<℘a}, a)}

63

5. Game Type Conversion 5.1 - From GSG[1G, kVAR] To GSG[1G, TB, kAG/VAR]

to be the set of active decisions having only values among those ones previously chosen. Finally,

for each state s ∈ St and decision δ ∈ Dc, assume tr�(δ)(s) , tr(δ)(s), if δ ∈ dc�(s), and

tr�(δ) , ∅, otherwise.

The minimization of the game involves just the arena as only the actions can change (while

states and agents remain the same). The formal definition follows.

Construction 5.1.4 (Game Minimization). From a normalized GSG[1G] a = 〈E , sI , ϕ〉 with

extension E =〈A,Pr, pr〉 and solution concept ϕ = ℘[ψ, we build the minimized GSG[1G] a� ,

〈E�, sI , ϕ〉 with extension E� ,〈A�,Pr, pr〉, where the arenaA� is built as in Construction 5.1.3.

Again, by induction on the formula, one can prove the following result.

Theorem 5.1.2 (Minimization). For each GSG[1G, kVAR] a, there is a minimized

GSG[1G, kAG/VAR] a� such that a is fulfilled iff a� is.

64

5. Game Type Conversion 5.1 - From GSG[1G, kVAR] To GSG[1G, TB, kAG/VAR]

s
x

s
x

s
x

s
x,y

s
x

s
x

s
a

s
a

20

01

10

02/12/2122

00

11

0

0

2

0

0

1

0

1

0

1

0

Figure 5.2: Minimized Arena A� built on Normalized Arena

A•.

Example 5.1.2. Consider the nor-

malized game a• of the Exam-

ple 5.1.1 with extension E•, the state

s ∈ St, and solution concept ϕ• =

℘[pU , where ℘ = 〈〈x ≥ 3〉〉[[y <

2]] and [= (x, x)(y, y). Moreover,

let A• the related arena depicted

in Figure 5.1. We want to build a

minimized game a� from a•. The

new arena is A� , 〈Ag,Ac, St,

tr�〉, where the new transition func-

tion tr� is depicted in Figure 5.2.

For give an intuition, we analyze the

equivalence relation between the ac-

tions [x 7→ 0], [x 7→ 1] ∈ ac(s, x)

of the agent x. So, we have that

[x 7→ 0] ≡[[y<]]
s,δ

[x 7→ 1] iff δ[x 7→

0] ≡℘sδ[x 7→ 0] iff, for all indexes

i ∈ {1, 2} and active actions ci ∈

ac(s, y), there exists an active action c−i ∈ ac(s, y) such that δ[y 7→ c] ≡εsδ[y 7→ c].

Since, ac(s, y) = ∅ then δ[y 7→] ≡εsδ[y 7→] iff tr(δ)(s) = tr(δ)(s). We have that,

tr(δ)(s) = tr(δ)(s) = s, so the actions [x 7→ 0], [x 7→ 1] are equivalent. Now, the

minimized GSG[1G] a� ,〈E�, sI , ϕ〉 differ of normalized GSG[1G, kAG/VAR] only by A�.

5.1.3 Conversion

Finally, we describe the conversion of concurrent games into turn-based ones. As anticipated

before, differently from other cases that apply a similar transformation, the game we obtain

65

5. Game Type Conversion 5.1 - From GSG[1G, kVAR] To GSG[1G, TB, kAG/VAR]

is one with k agents and k variables, where k is the number of variables of the starting game.

Additionally, our construction makes use of the concepts of minimization and equivalence between

actions, by removing the ones that induce equivalent paths. The intuitive idea of our reduction

is to replace each state in the concurrent game with a finite tree whose height depends on the

number of agents in input. Also, we enrich each state of the new game with extra information

regarding the corresponding state in the concurrent game, the index of the operator in the prefix of

quantifications we are sitting on, and the sequence of actions taken by the agents along a play. The

formal definition follows.

Construction 5.1.5 (Arena Conversion). From an arena A =〈Ag,Ac, St, tr〉 minimized w.r.t. a

binding prefix [∈ Bn(Ag) and a quantification prefix ℘ ∈ Qn(rng([)), we build the new arena

A? , 〈Ag,Ac, St?, tr?〉, where the new set of states St? and the new transition function tr? are

defined as follows. Given a state s ∈ St, we denote by ℘s the quantification prefix obtained from

℘ by simply deleting all variables not in ag(s) and by Vr(℘s) the corresponding set of variables.

The state space has to maintain the information about the position in A together with the index of

the first variable that has still to be evaluated and the values already associated to the previous

variables. To do this, we set St? , St×s[0, |ag(s)|]×i(Vr(℘s<i) → Ac). Observe that, when a

play is in a state (s, |ag(s)|, δ), all quantifications are already resolved and it is time to evaluate

the corresponding decision δ. Before proceeding with the definition of the transition function, it

is helpful to identify which are the active agents and decisions for each possible state. Formally,

for all (s, i, δ) ∈ St?, we have that ag((s, i, δ)) , {vr(℘si)} and dc?((s, i, δ)) , {vr(℘si) 7→ c :

c ∈ ac(s, vr(℘si))}, if i < |℘s|, and ag((s, i, δ)) , ∅ and dc?((s, i, δ)) , {∅}, otherwise. The

transition function is defined as follows. For each new state (s, i, δ) with i < |℘s| and new decision

vr(℘si) 7→ c, we simply need to increase the counter i and embed vr(℘si) 7→ c into δ. Formally, we

set tr?(vr(℘si) 7→ c)((s, i, δ)) , (s, i+ 1, δ[vr(℘si) 7→ c]). For a new state (s, |ag(s)|, δ), instead,

we just introduce a transition to the state (s′, 0,∅), where s′ is the successor of s in the arena A

following the decision δ. Formally, we have tr?(∅)((s, |ag(s)|, δ)) , (tr(δ)(s), 0,∅).

Due to the specific setting of the introduced GSG[1G], the game transformation also affects

the extensions and in particular its function on predicates. Clearly, one can link a path in the new

arena A? with one from the input arena by simply dropping the additional information introduced

66

5. Game Type Conversion 5.1 - From GSG[1G, kVAR] To GSG[1G, TB, kAG/VAR]

to manage quantifications. Hence, a play in the arena A? belongs to a function predicate if and

only if the corresponding play in arena A belongs to the same function.

Construction 5.1.6 (Extension Conversion). From an extension E =〈A,Pr, pr〉 minimized w.r.t.

a binding prefix [∈ Bn(Ag) and a quantification prefix ℘ ∈ Qn(rng([)), we build the new

extension E? ,〈A?,Pr, pr?〉, where the new arenaA? is built as in Construction 5.1.5 and the new

predicate function pr? is such that, for all predicates p ∈ Pr and new paths π? ∈ Pth?, it holds

that π? ∈ pr?(p) iff there exist an original path π ∈ pr(p) and a strictly increasing map γ : N→ N

with γ(0) = 0 such that (π?)γ(i)+j = ((π)i, j, ζ) for some valuation ζ ∈ Vr(℘
(π)i
<j)→ Ac, for all

i ∈ N and j ∈ [0, γ(i+ 1)− γ(i)[.

Finally, the conversion of the entire game follows from the conversion of the underlying

extension and by providing an updated initial state (as the state space is converted as well).

