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Chapter 1

Introduction

The challenge of ensuring system correctness is particularly significant in hardware and software
design, especially in safety-critical scenarios. When referring to a safety-critical system, we
mean one in which failure is not an option. These systems are typically categorized as follows:
safety-critical, where errors can have life-threatening consequences; mission-critical, where
unreliability can impact the achievement of objectives; and business-critical, where failure can
result in financial losses.

In recent years, there have been several instances of critical systems exhibiting unexpected
behavior with relevant consequences. For instance, in February 2020, over 100 flights at
Heathrow Airport were disrupted due to a software “glitch”. Additionally, in December 2020,
Google’s services experienced a 45-minute outage because their system could not recover
from a storage issue. In March 2020, Finastra, a leading banking software provider, had to
take its systems offline following a ransomware attack. This problem is not diminishing, as
per Cybersecurity Ventures, the cost of cybercrime alone is projected to reach $10.5 trillion
annually by 2025.

To address this issue, several methodologies have been proposed. Among these, model
checking, as described in [1, 2], proves to be highly useful. This approach offers a formal-
based methodology for modeling systems, specifying properties, and verifying that a system
adheres to a given specification. Typically, the mathematical model takes the form of a
labeled transition graph, with each node representing a system state, and the edges indicating
transitions between states resulting from system execution. In order to specify properties,
temporal logics are commonly employed, such as Linear-time Temporal Logic (LTL) [3] and
Computation Tree Logic (CTL) [4].

Initially, model checking applications primarily focused on closed systems, characterized by
behavior entirely determined by their internal states. However, these model checking tech-
niques designed for closed systems proved to have limited practical utility, as most systems are
open and engage in ongoing interactions with other systems. To address this challenge, model
checking was extended to Multi-Agent Systems (MAS). In this context, labeled transition
graphs are augmented to incorporate actions. This means that the edges between states are
labeled according to the actions chosen by the agents participating in the MAS. Concurrent
Game Structures (CGS) [5] and Interpreted Systems (IS) [6] are commonly employed in formal
verification to model MAS. Regarding the specification, temporal logics have been expanded
to incorporate strategic reasoning, such as Alternating-time Temporal Logic (ATL) [5] and
Strategy Logic (SL) [7]. To delve into more detail, ATL extends CTL by replacing the exis-
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tential and universal path quantifiers with strategic modalities represented as ⟨⟨A⟩⟩ and [[A]],
where A refers to a set of agents. The existential strategic operator ⟨⟨A⟩⟩ allows us to verify
whether there exists a strategy for the coalition A such that, for any action taken by the other
agents, it is possible to achieve a strategic objective. Conversely, the universal operator [[A]] is
the complement of the existential one. Informally, a strategy can be described as a conditional
plan that specifies an action for every situation within a MAS. While ATL is expressive, it
has a significant limitation in that it treats strategies only implicitly within the semantics of
its strategic operators. This limitation renders the logic less suitable for formalizing crucial
solution concepts, such as the Nash Equilibrium. These considerations prompted the develop-
ment and exploration of Strategy Logic, an extension of LTL, offering a more robust formalism
for strategic reasoning. A key aspect of this logic is its treatment of strategies as first-order
objects, which can be specified using the existential ∃x and universal ∀x quantifiers. These
quantifiers can be respectively interpreted as “there exists a strategy x” and “for all strate-
gies x”. Consequently, these plans are not inherently tied to a specific agent, and an explicit
binding operator (α, x) enables the association of an agent α with a strategy represented by
the variable x.

In relation to the formal model selected to describe the MAS and the logic chosen to
specify the property of interest, various algorithms and automaton-based approaches have
been proposed [5, 7, 8]. The interesting aspect is that the complexity of model checking can
range from polynomial to non-elementary and, in some contexts, even reach undecidability. To
discuss these results, it is necessary to introduce two fundamental aspects in MAS verification
that impact the complexities of model checking: the memory of strategies and agent visibility.