Construction 5.1.7 (Game Conversion). From a minimized GSG[1G] a =〈E , sI , ϕ〉 with solution

concept ϕ = ℘[ψ, we build the GSG[1G, TB] a? , 〈E?, s?I , ϕ〉 with initial state s?I , (sI , 0,∅),

where the extension E? is built as in Construction 5.2.1.

By means of an opportune generalization of the classical proof of transformation of a concurrent

game into a turn-based one, the following result can be derived.

Theorem 5.1.3 (Concurrent/Turn-Based Conversion). For each GSG[1G, kVAR] a of order n,

there is a GSG[1G, TB, kAG/VAR] a? of order n ·O(2k) such that a is fulfilled iff a? is.

Example 5.1.3. Consider the minimized game a� of the Example 5.1.2 with extension E�, the state

s ∈ St, and solution concept ϕ� = ℘[pU , where ℘ = 〈〈x ≥ 3〉〉[[y < 2]] and [= (x, x)(y, y).

Moreover, let A� the related arena depicted in Figure 5.2. We want to build a turn-based game a?

from a�. The new arena is A? , 〈Ag,Ac, St?, tr?〉, where the new set of states St? and the new

transition function tr? are depicted in Figure 5.3. The new extension E? , 〈A?,Pr, pr?〉, has a

new predicate function pr?. For given an intuition , we analyze the history ss ∈ pr(pU). The

corresponding history in pr? is (s, 0,)(s, 1, 0)(s, 2, 00)(s, 0,). The GSG[1G, TB] is a? ,〈E?,

s?I , ϕ〉 with initial state s? , (s, 0,∅).

67

5. Game Type Conversion 5.1 - From GSG[1G, kVAR] To GSG[1G, TB, kAG/VAR]

s, 0, ∅

s, 1, 1 s, 1, 2

s, 1, 0

s, 2, 10s, 2, 11 s, 2, 12

s, 0, ∅ s, 0, ∅ s, 0, ∅

s, 1, 0s, 1, 1s, 1, 0 s, 1, 0

s, 2, 01

s, 0, ∅

s, 2, 00

s, 0, ∅

s, 1, 0s, 1, 1 s, 1, 0 s, 1, 2

s, 2, 02

s, 0, ∅ s, 1, 0

s, 2, 20

s, 0, ∅

s, 1, 0

s, 2, 21

s, 0, ∅

s, 1, 0

s, 2, 22

s, 0, ∅

s, 1, 0 s, 1, 1

s, 0, ∅s, 0, ∅ s, 0, ∅

s, 0, ∅s, 0, ∅ s, 0, ∅

1

0

2

1
0

2

1
0 2

0
21

0
1 0

0 201

0 0 10

0

0

Figure 5.3: Turn-based Arena A? built on Minimized Arena A�. Note that, in the circle node is active the

agent x, in the square node is active the agent y, and the diamond node represent the transition state. For see

understanding on the arena, we duplicate some nodes and here the state without exit edges are just copies of

the nodes in the same name.

68

5. Game Type Conversion 5.2 - From GSG[BG] To SG[BG]

5.2 From GSG[BG] To SG[BG]

In this Section, we show how to transform a graded strategy game in strategy game with

solution concept in boolean fragment. Before starting with the construction, we introduce a

constraint on the set of equivalence classes. The equivalence relation ≡pE,s is required to be of

a finite order, i.e. |(Asg/≡pE,s)| < ∞. This is simply due to the fact that we associate to each

equivalence class a predicate, whose total number of is required to be finite. Assume (Asg /

≡pE,s) = {Cp1 , ..., C
p
k}, where each Cpi represents a set of assignments that are part of the same

equivalence class. Suppose now we associate a new predicate to each class, so Cpi → qpi . Having

said that, now we start with the construction. Since that the arena does not change, we show the

construction of an extension.

Construction 5.2.1 (Extension Conversion). From an extension E =〈A,Pr, pr〉, we build the new

extension E? , 〈A,Pr?, pr?〉, where the new set of predicates is Pr? = Pr ∪ {qpi : p ∈ Pr} and

the new predicate function pr? is defined as pr(p) if p ∈ Pr and Cpi otherwise.

The conversion of the entire game follows from the conversion of the underlying extension and

by change the solution concept from GSL to SL[BG].

Construction 5.2.2 (Game Conversion). From a GSG[BG] a =〈E , sI , ϕ〉 with extension E =〈A,

Pr, pr〉 and solution concept ϕ, we build a SG[BG] a? ,〈E?, s, ϕ?〉 with extension E? ,〈A,Pr?,

pr?〉. To construct the solution concept ϕ? we introduce a transformation function t , Cn× z→

Cn, where z is a function used to rename variables. The function t is defined inductively as follows.

The base case involves the transformation of predicates, simply the predicate remains the same.

t(p, z) = p

For the Boolean operators, the function t bring out the operation and recursively calls itself without

the operation. So for the transformation ¬ϕ is denied the transformation of ϕ. For ϕ1 ∧ ϕ2 (resp.,

69

5. Game Type Conversion 5.2 - From GSG[BG] To SG[BG]

ϕ1 ∨ ϕ2) simply performs two transformations in and (resp., or) of ϕ1 and ϕ2.

t(¬ϕ, z) = ¬t(ϕ, z)

t(ϕ1 ∧ ϕ2, z) = t(ϕ1, z) ∧ t(ϕ2, z)

t(ϕ1 ∨ ϕ2, z) = t(ϕ1, z) ∨ t(ϕ2, z)

As with Boolean operators, the binding is carried out associating the agent a a renaming of the

variable by the function z.

t((a, x)ϕ, z) = (a, z(x))t(ϕ, z)

For existential operator we introduce a new function neqv , z × z → N. The function neqv

compares two assignments and returns 1 if they are not equivalent, and 0 if they are equivalent.

Suppose that the degree of existential operator is g, then the transformation will replace this with g

existential operators. Through the function neqv will evaluate whether all assignments, composed

of the existential variables, are pairwise not equivalent. Finally, for each of the assignments

recursively invoke the function t.

t(〈〈x〉〉gϕ, z) =
∏

1≤k≤g
〈〈xk〉〉 (

∧
1≤i<j≤g

neqvϕ(z[x 7→ xi], z[x 7→ xj])) ∧ (
∧

1≤i≤g
t(ϕ, z[x 7→ xi]))

For the universal operator directly we deny the formula and we apply that we have analyzed

previously on existential operator.

t([[x < g]]ϕ, z) = t(¬〈〈x ≥ g〉〉¬ϕ, z)

After the description of the function t we can now analyze in detail the function neqv in its entirety.

All items that meet from now on will be constructed by referring to the definitions of Chapter 4. We

now illustrate how first step, the result of the function neqv on predicate p. The function returns

0, if there is a predicate qpi that is satisfied by both z and z. Indeed, if z and z satisfy the

same predicate that means they belong to the same equivalence class, then they are equivalent.