In MAS, a strategy is generally defined as a function that for each MAS situation returns an
action. In particular, we can distinguish between two main types of strategies: memoryless and
memoryfull. With memoryless (aka positional or imperfect recall) strategies, the agent does not
remember the past but only the current MAS state. In contrast, with memoryfull (aka perfect
recall) strategies the agent considers all the MAS history. Now a question spontaneously
arises, why consider strategies without memory if in general those with memory are more
expressive? The answer is simple: the computational complexity. There is also another factor
that causes computational problems: the information that the agents have. We distinguish
between two main classes of MAS: with perfect and imperfect information. In the former case,
each agent has complete information about the system. Instead, we talk about imperfect
information when there are some agents that do not have complete visibility over the system.
Imperfect information is common in almost all MAS. Therefore, it seems likely that the most
used scenario for MAS is in the context of imperfect information and memoryfull strategies.
Unfortunately, in this setting the model checking problem for ATL and SL is undecidable in
general [9]. Various techniques have been proposed to reduce complexity through symbolic or
abstraction methods in which we have been personally involved [10, 11, 12, 13, 14, 15, 16]. In
the context of imperfect information and memoryless strategies the model checking problem
becomes tractable; in fact, for ATL and SL, it is PSPACE-complete [8, 17]. In the
case of perfect information, model checking for ATL is polynomial [5], while for SL, with
memoryfull strategies, it is non-elementary [7]. Due to the significance of this logic, several
fragments have been proposed, such as Strategic Logic with Simple Goal [18] (co-authored by
us), which shares the same model checking complexity as ATL but offers greater expressive
power. Another intriguing research direction has introduced an extension of ATL with strategy
contexts [19, 20]. Unlike the original semantics of ATL, in this logic, the strategy quantifiers do
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not reset previously selected strategies. Unfortunately, this gain in expressiveness comes at a
significant cost, as the model checking problem is non-elementary, which is the same complexity
class as model checking for SL. An alternative line of research that we have explored involves
the introduction of a new class of strategies known as “natural strategies”. The concept
behind natural strategies is to embrace the perspective of bounded rationality and consider
“simple” strategies when specifying agents’ abilities. This concept has been introduced in both
ATL and SL within the contexts of perfect [21, 22] and imperfect information [23, 24]. With
this approach, in the worst-case scenario, the model checking complexity has been shown to
be PSPACE. For more details on the model checking complexities, refer to the short survey
we have developed [25].

Given this brief overview on multi-agent system verification, in the next section we will
illustrate our main research results.

1.1 Our research work

As the title of the document suggests, we have worked on three main aspects in formal
verification of MAS:

• how to model the system under exam;

• how to specify the properties of interest;

• how to verify that the model meets the specification, i.e. define a sound model checking
procedure and study its complexity.

In what follows, we present our contributions for each field.

Formal Modeling. In this topic, our aim has been to provide formal mechanisms for describing
specific settings. For example:

• In [26, 27, 28, 29], we have provided different tools to analyze cybersecurity problems in
terms of multi-agent systems.

• In [30, 31, 32, 33, 34], we have developed some techniques to check whether there exists
a backup strategy for an agent to achieve its objectives in the context of perfect and
imperfect information.

• In [35, 36], we have defined a new concept of imperfect information. Instead of having
partial visibility on the states of the MAS, we have provided a new notion of imperfect
information over the actions.

• In [37, 38], we have equipped our model to share information between agents.

• In [39], we have introduced and solved concurrent multi-agent systems with parity objec-
tives.

• In [21, 22], we have defined the concept of natural strategy, a strategy that fits the
human’s point a view. Then, in [23], we have studied natural strategies under imperfect
information. Finally, we have applied natural strategies in concrete scenarios such as
voting protocols [40, 41] and auctions [24].

In Chapter 2, we will detail some results obtained on natural strategies.
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Formal Specification. In this context, our aim has been to define new logics with two orthogonal
perspectives: gain expressiveness in terms of property specifications and/or decrease the model
checking complexity. In particular, we have achieved the following results:

• In [42, 43, 44, 45], we have defined a graded version of SL to count how many strategies
an agent, or a coalition of agents, has to achieve a strategic objective.

• In [18], we have defined a fragment of SL in which strategic operators, bindings operators,
and temporal operators are coupled, called Strategy Logic with Simple-Goals. It has
been shown that this fragment strictly subsume ATL and its model checking problem is
PTIME-Complete, as it is for ATL. Furthermore, in [46], we have provided a first
analysis for implementing such a fragment.

• In [47, 48], we have defined an extension of Sabotage Logic in which we can erase a
subset of edges.

• In [49], we have presented a logic that has the same expressive power of ATL but that
is more succinct when verifying a strategic property without requiring knowledge of the
exact coalitions involved in the specification.

• In [50], we have introduced Obstruction Logic (OL), a temporal logic to reason about
models in which an agent (the Demon) can modify the structure of a system model
by temporarily removing some edges that meet a quantitative threshold. Furthermore,
in [51], we introduced OATL, an extension of ATL in which an agent can dynamically
change the structure of a MAS.

In Chapter 3, we will detail the results obtained on obstruction logics.

Formal Verification. As mentioned before, model checking for MAS is undecidable in the
context of imperfect information and memoryfull strategies. Given the relevance of this setting,
even partial solutions to the problem can be useful. We have worked on this aspect in different
directions:

• In [12, 52, 14], we have focused on an approximation on the visibility of the agents by
defining a sound abstraction-refinement method.

• In [10, 11], we have defined a notion of bounded recall strategies and provided a preser-
vation result to memoryfull strategies in three-valued semantics.

• In [16], we have studied the topological structure of the models and provided an approx-
imation to temporal logics.

• In [53, 54, 15, 55], we have combined static and runtime verification techniques to
determine decidability.

In addition, we have presented some other verification techniques, such as:

• In [56], we have presented an abstraction-refinement method to improve the model check-
ing complexity for SL in practice.

• In [13], we have introduced a reduction of a fragment of ATL to first order logic. In this
way, we have provided a technique to model check properties via SMT solvers.
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• In [57, 58], we have proposed a reduction from epistemic dynamic logics to first order
logic and provided some experimental results via SMT solvers.

• In [59], we have proposed a runtime solution in the imperfect information setting.

• In [60], we have provided a verification technique for models in which states are defined
over databases.

In Chapter 4, we will detail some results aimed at establishing decidability within the context
of imperfect information and memoryfull strategies.

Before delving into the details of some of our works, we conclude this chapter with some
preliminary definitions that will be useful for reading the upcoming chapters.

Note that, given the imposed page limit, technical parts, such as proofs and algorithms, will
not be presented in this document. For a more detailed description of the contents, we refer
to the related articles published in journals and conferences (obviously cited in this document).

1.2 Preliminaries

In this section we introduce the standard semantics for the Alternating-time Temporal Logic
ATL∗ and ATL [5]. To fix the notation, we assume sets Ag = {1, . . . ,m} of agents and
AP = {a1, a2, . . .} of atomic propositions, or simply atoms. Given a set U , U denotes its
complement. We denote the length of a tuple v as |v|, and its i-th element as vi. Let
last(v) = v|v| be the last element in v. For i ≤ |v|, let v≥i be the suffix vi, . . . , v|v| of v
starting at vi and v≤i its prefix v1, . . . , vi. Notice that we start enumerations with index 1.

We begin by giving a formal account of multi-agent systems by means of concurrent game
structures with imperfect information [5].

Definition 1.2.1. Given sets Ag of agents and AP of atoms, a concurrent game structure
with imperfect information (iCGS) is a tuple M = ⟨St, sI , {Acti}i∈Ag, {∼i}i∈Ag,P , δ,V⟩ such
that:

• St is a finite, non-empty set of states, with initial state sI ∈ St.

• For every i ∈ Ag, Acti is a finite, nonempty set of (individual) actions.

Let Act =
⋃

i∈Ag Acti be the set of all actions, and ACT =
∏

i∈Ag Acti the set of all
joint actions, i.e., tuples of individual actions.

• For every i ∈ Ag, ∼i is a relation of indistinguishability between states, that is, an
equivalence relation on St. Given states s, s′ ∈ St, s ∼i s

′ iff s and s′ are said to be
observationally indistinguishable for agent i.

• The protocol function P : Ag×St→ (2Act \∅) defines the availability of actions so that
for every i ∈ Ag, s ∈ St, (i) P(i, s) ⊆ Acti and (i) s ∼i s

′ implies P(i, s) = P(i, s′).