Conversely, the function returns 1 if there is not a predicate qpi that is satisfied by both z and z,

then z and z are not equivalent.

neqvp(z, z) =
∧

1≤i≤k
¬(

∏
a∈Ag

(a, z(a))qpi ∧
∏
a∈Ag

(a, z(a))qpi)

70

5. Game Type Conversion 5.2 - From GSG[BG] To SG[BG]

Analyzing the Definition 4.4.1, the neqv of conjunctive formulas, it will be exactly the or of the

neqv individual formulas.

neqvϕ1∧ϕ2(z, z) = neqvϕ1(z, z) ∨ neqvϕ2(z, z)

For the disjunctive form, we analyze the Definition 4.4.2. In the definition of equivalence we have

2 points in conjunction, we analyze them separately for the function neqv. Point 1 for neqv, we

must verify that for at least one of the two formulas, z (resp., z) satisfies and z (resp., z) does

not satisfy. Point 2 is checked by requiring that for at least one formula satisfied by z and z, the

two assignments are not equivalent. The result of the neqv of a disjunctive formula consists of four

disjoint, the first two verify point 1, while the following two disjoint verify point 2.

neqvϕ1∨ϕ2(z, z) = (t(ϕ1, z)↔ ¬t(ϕ1, z)) ∨ (t(ϕ2, z)↔ ¬t(ϕ2, z)) ∨

∨ (t(ϕ1, z) ∧ neqvϕ1(z, z)) ∨ (t(ϕ2, z) ∧ neqvϕ2(z, z))

The binding operator in the neqv is trivially, a new neqv in which we associate the agent at

renaming of the variable.

neqv(a,x)ϕ(z, z) = neqvϕ(z[a 7→ z(x)], z[a 7→ z(x)])

From the Definition 4.3.2 is easy to note that the neqv for an existential quantifier with any degree

g, consists in finding a strategy x for which the two assignments z and z are not equivalent and

at least one satisfy ϕ.

neqv〈〈x≥g〉〉ϕ(z, z)=〈〈x〉〉((t(ϕ, z[x 7→ x])∨t(ϕ, z[x 7→ x]))∧neqvϕ(z[x 7→ x], z[x 7→ x]))

From the Definition 4.3.3 we know that two assignments z and z are equivalent if for each

extension of z which satisfies the formula, there is an extension of z that satisfies the formula and

is equivalent to z and vice versa. Our function neqv will consist of two disjoint then each of these

will check if there is an extension of z (resp., z) that for any extension of z (resp., z) imply that

71

5. Game Type Conversion 5.2 - From GSG[BG] To SG[BG]

z and z are not equivalent.

neqv[[x<g]]ϕ(z, z) = (〈〈x′〉〉(t(ϕ, z[x 7→ x′])∧

∧ [[x′′]](t(ϕ, z[x 7→ x′′])→ neqvϕ(z[x 7→ x′], z[x 7→ x′′])))

∨ (〈〈x′〉〉(t(ϕ, z[x 7→ x′])∧

∧ [[x′′]](t(ϕ, z[x 7→ x′′])→ neqvϕ(z[x 7→ x′], z[x 7→ x′′])))

By the above conversion, the following result can be showed.

Theorem 5.2.1 (GSG[BG]/SG[BG] Conversion). For each GSG[BG] a of order n, with solution

concept ϕ, there is a SG[BG] a? of order n with solution concept ϕ? where |ϕ?| = O(2|ϕ|) such

that a is fulfilled iff a? is.

By induction it is possible to prove that the transformation function t is exponentially. That is

it transform the formula ϕ into a formula ϕ? whose length is O(2|ϕ|). It is to easy note that, the

function t when apply to the existential or universal quantifier course itself twice, ones to direct

function t and the other through to neqv function.

Example 5.2.1. Consider the extension E related to the arena A depicted in Figure 3.1, the state

s ∈ St, and the formula ϕ = 〈〈x ≥ 3〉〉[[y < 2]]〈〈z ≥ 1〉〉(a, x)(b, y)(c, z)pU . We want to build

a SG[BG] a? from GSG[BG] a. First, we compute the set (Asg /≡pUE,s). To do this, we define

the following sets of path: PpU , {π ∈ Pth : sss < π}, PpU , {π ∈ Pth : sss < π},

PpU , {π ∈ Pth : ss < π}, PpU , {π ∈ Pth : sss < π}, PpU , {π ∈ Pth

: sss < π}, PpU , {π ∈ Pth : sss < π}, PpU , {π ∈ Pth : sss < π},

PpU , {π ∈ Pth : ss < π ∨ sss < π}, PpU , {π ∈ Pth : ss < π}, and PpU , {π ∈

Pth : ss < π}. Now, we can define the set of equivalence classes with respect pU : (Asg

/≡pUE,s) , {CpU
1 ,CpU

2 ,CpU
3 ,CpU

4 ,CpU
5 ,CpU

6 ,CpU
7 ,CpU

8 ,CpU
9 ,CpU

10 }, where CpU
i , {χ ∈ Asg :

Ag ⊆ dom(χ) ∧ play(χ, s0) ∈ PpUi }. It is evident that the set (Asg/≡pUE,s) is finite.

We now define the sets of path for predicate ¬pU : P¬pU , {ss}, P¬pU , {sss}, and

P¬pU , Pth \ (P¬pU ∪P¬pU). The set of equivalence class with respect ¬pU is: (Asg/≡¬pUE,s) ,

{C¬pUpU1 , C¬pU2 , C¬pU3 }, where C¬pUi , {χ ∈ Asg : Ag ⊆ dom(χ) ∧ play(χ, s0) ∈ P¬pUi }. So

also the set (Asg/≡¬pUE,s) is finite.

72

5. Game Type Conversion 5.2 - From GSG[BG] To SG[BG]

Now we define a new target ϕ? with respect ϕ. To do this we apply recursively the function t

on ϕ. For simplicity, we used a three sub-formulas ϕ1, ϕ2, and ϕ3 that represent [[y < 2]]〈〈z ≥

1〉〉(a, x)(b, y)(c, z)pU , 〈〈z ≥ 1〉〉(a, x)(b, y)(c, z)pU , and (a, x)(b, y)(c, z)pU , respectively.

t(〈〈x ≥ 3〉〉ϕ1, z) = 〈〈x1〉〉〈〈x2〉〉〈〈x3〉〉(neqvϕ1(z[x 7→ x1], z[x 7→ x2])∧

∧ neqvϕ1(z[x 7→ x2], z[x 7→ x3]) ∧ neqvϕ1(z[x 7→ x1], z[x 7→ x3]))∧

∧ (t(ϕ1, z[x 7→ x1]) ∧ t(ϕ1, z[x 7→ x2]) ∧ t(ϕ1, z[x 7→ x3]))

t([[y < 2]]ϕ2, z) = t(¬〈〈y ≥ 2〉〉¬ϕ2, z)

t(¬〈〈y ≥ 2〉〉¬ϕ2, z) = ¬(〈〈y1〉〉〈〈y2〉〉(neqv¬ϕ2(z[y 7→ y1], z[y 7→ y2]))∧

∧ (t(¬ϕ2, z[y 7→ y1]) ∧ t(¬ϕ2, z[y 7→ y2]))

t(¬ϕ2, z) = ¬t(ϕ2, z)

t(〈〈z ≥ 1〉〉ϕ3, z) = 〈〈z1〉〉t(ϕ3, z[z 7→ z1])

t((a, x)(b, y)(c, z)pU , z) = (a, z(x))(b, z(y))(c, z(z))pU

In the first execution of t the function neqv is called. Below we illustrate the steps of the function

neqv up to the base case, i.e. when applied to the predicate pU .

neqv[[y<2]]ϕ2
(z, z) = (〈〈y′〉〉(t(ϕ2, z[y 7→ y′])∧

∧ [[y′′]](t(ϕ2, z[y 7→ y′′])→ neqvϕ2(z[y 7→ y′], z[y 7→ y′′])))∨

∨ (〈〈y′〉〉(t(ϕ2, z[y 7→ y′])∧

∧ [[y′′]](t(ϕ2, z[y 7→ y′′])→ neqvϕ2(z[y 7→ y′′], z[y 7→ y′])))

neqv〈〈z≥1〉〉ϕ3
(z, z)=〈〈z〉〉((t(ϕ3, z[z 7→z])∨t(ϕ3, z[z 7→z]))∧neqvϕ3(z[z 7→z], z[z 7→z]))

73

5. Game Type Conversion 5.2 - From GSG[BG] To SG[BG]

neqv(a,x)(b,y)(c,z)pU (z, z) = neqv(b,y)(c,z)pU (z[a 7→ z(x)], z[a 7→ z(x)])

neqv(b,y)(c,z)pU (z, z) = neqv(c,z)pU (z[b 7→ z(y)], z[b 7→ z(y)])

neqv(c,z)pU (z, z) = neqvpU (z[c 7→ z(z)], z[c 7→ z(z)])

neqvpU (z, z) =
∧

1≤k≤10
¬((a, z(a))(b, z(b))(c, z(c))q

pU
k) ∧ ((a, z(a))(b, z(b))(c, z(c))q

pU
k)

Another invocation of the function neqv is performed by t and in the following we illustrate the

recursive results.

neqv[[z<1]]¬ϕ3
(z, z) = (〈〈z′〉〉(t(¬ϕ3, z[z 7→ z′])∧

∧ [[z′′]](t(¬ϕ3, z[z 7→ z′′])→ neqv¬ϕ3(z[z 7→ z′], z[z 7→ z′′])))∨

∨ (〈〈z′〉〉(t(¬ϕ3, z[z 7→ z′])∧

∧ [[z′′]](t(¬ϕ3, z[z 7→ z′′])→ neqv¬ϕ3(z[z 7→ z′′], z[z 7→ z′])))

neqv(a,x)(b,y)(c,z)¬pU (z, z) = neqv(b,y)(c,z)¬pU (z[a 7→ z(x)], z[a 7→ z(x)])

neqv(b,y)(c,z)¬pU (z, z) = neqv(c,z)¬pU (z[b 7→ z(y)], z[b 7→ z(y)])

neqv(c,z)¬pU (z, z) = neqv¬pU (z[c 7→ z(z)], z[c 7→ z(z)])

neqv¬pU (z, z) =
∧

1≤k≤3
¬((a, z(a))(b, z(b))(c, z(c))q

¬pU
k) ∧ ((a, z(a))(b, z(b))(c, z(c))q

¬pU
k)

Finally, the function neqv invokes the function t. Below we illustrate the steps of the recursive

function t.

t(¬(a, x)(b, y)(c, z)pU , z) = ¬((a, z(x))(b, z(y))(c, z(z))pU)

74

6
Determinacy and Fulfilling

In this Chapter, we define a reformulation of the determinacy for graded strategy game,

with turn-based arena and one-goal solution concept, and describe the solution of the related

fulfilling problem. First, in Section 6.1, we prove the determinacy for GSG[1G, TB] in the case of

2 variables and open and closed predicates. Then, in Section 6.2, we solve the fulfilling problem

for GSG[1G, 2VAR] with reachability and safety predicates that is PTIME-COMPLETE in the size

of both the arena and the solution concept.

6.1 Determinacy

In this section, we check for the determinacy property regarding GSG[1G, TB]. It is worth

recalling that determinacy has been first introduced for Borelian turned-based games in [Mar75]

and [Mar85] and the proof considered for that setting does not apply to to our concurrent setting

for GSG[1G, TB]. To give an evidence of the differences between the two framework, it is useful to

observe that in SG, a formula of the kind 〈〈x〉〉[[y]]η implies [[y]]〈〈x〉〉η as well, while for concurrent

GSG this is not necessary the case. The determinacy property we are interested in makes use

of the following equivalent transformation over the formulas: let ϕ = ℘η be a formula with a

generic quantification prefix ℘, we can transform ϕ in an equivalent formula with ℘′η, where ℘′ is

75

6. Determinacy and Fulfilling 6.1 - Determinacy

a prefix in the specific form a sequence of existential quantifications followed by one of universal

quantifications. Moreover, the order of the quantifications in ℘ is preserved in ℘′. Here, we restrict

our attention to the case of 2 variables and open and closed predicates only. In particular, we extend

the classic Gale-Stewart Theorem [PP04], by exploiting a deep generalization of the technique used

in [FNP10], which constituted of a fixed-point calculation over the number of winning strategies

an agent can select against all but a fixed number of those of its opponent. Regarding [FNP10], we

remind that their counting is restricted to the existential agent only.

To help the reader, we now give an outline of this section. First, we introduce the construction

of the grading function, which is used to determine how many different strategies an agent can

have w.r.t. a fixed number of strategies to avoid for the opponent. Then, we give two lemmas that

provide the fundamental properties of grading function. Finally, we use the latter to prove the

determinacy property.

Construction 6.1.1 (Grading Function). Consider a turn-based two-agent extension E with Ag =

{a, a}. Moreover, let s ∈ St be one of its states and p ∈ Pr an open or closed predicate with

witness W ⊆ Hst(s). If p is open, assume X,{ρ ∈ Hst : ∃ρ′ ∈ Hst . ρ′ ≤ ρ∧ρ′ ∈W} as the set

of immediate winning histories, and Y,{ρ ∈ Hst\X : ∀ρ′ ∈ Hst.ρ ≤ ρ′ ⇒ ρ′ 6∈W} as the set of

immediate loosing ones. Dually, if p is closed, define Y,{ρ ∈ Hst : ∃ρ′ ∈ Hst .ρ′ ≤ ρ∧ρ′ 6∈W}

and X,{ρ ∈ Hst\Y : ∀ρ′ ∈ Hst.ρ ≤ ρ′ ⇒ ρ′ ∈W}. It is not hard to see that, in case s ∈ X∪Y,

all strategy profiles starting in s are equivalent w.r.t. both p and ¬p. If s ∈ Z , Hst \ (X ∪ Y),

instead, we need to introduce a grading function Gαp : Z→ Γ, where Γ , N→ (N ∪ {ω}), that

allows to determine how many different strategies a given agent α ∈ Ag owns w.r.t. the predicate p.