• The (deterministic) transition function δ : St × ACT → St assigns a successor state
s′ = δ(s, α⃗) to each state s ∈ St, for every joint action α⃗ ∈ ACT such that α⃗i ∈ P(i, s)
for every i ∈ Ag, that is, α⃗ is enabled at s.

• L : St→ 2AP is a labeling function.
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By Definition 1.2.1 an iCGS describes the interactions of a group Ag of agents, starting
from the initial state sI ∈ St, according to the transition function δ. The latter is constrained
by the availability of actions to agents, as specified by the protocol function P . Furthermore,
we assume that every agent i has imperfect information of the exact state of the system; so
in any state s, i considers epistemically possible all states s′ that are indistinguishable for i
from s [6]. When every ∼i is the identity relation, i.e., s ∼i s

′ iff s = s′, we obtain a standard
CGS with perfect information [5].

Given a set A ⊆ Ag of agents and a joint action α⃗ ∈ ACT , let α⃗A (resp. α⃗A) be the tuple
comprising only of actions for the agents in A (resp. A). We also write α⃗i and α⃗i for α⃗{i} and

α⃗{i} respectively. Finally, for α⃗ and β⃗ in ACT , (α⃗A, β⃗A) denotes the joint action where the

actions for the agents in A (resp. A) are taken from α⃗ (resp. β⃗).
A history h ∈ St+ is a finite (non-empty) sequence of states. The indistinguishability

relations are extended to histories in a synchronous, pointwise way, i.e., histories h, h′ ∈ St+

are indistinguishable for agent i ∈ Ag, or h ∼i h
′, iff (i) |h| = |h′| and (ii) for all j ≤ |h|,

hj ∼i h
′
j.

To reason about the strategic abilities of agents in iCGS, we use the Alternating-time
Temporal Logic ATL∗ [5].

Definition 1.2.2. The state (φ) and path (ψ) formulas in ATL∗ are defined as follows, where
a ∈ AP and A ⊆ Ag:

φ ::= a | ¬φ | φ ∧ φ | ⟨⟨A⟩⟩ψ
ψ ::= φ | ¬ψ | ψ ∧ ψ | Xψ | (ψUψ)

Formulas in ATL∗ are all and only the state formulas.

As customary, a formula ⟨⟨A⟩⟩ψ is read as “the agents in coalition A have a strategy
to achieve ψ”. The meaning of linear-time operators next X and until U is standard [2].
Operators unavoidable [[Γ]], release R, eventually F , and globally G can be introduced as
usual.

The formulas in the ATL fragment of ATL∗ are obtained from Definition 1.2.2 by restricting
path formulas ψ as follows, where φ is a state formula:

ψ ::= Xφ | (φUφ) | (φRφ)

In the rest of the document we also consider the fragment of A-formulas, i.e., formulas in
which the strategic operator ⟨⟨A⟩⟩ ranges only over some fixed coalition A ⊆ Ag. Further-
more, we also consider the existential and universal fragments.In particular, in the existential
(resp. universal) fragment, formulas are only of the form ⟨⟨Γ⟩⟩ψ (resp. [[Γ]]ψ) and the boolean
negation operator is available only in front of atoms.

When giving a semantics to ATL∗ formulas we assume that agents are endowed with uniform
strategies [61], i.e., they perform the same action whenever they have the same information.

Definition 1.2.3. A uniform memoryfull strategy for agent i ∈ Ag is a function σi : St
+ →

Acti such that for all histories h, h′ ∈ St+, (i) σi(h) ∈ P(i, last(h)); and (ii) h ∼i h
′ implies

σi(h) = σi(h
′).
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By Def. 1.2.3 any strategy for agent i has to return actions that are enabled for i. Also,
whenever two histories are indistinguishable for i, then the same action is returned. Notice
that, for the case of (perfect information) CGS, condition (ii) is satisfied by any function
σi : St

+ → Acti.
Given an iCGS M , a path ρ ∈ Stω is an infinite sequence s1s2 . . . of states such that, for

all j ≥ 1, sj+1 = δ(sj, α⃗) for some joint action α⃗. Given a joint strategy σA = {σi | i ∈ A},
comprising of one strategy for each agent in coalition A, a path ρ is σA-compatible iff for
every j ≥ 1, ρj+1 = δ(ρj, α⃗) for some joint action α⃗ such that for every i ∈ A, α⃗i = σi(ρ≤j),
and for every i ∈ A, α⃗i ∈ P(i, ρj). Let out(s, σA) be the set of all σA-compatible paths from
state s.