Informally, Gαp (ρ)(j) denotes the number of winning strategies α can put up against all but at most

j strategies of its adversary α, once the current play starting from s has already reached the history

ρ ∈ Z. To formalize this function, we need to introduce the auxiliary set of α-histories S , {ρ ∈ Z

: ∃ρ′ ∈ Y . ρ < ρ′ ∧ ∀ρ′′ ∈ Hst . ρ ≤ ρ′′ < ρ′ ⇒ ρ′′ ∈ Hstα}, where Hstα = {∀ρ ∈ Hst :

ag(lst(ρ)) = {α}}, from which this agent has the possibility to “suicide”, independently from the

behavior of its opponent. With more details, α can autonomously extend an history ρ ∈ S into one

ρ′ ∈ Y that is surely loosing. Observe that there may be several suicide strategies, but all of them

are equivalent w.r.t. the predicate p. Also, against them, all counter strategies of α are equivalent

76

6. Determinacy and Fulfilling 6.1 - Determinacy

as well. At this point, we introduce the functor Fαp : (Z → Γ) → (Z → Γ), whose least fixpoint

represents a function returning the maximum number of different strategies α can use against all

but a given fixed number of counter strategies of α. Formally, we have that:

Fαp (f)(ρ)(i) ,



∑
ρ′∈suc(ρ)∩Z f(ρ

′)(0) + |suc(ρ) ∩X|, if ρ ∈ Hstα and i = 0;∑
ρ′∈suc(ρ)∩Z f(ρ

′)(i), if ρ ∈ Hstα and i > 0;∑
c∈C(ρ)(i)

∏
ρ′∈dom(c) f(ρ

′)(c(ρ′)), otherwise;

where suc(ρ) = {ρ′ ∈ Hst : ∃s ∈ St. ρs = ρ′} and C(ρ)(i) ⊆ (suc(ρ) ∩ Z) ⇀ N contains all

partial functions c ∈ C(ρ)(i) for which, on the histories not in their domains, α owns a suicide

strategy, i.e., (suc(ρ) ∩ Z) \ dom(c) ⊆ S, and the sum of all values assumed by c plus the number

of successor histories that are neither surely winning nor contained in the domain of c equals to

i, i.e., i =
∑

ρ′∈dom(c) c(ρ
′) + |suc(ρ) \ (X ∪ dom(c))|. Intuitively, the first item of the definition

simply asserts that the number of strategies Fαp (f)(ρ)(0) that α has on the α-history ρ, without

excluding any counter strategy, is the sum of the f(ρ′)(0) strategies on the successor histories

ρ′ ∈ Z plus a single strategy for each successor history that is surely winning. Similarly, the

second item takes into account the case in which we can avoid exactly i counter strategies. The

last item, instead, computes the number of strategies for α on the α-history ρ. In particular,

through the set C(ρ)(i), it first determines in how many ways it is possible to split the number i of

counter strategies to avoid among all successor strategies of ρ. Then, for each of these splittings,

it calculates the product of the corresponding numbers f(ρ′)(c(ρ′)) of strategies for α. We can

finally define the grading function Gαp by means of the least fixpoint f? = Fαp (f?) of Fαp as follows:

Gαp (ρ)(j) ,
∑j

h=0 f
?(ρ)(h) + [ρ ∈ S ∧ j ≥ 1]. Intuitively, Gαp (ρ)(j) is the sum of the numbers

f?(ρ)(h) of winning strategies α can exploit against all but exactly h strategies of its adversary α,

for each h ∈ [0, j]. Moreover, if ρ ∈ S, we need to add to this counting the suicide strategy that α

can use once α avoids to apply his unique counter strategy. This is formalized through the function

[ð] that is evaluated to 1, if the condition ð is true, and to 0, otherwise.

Thanks to the above construction, one can compute the maximum number of strategies that

a player has against a fixed number of strategies to avoid for the opponent. Next lemma, whose

statement can be proved constructively, precisely describe this fact, showing how the fulfilling

77

6. Determinacy and Fulfilling 6.1 - Determinacy

of a game can be decided via the grading function. Observe that, by applying the normalization

reasoning of Subsection 5.1.1, this construction extends to the setting of n agents with only 2

variables.

Lemma 6.1.1 (Grading Function). Let a = 〈E , sI , ϕ〉 be a GSG[1G, TB, 2VAR] having solution

concept ϕ = 〈〈x ≥ i〉〉[[x ≤ j]][p, where the predicate p ∈ Pr is either open or closed. Moreover,

let X,Y,Z ⊆ Hst be the sets obtained in Construction 6.1.1. Then, a is fulfilled iff one of the

following three conditions hold: (i) i = 1, j = 0, and sI ∈ X; (ii) i = 1, j = 1, and sI ∈ Y; (iii)

i ≤ Gxp(sI)(j), and sI ∈ Z.

A fundamental property of the grading function is its duality in the form described in the

next lemma, which can be proved by induction on the recursive structure of G itself. To give an

intuition, assume that an agent x has at most j strategies to satisfy the predicate ¬p against at

most i strategies to avoid for its adversary x. Then, it can be shown that the latter has more than i

strategies to satisfy the predicate p against at most j strategies to avoid for the former.

Lemma 6.1.2 (Grading Duality). For all histories ρ ∈ Z and indexes i, j ∈ N, it holds that if

Gx¬p(ρ)(i) ≤ j then i < Gxp(ρ)(j).

Summing up the above results, we can easily prove that the GSG[1G, TB, 2VAR] with open or

closed predicates are determined, as stated in the following theorem. Indeed, suppose that sI ∈ Z

and E , sI |= [[x ≤ j]]〈〈x ≥ i〉〉[p. Obviously, E , sI 6|= 〈〈x ≥ j + 1〉〉[[x ≤ i− 1]][¬p. Consequently,

by Lemma 6.1.1, we have that Gx¬p(sI)(i − 1) ≤ j. Hence, by Lemma 6.1.2, it follows that

i ≤ Gxp(sI)(j). Finally, again by Lemma 6.1.1, we obtain that E , sI |= 〈〈x ≥ i〉〉[[x ≤ j]][p, as

required by the definition of determinacy.

Theorem 6.1.1 (Determinacy). The GSG[1G, TB, 2VAR] over open or closed extensions are deter-

mined.

78

6. Determinacy and Fulfilling 6.1 - Determinacy

s
a

s
b

s
b

s
a

s
a

s
a

s
y

s
x

s
x

s
x

0 1 2

0 1

2 0

1 0 1

0 1

0

1

0/1 0/1

0
1

0
1

Figure 6.1: Turn-based Arena A.

Example 6.1.1. Consider the exten-

sion E related to the arena A de-

picted in Figure 6.1, the state s ∈

St, and the open predicate pU and a

formulaϕ = 〈〈x ≤ g1〉〉[[y < g2]][pU ,

with [= (a, x)(b, y). Pr = {pU},

the open predicate pU has witness U

containing those histories that pass

in s or s, or s. Since pU is open,

the set of histories X is s · s · s+ +

s · (s · s)+ · s+ · s · (s + s)
∗ +

s · s · ((s · s)∗ · s)+ · (ε+ s + s · (s + s · (s + s)
∗)), while Y , s · (s+ · s∗ + s · s+).

The set Z contains s + s · s + s · (s · s)∗ · s + s · (s · s)+ + s · (s · s)+ · s+ . Finally,

the set of suicide strategies is s + s · s.

Now, we evaluate the results of function f for each histories in Z. First, we set f(ρ)(j) = 0,

∀ρ ∈ Hst and ∀j ≥ 0. For all k > 0, i ≥ 0, and the history ss, we have that

fk(ss)(i) ,


0, if i > 0;

1, otherwise.

For all k > 0, i ≥ 0, and ρ ∈ s · (s · s)+ · s+ , we have that

fk(ρ)(i) ,


0, if i > 0;

k, otherwise.

For all k > 0, i ≥ 0, and ρ ∈ s · (s · s)+, we have that

fk(ρ)(i) ,


0, if k < (i · 2) + 1;

k − ((i · 2) + 1), otherwise.

79

6. Determinacy and Fulfilling 6.1 - Determinacy

For all k > 0, i ≥ 0, and ρ ∈ s · (s · s)∗ · s, we have that

fk(ρ)(i) ,


0, if k < (i · 2) or i = 0;

k − (i · 2), otherwise.