We can now assign a meaning to ATL∗ formulas on iCGS.

Definition 1.2.4. The satisfaction relation |= for an iCGS M , state s ∈ St, path ρ ∈ Stω,
atom a ∈ AP , state formula φ, and path formula ψ is defined as follows:

(M, s) |= a iff a ∈ L(s)
(M, s) |= ¬φ iff (M, s) ̸|= φ
(M, s) |= φ ∧ φ′ iff (M, s) |= φ and (M, s) |= φ′

(M, s) |= ⟨⟨A⟩⟩ψ iff for some joint strategy σA,
for all paths ρ ∈ out(s, σA), (M,ρ) |= ψ

(M,ρ) |= φ iff (M,ρ1) |= φ
(M,ρ) |= ¬ψ iff (M,ρ) ̸|= ψ
(M,ρ) |= ψ ∧ ψ′ iff (M,ρ) |= ψ and (M,ρ) |= ψ′

(M,ρ) |= Xψ iff (M,ρ≥2) |= ψ
(M,ρ) |= ψUψ′ iff for some k ≥ 1, (M,ρ≥k) |= ψ′, and

for all j, 1 ≤ j < k implies (M,ρ≥j) |= ψ

We say that formula φ is true in an iCGS M , or M |= φ, iff (M, sI) |= φ.
Notice that the satisfation clause for the release operator R can be derived as follows, by

assuming that ψRψ′ ::= ¬(¬ψU¬ψ′):

(M,ρ) |= ψRψ′ iff for all k ≥ 1, (M,ρ≥k) |= ψ′, or
for some j ≥ 1, (M,ρ≥j) |= ψ, and
for all j′, 1 ≤ j′ ≤ j implies (M, p≥j′) |= ψ′

Notice that the semantics discussed in this context aligns with the objective interpretation of
ATL under imperfect information, as described in [61]. In contrast, the subjective interpretation
requires a strategy to be successful for all states s′ that are indistinguishable from the current
state s. Both interpretations have been extensively examined in the model theory of logics
for strategic reasoning, each presenting its own advantages and drawbacks. We refrain from
delving into a comprehensive comparison of these approaches here and instead direct readers
to [61] for further elaboration.

To conclude this chapter, we can state the model checking problem.

Definition 1.2.5 (Model Checking). Given an iCGS M and an ATL∗ formula ϕ, the model
checking problem concerns determining whether M |= ϕ.
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Chapter 2

Modeling: Natural Strategies

As outlined in the introduction, strategies within MAS are conceptualized as conditional plans
and hold a central role in reasoning about purpose-driven agents. Formally, strategies are
delineated as mappings from system histories to actions. While this approach holds math-
ematical validity and may suitably address the strategic capabilities of highly computational
entities such as machines (robots, computer programs), we posit that it fails to accurately
model human behavior. This discrepancy arises due to humans’ inherent struggle with handling
objects of combinatorial complexity. A human strategy ought to be relatively straightforward
and intuitive, ensuring comprehension, memorization, and execution by the individual. This
necessity is amplified when humans are required to devise strategies independently. Analogous
concerns arise regarding the strategic capabilities of artificial agents constrained by limited
memory and/or computational power, such as basic robots, sensors within autonomous sensor
networks, and components of the Internet of Things. Consequently, we advocate for adopting
“natural” abilities based on strategies with complexity within a set threshold.
Related Works. Works closely related to our proposal focus on modeling, specification,
and reasoning about strategies of bounded agents. In this group, [62] investigates strategic
properties of agents with bounded memory, while [63, 64, 65, 66] extend temporal and strategic
logics to accommodate agents with bounded resources. Issues related to bounded rationality
are also explored in [67, 68]. Papers examining the explicit representation of strategies are
also relevant. This group is more extensive and includes extensions of ATL that explicitly
reason about actions and strategies [69, 70], and logics combining features of temporal and
dynamic logic [71]. A variant of STIT logic that enables reasoning about strategies and
their performance within the object language is discussed in [72]. Furthermore, plans in
agent-oriented programming can be seen as rule-based descriptions of strategies. Specifically,
reasoning about agent programs using strategic logics has been investigated in [73, 74, 75, 76].
However, none of these works directly address the subject of our work: logic-based reasoning
about agents’ abilities in scenarios where natural representation and manageable complexity
of strategies is crucial.

The rest of this chapter is structured as follows. First of all, as in [21, 22], in Section 2.1,
we define the concept of natural strategy with and without memory in the context of perfect
information. Then, as in [23], in Section 2.2, we introduce natural strategies in the context of
imperfect information. Given these two representations, in Section 2.3, we introduce a variant
of ATL that allows verifying if, for a coalition of agents, there exists a natural strategy with
limited size to achieve a strategic objective. Finally, we provide results for the model checking
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problem of this logic.

2.1 Natural Strategies with perfect information

In this section, we focus on defining natural strategies with and without memory in the context
of perfect information.

2.1.1 Memoryless

We start by defining the notion of natural memoryless strategy σi for agent i. The idea is
to use a rule-based representation, with an ordered list of condition-action rules. The first
rule whose condition holds in the current state is selected, and the corresponding action is
executed. Formally, let B(Σ) be the set of Boolean formulas over alphabet Σ. We represent
natural strategies by ordered lists of guarded actions, i.e., sequences of pairs (ϕj, αj) such
that:

1. ϕj ∈ B(AP );

2. αj ∈ P(i, s) for every s ∈ St such that s |= ϕj.

That is, ϕj is a propositional condition on states of the CGS, and αj is an action available
to agent i in every state where ϕj holds. Moreover, we assume that the last pair in the list
is (⊤, α) for some α ∈ Act, i.e., the last rule is guarded by a condition that will always be
satisfied. Note that the action α must be available to agent i in every state of the system.

By length(σi), we denote the number of guarded actions in σi. Moreover, condj(σi) de-
notes the j-th guard (condition) on the list, and actj(σi) the corresponding action. Finally,
match(s, σi) is the smallest j ≤ length(σi) such that s |= condj(σi) and actj(σi) ∈ P(i, s).
That is, match(s, σi) matches state s with the first condition in σi that holds in s, and action
available in s. Additionally, dom(ϕ) = {p ∈ AP | p ∈ ϕ} stands for the set of atomic
propositions that appear in condition ϕ, and dom(σi) =

⋃
j=1,...,length(σi)

dom(condj(σi)) de-
notes the propositions occurring in σi. A collective natural strategy for a group of agents
A = {1, . . . ,m} is a tuple of individual natural strategies σA = (σ1, . . . , σm). The “outcome”
function out(s, σA) returns the set of all paths that occur when agents in A execute strategy
σA from state s onward. We emphasize that the outcome of σA collects all the paths consis-
tent with σA. In particular, the opponents are not assumed to play a natural strategy; in fact,
they are not assumed to play any strategy at all.

Example 2.1.1 (Ticket machine). The primary application domain we have in mind pertains
to usability assessment. Consider, for example, a ticket vending machine situated at a railway
station. Merely possessing a strategy to purchase the correct ticket is not sufficient. If the
strategy proves overly intricate, the majority of users will struggle to navigate it effectively,
rendering the machine practically ineffectual. To elucidate, consider the following specification
presented as a natural strategy:

1. (¬ticket ∧ ¬selected ∧ ¬paid ∧ ¬error, select);

2. (selected, pay);

3. (⊤, idle).
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It indicates that the customer selects a ticket only if no prior selection has been made (nor if
the ticket has already been obtained or payment has been made). Following the selection, the
customer proceeds with the payment process; otherwise, they remain idle.

By compl(σi), we denote the complexity, or equivalently the size, of the strategy σi. Intu-
itively, the complexity of a strategy is understood as the level of sophistication of its represen-
tation. Several natural metrics can be used to measure the complexity of a strategy, given its
representation from (B(AP )× Act)+, e.g.:

• Number of used propositions: compl#(σi) = |dom(σi)|;

• Largest condition: complmax(σi) = max{|ϕ| | (ϕ, α) ∈ σi};

• Total size of the representation: complΣ(σi) =
∑

(ϕ,α)∈σi
|ϕ|.

with |ϕ| being the number of symbols in ϕ, without parentheses.
From now on, we will focus on the last metric for complexity of strategies, which takes into

account the total size of all the conditions used in the representation. That is, unless explicitly
specified, we will assume compl(σi) = complΣ(σi).