For all k > 0, i ≥ 0, and the history s, we have that

fk(s)(i) ,


0, if k < (i · 2) + 1 and i > 0 or k < 2 and i = 0;

1, if k ≥ 2 and i = 0;

k − ((i · 2) + 1), otherwise.

Now, we illustrate the results of fixpoint f?. For all i ≥ 0 and the history ss, we have that

f?(ss)(i) ,


0, if i > 0;

1, otherwise.

For all i ≥ 0 and ρ ∈ s · (s · s)+ · s+ , we have that

f?(ρ)(i) ,


0, if i > 0;

ω, otherwise.

For all i ≥ 0 and ρ ∈ s · (s · s)+, we have that

f?(ρ)(i) , ω

For all i ≥ 0 and ρ ∈ s · (s · s)∗ · s, we have that

f?(ρ)(i) ,


0, if i = 0;

ω, otherwise.

For all k > 0, i ≥ 0, and history the s, we have that

f?(s)(i) ,


1, if i = 0;

ω, otherwise.

Finally, we evaluate the results of grading function. For all j ≥ 0 and the history ss, we have

that

80

6. Determinacy and Fulfilling 6.2 - The Fulfilling Problem

GapU (ss)(j) ,


1, if j = 0;

2, otherwise.

For all j ≥ 0 and ρ ∈ s · (s · s)+ · s+ , we have that

GapU (ρ)(j) , ω

For all ρ ∈ s · (s · s)+ ∪ s · (s · s)∗ · s ∪ {s}, we have the same result of function f?, i.e.,

GapU (ρ)(j) , f?(ρ)(j) for all j ≥ 0.

6.2 The Fulfilling Problem

We finally describe the solution of the fulfilling problem for GSG[1G, 2VAR] with reachability

and safety predicates. Here, we just give the intuitive idea behind the polynomial-time decision

procedure for the turn-based case, since having concurrent game can we transformed in turn-based

one by means previous construction. From a high-level point of view, one may think that, since

reachability and safety predicates are simple cases of open and closed ones, a slight variant of the

fixpoint procedure previously described for the determinacy proof may work as a tool to determine

the degrees with which a given GSL[1G, 2VAR] is satisfied. In particular, since these predicates are

prefix independent, one can substitutes histories with states in the above formalization obtaining a

completely equivalent procedure. Unfortunately, since the set Γ is infinite, the functional domain

on which the functor Fαp operates is infinite as well. Therefore, the naive calculation of the fixpoint

may not terminate in a finite number of steps. To avoid this problem, we exploit a technical trick

already used in [FNP10] to decide the model-checking problem for graded ATL. Let X ⊆ St

be the set of states the existential agents want to reach and Y , {s ∈ St : E , s |= AG¬X} that

containing those states from which it is impossible to reach X. Intuitively, X and Y represent

the immediate winning and loosing positions of the game, respectively. Now, decompose the

remaining state space Z , St \ (X ∪Y) into strong connected components. Then, starting with

the constant function f ∈ Z→ Γ with f(s)(j) , 0, for all s ∈ Z and j ∈ N, apply the following

procedure by induction on the classic partial order among the obtained components. Let H ⊆ Z

be a component not yet analyzed. If H is trivial, simply compute fk+ , Fαp (fk), where fk is the

81

6. Determinacy and Fulfilling 6.2 - The Fulfilling Problem

function obtained from the previous iteration. Otherwise, let f ′ , (Fαp)n(fk), where n ∈ N is

the length of the longest simple path in H. Now, for all s ∈ Z, define the new function fk+ as

follows. If s 6∈ H then fk+(s) , fk(s) else fk+(s)(j) , 0, if f ′(s)(j) = 0, and fk+(s)(j) , ω,

otherwise, for all j ∈ N. Intuitively, if the existential agent has at least one strategy to reach X

from a state s, once its opponent avoids j counter strategies, it is also able to construct an infinite

number of non-equivalent winning strategies by using the closed paths in H passing through s. At

this point, it is not hard to see that the following result holds, by assuming that each basic operation

on numbers is performed in constant time.

Theorem 6.2.1 (Fulfilling Complexity). The fulfilling problem of GSG[1G, 2VAR] for reachability

or safety extensions is PTIME-COMPLETE in the size of both the arena and the solution concept.

Example 6.2.1. Consider the extension E related to the arena A depicted in Figure 6.1, the state

s ∈ St, and a formula ϕ = 〈〈x ≤ g1〉〉[[y < g2]][pU , with [= (a, x)(b, y) and pU is an open

predicate. The set of predicates is Pr = {pU}, where the predicate pU has witness U containing

those histories that pass in s or s, or s. The set of states that the existential agent want to reach is

X , {s, s, s}, while the set of states from which it is impossible to reach X is Y , {s, s}. The

set of suicide is empty and the set Z contains {s, s, s, s, s}. There are four strong connected

components Ci, where C = {s}, C = {s, s}, C = {s}, C = {s}. Now, we introduce a

partial order ≺ on strong connected components. For all i, j ∈ N, Ci ≺ Cj iff there exist a path π

that from a state in Cj arrives to a state in Ci. So, we have that C ≺ C, C ≺ C, C ≺ C,

and for transitivity relation C ≺ C. For apply the algorithm, we define an arbitrary total order

≺′, with respect the partial order describe above, in which C ≺′ C ≺′ C ≺′ C. First, we start

analyze C that is not a trivial component, so f ′ , (FapU)1(f). We have that FapU (f)(s)(0) ,∑
ρ′∈suc(s)∩Z f(ρ

′)(0) + |suc(s) ∩X|, where suc(s) ∩ Z = ∅ then the summation is 0, while

suc(s) ∩X = {s} therefore f ′(s)(0) = 1. Since f ′(s)(0) 6= 0 then f(s)(0) , ω. Conversely,

f ′(s)(j) = 0, with j ≥ 1. Second, we analyze C that a trivial component, so f , FapU (f).

We have that FapU (f)(s)(0) ,
∑

ρ′∈suc(s)∩Z f(ρ
′)(0) + |suc(s) ∩X|, where suc(s) ∩ Z =

∅ then the summation is 0, while suc(s) ∩ X = {s} therefore f(s)(0) = 1. Conversely,

FapU (f)(s)(j) = 0, with j ≥ 1. Third, we analyze C that is not a trivial component, so f ′ ,

(FapU)2(f). For the constraint on j, we have that j =
∑

ρ′∈dom(c) c(ρ
′)+|suc(s) \ (X ∪ dom(c))|,

82

6. Determinacy and Fulfilling 6.2 - The Fulfilling Problem

where suc(s) \ (X ∪ dom(c)) = {s} then j must have greater than 0. With s and j ≥ 1, we

have that FapU (f)(s)(j) ,
∑

c∈C(s)(j)

∏
ρ′∈dom(c) f(ρ

′)(c(ρ′)), where dom(c) = {s}, but

f(s)(c(s)) = 0 for all c(s) ∈ N. So, f ′(s)(j) = 0 then f(s)(j) = 0. FapU (f)(s)(0) ,∑
ρ′∈suc(s)∩Z f(ρ

′)(0) + |suc(s) ∩X|, where suc(s) ∩ X = ∅, while suc(s) ∩ Z = {s, s}.

Thus, f(s)(0) = 0 and f(s)(0) = ω then f(s)(0) = ω. Conversely, f(s)(j) = 0, with

j ≥ 1. Now, we reapply the function for a second iteration. For s and j = 1, we have that

f(s)(0) = ω then f ′(s)(1) = ω. For s and for all j > 1, we have that f(s)(j − 1) = 0 then

f ′(s)(j) = 0. For s the results remain the same of the first iteration. Finally, we analyze C that

a trivial component, so f , FapU (f). We have that FapU (f)(s)(0) ,
∑

ρ′∈suc(s)∩Z f(ρ
′)(0) +

|suc(s) ∩X|, where suc(s) ∩ X = ∅, while suc(s) ∩ Z = {s, s}. Thus, f(s)(0) = 0 and

f(s)(0) = 1 then f(s)(0) = 1. For j = 1, we have that f(s)(1) = ω and f(s)(1) = 0 then

f(s)(1) = ω. For j ≥ 1, we have that f(s)(j) = 0 and f(s)(j) = 0 then f(s)(j) = 0.

Then, E , s |= ϕ with (g1, g2) = (1, 1) or (g1, g2) = (ω, 2).

83

7
Conclusion

In multi-agent strategic reasoning, SL has taken in recent years a key role as it allows to

evaluate the strategies agents as first-order objects.From an expressive point of view, SL extends

the temporal logic ATL?, which in turn extends CTL?. In CTL? one can specify whether there

exist an execution or all execution of a system model satisfy a property. In ATL?, paths are given

as an outcome of actions (strategies) taken by teams of players while playing existentially or

universally. Furthermore, in SL strategies are abstract objects, in principle not associated to any

player, and by means of a binding operators they can be associate to, reused or shared by specific

agents. Also in SL strategies are taken to hold existentially or universally over the considered

system plays.

The high power of SL has been shown to come at a price, as the model checking becomes

non-elementary and the satisfiability problem becomes even undecidable. We recall that for ATL?

both problems are just 2-EXPTIME-COMPLETE.

A deep study of SL has shown that this extra complexity resides in the fact that it admits

"non-behavioral strategies", that is a choice an agent can make in a specific moment of the game

may depend on choices made by other players in completely different (i.e., future or counterfactual)

places. This has led to investigate several syntactic fragments of SL such as the one goal fragment

84

7. Conclusion

SG[1G] and the Boolean one SG[BG].

In particular, it has been shown that SG[1G] retains all theoretical properties of ATL? as well

as the same complexity for the related decision problems. SG[BG], instead is not elementary, the

satisfiability problem is not decidable and the exact complexity of the model checking question

remains an open problem.

CTL?, ATL? and SL,along with all its fragments, have been extensively studied and applied

in formal verification. Formal verification tools based on this formalisms have been also developed

and shown to be useful in practice. Remarkably CTL? and ATL? have been investigated in several

interesting extensions and among the others along graded modalities used in place of the classical

existential and universal modalities. In CTL?, graded modalities allow to refine the number of

paths under interest by counting the number of paths under interests. In ATL?, this framework is

even more interesting as it allows to count strategies these is the notion of graded, that adds the

ability to count strategies.

The extension of ATL? along with graded modalities suffers of all limitation inherented by

the weakness of this logic with respect to SL. For example, one cannot express Nash equilibria or

other important game-theoretical concepts such as stealing strategies. For this reason, in this thesis

the extension of SL with graded modalities has been introduced and deeply investigated.

In particular, this has been done by using the more general framework of Strategy Game,

recently introduced, for which Strategy Logic represents a particular case. In fact Strategy Game

uses predicates to represent paths, in place of the CTL? formalism.

In summary, in this thesis we have introduced the following concepts:

• An extension of Strategy Logic along with graded modalities, called Graded Strategy Logic;

• An equivalence relation that classifies the strategies;

• A game-type conversion that given a concurrent game, with solution concept in GSG[1G], it

can reduce us to a turn-based game, with solution concept in GSG[1G], in exponential time

on number of variables;

• A game-type conversion that given a concurrent game, with solution concept in GSG[BG], it

85

7. Conclusion

can reduce us to a concurrent game, with solution concept in SG[BG], in exponential time on

size of the solution concept;

• A grading function which verified that the concurrent game, with solution concept GSG[1G]

and at most two variables, are determined;

• Finally, we have shown how in concurrent game, with solution concept GSG[1G] and at

most two variables, the properties of safety or reachability is in PTIME-COMPLETE in the

size of both the arena and the solution concept.

These results open to a number of interesting scenarios, in both practical and the theoretical

fields. For example, one can check, in complex situations, if indeed there are multiple ways to

solve a given game. In open system verification, one can use the graded strategy game to check

whether a system is more secure than another by making a difference between how many strategies

there are in both place. Of course, all these aspects can be implemented in a verification tool. In

this regard, it is useful to remember that there is already a tool for verification of SL in [vLMM14].

So, should it not be difficult to extend this tool to graded modalities, this it would allow for the first

time to count the strategies of the games.

86

Bibliography

[AHK02] R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-Time Temporal Logic.

Journal of the ACM, 49(5):672–713, 2002.

[BLMV06] P.A. Bonatti, C. Lutz, A. Murano, and M.Y. Vardi. The complexity of enriched

µ-calculi. In ICALP ’06, volume 4052 of LNCS, pages 540–551, 2006.

[BMM09] A. Bianco, F. Mogavero, and A. Murano. Graded Computation Tree Logic. In Logic

in Computer Science’09, pages 342–351. IEEE Computer Society, 2009.

[BMM10] A. Bianco, F. Mogavero, and A. Murano. Graded Computation Tree Logic with Binary

Coding. In Computer Science Logic’10, LNCS 6247, pages 125–139. Springer, 2010.

[BMM12] A. Bianco, F. Mogavero, and A. Murano. Graded Computation Tree Logic. Transac-

tions On Computational Logic, 13(3):25:1–53, 2012.

[BP04] P.A. Bonatti and A. Peron. On the undecidability of logics with converse, nominals,

recursion and counting. Artificial Intelligence, 158 : 1:75–96, 2004.

[BS06] J. Bradfield and C. Stirling. Modal µ-calculi. In Blackburn, Wolter, and van Benthem,

editors, Handbook of Modal Logic, chapter 12, pages 722–756. Elsevier, 2006.

[CE81] E.M. Clarke and E.A. Emerson. Design and Synthesis of Synchronization Skeletons

Using Branching-Time Temporal Logic. In Logic of Programs’81, LNCS 131, pages

52–71. Springer, 1981.

[CHP07] K. Chatterjee, T.A. Henzinger, and N. Piterman. Strategy Logic. In Concurrency

Theory’07, LNCS 4703, pages 59–73. Springer, 2007.

[CHP10] K. Chatterjee, T.A. Henzinger, and N. Piterman. Strategy Logic. Information and

Computation, 208(6):677–693, 2010.

87

BIBLIOGRAPHY

[EH85] E.A. Emerson and J.Y. Halpern. Decision Procedures and Expressiveness in the

Temporal Logic of Branching Time. Journal of Computer and System Science,

30(1):1–24, 1985.

[EH86] E.A. Emerson and J.Y. Halpern. “Sometimes” and “Not Never” Revisited: On

Branching Versus Linear Time. Journal of the ACM, 33(1):151–178, 1986.

[FHMV95] R. Fagin, J.Y. Halpern, Y. Moses, and M.Y. Vardi. Reasoning about Knowledge. MIT

Press, 1995.

[Fin72] K. Fine. In So Many Possible Worlds. Notre Dame Journal of Formal Logic, 13:516–

520, 1972.