2.1.2 With Recall

Agents equipped with memory have the capability to make decisions based on the game’s
history, which encompasses the sequence of states experienced thus far. How can we effec-
tively express conditions regarding such sequences? One approach is to utilize states within
an automaton framework, as proposed in [77]. However, we advocate for a more intuitive
representation for humans, achieved through regular expressions over propositional formulas.

Let Reg(L) be the set of regular expressions over the language L (with the standard con-
structors ·,∪, ∗ representing concatenation, nondeterministic choice, and finite iteration). A
natural strategy with recall σi for agent i is a sequence of appropriate pairs fromReg(B(AP ))×
Act. That is, it consists of pairs (r, α) where r is a regular expression over B(AP ), and α is
an action available in last(h), i.e., α ∈ P(i, last(h)), for all histories h ∈ St+ consistent with
r.

Formally, given a regular expression r and the language L(r) on words generated by r, a
history h = s1 . . . sn is consistent with r iff ∃ b ∈ L(r) such that |h| = |b| and ∀0≤j≤n hj |= bj.
Similarly to memoryless strategies, the last pair in the list is assumed to be simply (⊤∗, α).
Finally, match(h, σi) is the smallest k ≤ length(σi) such that ∀0≤j≤|h|hj |= (condk(σi))j and
actk(σi) ∈ P(i, hj).

The metrics from memoryless strategies extend to strategies with recall and collective
strategies with recall in the straightforward way. Additionally, we can define complΣ∗(·), a
variant of the metric complΣ(·), that skips the initial ⊤∗ whenever it appears in a regular
expression.

Example 2.1.2 (Wild West explorer). Consider the following strategy with recall σ for a Wild
West explorer:

1. (safe∗, digGold);

2. (safe∗ · (¬safe ∧ haveGun), shoot);

3. (safe∗ · (¬safe ∧ ¬haveGun), run);

12



4. (⊤∗ · (¬safe) · (¬safe), hide);

5. (⊤∗, idle).

Item (1) represents the guarded action in which safe has held in all the states of the history. In
such instances, the agent should proceed quietly to dig for gold. Alternatively, items (2) or (3)
are used for each history in which safe held in all states except the last. In such scenarios, the
agent should run away or shoot back depending on whether he has a gun. If it does not work
(item (4)), the agent should hide. Conversely (item (5)), the agent should remain stationary
and refrain from action. For the complexity, we have that compl#(σ) = 2, complmax(σ) = 8,
complΣ(σ) = 27, and complΣ∗(σ) = 23.

Before concluding this section, it is important to briefly discuss a relevant aspect of natural
strategies in the perfect information context. In fact, given any CGS, these strategies introduce
a sort of imperfect information on states where the set of atomic propositions is the same
(see [22] for more details on this). However, it is important to emphasize that it is not
possible to use the above-defined natural strategies in the imperfect information context and
guarantee uniformity, particularly when two distinct states have distinct atomic propositions
but are indistinguishable to an agent. For this reason, in the next section, we will address how
to bridge this gap to define natural strategies in the context of imperfect information.

2.2 Natural Strategies with imperfect information

In this section, we show that the notion of natural strategies, introduced in [22], can be
adapted to imperfect information scenarios in a very simple way.

2.2.1 Memoryless

We commence by introducing the concept of a uniform natural memoryless strategy σi for
agent i. The essence lies in employing a rule-based framework, comprising an ordered list of
condition-action rules. Upon evaluation, the first rule whose condition aligns with the present
state is chosen, and the associated action is executed.