[FM07] A. Ferrante and A. Murano. Enriched Mu-Calculi Module Checking. In Foundations

of Software Science and Computational Structures’09, LNCS 5504, pages 183–197.

Springer, 2007.

[FMP08] A. Ferrante, A. Murano, and M. Parente. Enriched Mu-Calculi Module Checking.

Logical Methods in Computer Science, 4(3):1–21, 2008.

[FNP09] A. Ferrante, M. Napoli, and M. Parente. Model Checking for Graded CTL. Funda-

menta Informaticae, 96(3):323–339, 2009.

[FNP10] M. Faella, M. Napoli, and M. Parente. Graded Alternating-Time Temporal Logic.

Fundamenta Informaticae, 105(1-2):189–210, 2010.

[GOR97] E. Grädel, M. Otto, and E. Rosen. Two-Variable Logic with Counting is Decidable.

In Logic in Computer Science’97, pages 306–317. IEEE Computer Society, 1997.

[HB91] B. Hollunder and F. Baader. Qualifying Number Restrictions in Concept Languages.

In Knowledge Representation and Reasoning’91, pages 335–346. Morgan Kaufmann,

1991.

[Hoa85] C.A.R. Hoare. Communicating sequential processes, 1985.

[HP85] D. Harel and A. Pnueli. On the Development of Reactive Systems. Springer, 1985.

88

BIBLIOGRAPHY

[JvdH04] W. Jamroga and W. van der Hoek. Agents that Know How to Play. Fundamenta

Informaticae, 63(2-3):185–219, 2004.

[JW95] D. Janin and I. Walukiewicz. Automata for the Modal µ-Calculus and Related Results.

In MFCS’95, LNCS 969, pages 552–562. Springer-Verlag, 1995.

[Kel76] R.M. Keller. Formal Verification of Parallel Programs. Communication of the ACM,

19(7):371–384, 1976.

[Koz83] D. Kozen. Results on the Propositional muCalculus. Theoretical Computer Science,

27(3):333–354, 1983.

[KPV02] O. Kupferman, N. Piterman, and M.Y. Vardi. Pushdown specifications. In LPAR,

pages 262–277, 2002.

[KSV02] O. Kupferman, U. Sattler, and M.Y. Vardi. The Complexity of the Graded muCalculus.

In Conference on Automated Deduction’02, LNCS 2392, pages 423–437. Springer,

2002.

[KV97] O. Kupferman and M.Y. Vardi. Module checking revisited. In CAV ’96, volume 1254

of LNCS, pages 36–47. Springer-Verlag, 1997.

[KVW00] O. Kupferman, M.Y. Vardi, and P. Wolper. An Automata Theoretic Approach to

Branching-Time Model Checking. Journal of the ACM, 47(2):312–360, 2000.

[KVW01] O. Kupferman, M.Y. Vardi, and P. Wolper. Module Checking. Information and

Computation, 164(2):322–344, 2001.

[Lam80] L. Lamport. “Sometime“ is Sometimes “Not Never“: On the Temporal Logic of

Programs. In Principles of Programming Languages’80, pages 174–185. Association

for Computing Machinery, 1980.

[Lor10] E. Lorini. A Dynamic Logic of Agency II: Deterministic DLA, Coalition Logic, and

Game Theory. Journal of Logic, Language, and Information’, 19(3):327–351, 2010.

[Mar75] A.D. Martin. Borel Determinacy. Annals of Mathematics, 102(2):363–371, 1975.

89

BIBLIOGRAPHY

[Mar85] A.D. Martin. A Purely Inductive Proof of Borel Determinacy. In Symposia in Pure

Mathematics’82, Recursion Theory., pages 303–308. American Mathematical Society

and Association for Symbolic Logic, 1985.

[MH84] S. Miyano and T. Hayashi. Alternating Finite Automata on ω-Words. Theoretical

Computer Science, 32(3):321–330, 1984.

[MMS14] F. Mogavero, A. Murano, and L. Sauro. Strategy Games: A Renewed Framework.

In Autonomous Agents and MultiAgent Systems’14, pages 869–876. International

Foundation for Autonomous Agents and Multiagent Systems, 2014.

[MMV10] F. Mogavero, A. Murano, and M.Y. Vardi. Reasoning About Strategies. In Foundations

of Software Technology and Theoretical Computer Science’10, LIPIcs 8, pages 133–

144. Leibniz-Zentrum fuer Informatik, 2010.

[Pnu77] A. Pnueli. The Temporal Logic of Programs. In Foundation of Computer Science’77,

pages 46–57. IEEE Computer Society, 1977.

[Pnu81] A. Pnueli. The Temporal Semantics of Concurrent Programs. Theoretical Computer

Science, 13:45–60, 1981.

[PP04] D. Perrin and J. Pin. Infinite Words. Pure and Applied Mathematics. Elsevier, 2004.

[QS81] J.P. Queille and J. Sifakis. Specification and Verification of Concurrent Programs

in Cesar. In Symposium on Programming’81, LNCS 137, pages 337–351. Springer,

1981.

[SV01] U. Sattler and M.Y. Vardi. The hybrid mu–calculus. In IJCAR ’01, volume 2083 of

LNAI, pages 76–91, 2001.

[Tob01] S. Tobies. PSpace Reasoning for Graded Modal Logics. Journal of Logic and

Computation, 11(1):85–106, 2001.

[Var88] M.Y. Vardi. A Temporal Fixpoint Calculus. In Principles of Programming Lan-

guages’88, pages 250–259. Association for Computing Machinery, 1988.

90

BIBLIOGRAPHY

[vE13] J. van Eijck. PDL as a Multi-Agent Strategy Logic. In Theoretical Aspects of

Rationality and Knowledge’13, pages 206–215, 2013.

[vLMM14] P. Čermák, A. Lomuscio, F. Mogavero, and A. Murano. MCMAS-SLK: A Model

Checker for the Verification of Strategy Logic Specifications. In Computer Aided

Verification’14, LNCS 8559, pages 524–531. Springer, 2014.

[VW86] M.Y. Vardi and P. Wolper. An automata–theoretic approach to automatic program

verification (preliminary report). pages 332–344, 1986.

[Wil99] T. Wilke. CTL+ is Exponentially More Succinct than CTL. In FSTTCS’99, pages

110–121. Springer-Verlag, 1999.

91

List of Figures

3.1 Arena A. Note that the node of the arena are labeled with its name (in the upper part) and

with the subset of player that are active on its (in the lower part). 30

4.1 Arena ADG. Note that the node of the arena are labeled with its name (in the upper part)

and with the subset of player that are active on its (in the lower part). 47

4.2 Arena ACG. Note that the node of the arena are labeled with its name (in the upper part)

and with the subset of player that are active on its (in the lower part). 48

4.3 Scheduler ArenaAS . 56

5.1 Normalized Arena A• built on Arena A. 62

5.2 Minimized Arena A� built on Normalized Arena A•. 65

5.3 Turn-based Arena A? built on Minimized Arena A�. Note that, in the circle node is active

the agent x, in the square node is active the agent y, and the diamond node represent the

transition state. For see understanding on the arena, we duplicate some nodes and here the

state without exit edges are just copies of the nodes in the same name. 68

6.1 Turn-based Arena A. 79

92

List of Tables

4.1 Table of the assignments with binding [ . 53

4.2 Table of the assignments with binding [ . 53

93