Formally, we define the set of epistemic conditions E for the agent i as follows:

ψ ::= ⊤ | Kiφ
φ ::= a | ¬φ | φ ∧ φ | Kjφ

where a is an atomic proposition and j an agent.
So, we are talking about formulas that are prefixed by Ki and then possibly combined by

Boolean operators. In other words, formulas ψ are always Boolean conditions on i’s knowledge.
Given an iCGS M , a state s ∈ St, and an epistemic condition φ, we inductively define

whether s satisfies φ (s |= φ) as follows:

• s |= a iff a ∈ L(s);

• s |= ¬φ iff s |= φ does not hold;

• s |= φ ∧ φ′ iff s |= φ and s |= φ′;

• s |= Kiφ iff for all s′ ∼i s, it holds that s
′ |= φ.
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Figure 2.1: A maze with no loops.

We represent uniform natural strategies by ordered lists of guarded actions, i.e., sequences
of pairs (ϕj, αj) such that:

1. ϕj is an epistemic condition;

2. αj ∈ P(i, s) for every s ∈ St such that s |= ϕj.

That is, ϕj is an epistemic condition on states of the iCGS, and αj is an action available
to agent i in every state where ϕj holds. Moreover, as for the perfect information, we assume
that the last pair on the list is (⊤, α), with α ∈ P(i, s), for all s ∈ St and some α ∈ Act.

It is easy to see that the strategies are uniform in the sense of [8], i.e., they specify the
same actions in indistinguishable states.

Proposition 2.2.1 ([23]). Given a uniform natural memoryless strategy σi and two states
such that s ∼i s

′, we have that actmatch(s,σi)(σi) = actmatch(s′,σi)(σi).

Proof. Take σi =
(
(ϕ1, α1), . . . , (ϕn, αn)

)
and any pair of states s, s′ such that s ∼i s

′. Let
match(s, σi) = j. That is, ϕj holds in s, but every ϕk for k < j does not. Since all the
formulas ϕ are either equal to ⊤ or begin with Ki, they must either hold in both s, s′, or in
none of them. Thus, we get that match(s′, σi) = j, too.

2.2.2 With Recall

A uniform natural strategy with recall σi for agent i is a sequence of appropriate pairs from
Reg(E(AP )) × Act. That is, it consists of pairs (r, α) where r is a regular expression over
E(AP ), and α is an action available in last(h), i.e. α ∈ P(i, last(h)), for all histories h ∈ St+

consistent with r.
Again, we can observe that the strategies are uniform in the sense of [8], i.e., they specify

the same actions in indistinguishable sequences of states.

Proposition 2.2.2 ([23]). Given a uniform natural strategy with recall σi and two histories
h, h′ such that |h| = |h′| and ∀j . hj ∼i h

′
j, we have that actmatch(h,σi)(σi) = actmatch(h′,σi)(σi).

As for the perfect information case, the metrics extend to strategies with recall and collective
strategies with recall in the straightforward way.

14



Example 2.2.1 (Foggy maze). Consider an agent rover rv, whose objective is to navigate
through a maze, such as the one depicted in Figure 2.1. We assume the maze to be perfect,
devoid of any loops. Furthermore, it is populated by several other hostile agents. At any given
moment, each agent can opt to turn left (action turnL), turn right (turnR), move forward
(step), or remain stationary (wait). Successful movement occurs if there are no obstacles or
other agents blocking the path. Additionally, the rover has the ability to execute the destroy
action, eliminating any agent positioned directly in front of it, if present. Periodically, the
maze may become enveloped in fog, during which agents experience complete blindness for 1
or 2 time units..

Suppose an iCGS M representing the scenario in which states record the positions and
orientations of all agents. In addition, two states are indistinguishable to an agent i if they
coincide in i’s position and orientation, and:

• either both states are in foggy conditions,

• or both states are fog-free, and they agree on the content of the cell in front of i.

The atomic propositions start and finish mark the states where the rover is situated at the
maze entry and exit, respectively. Propositions wall and creature identify states where the
rover is facing a wall or another agent, respectively.

The following natural strategy with recall guarantees that the rover gets through the maze
(we use fog as a shorthand for ¬Krvcreature ∧ ¬Krv¬creature to simplify the notation):

1. (⊤∗ · fog, wait);

2. (⊤∗ ·Krvcreature, destroy);

3. (⊤∗ ·Krv¬wall, step);

4. (⊤∗ · ¬Krvwall · fog∗ ·Krvwall, turnL);

5. (⊤∗ · ¬Krvwall · (fog∗ ·Krvwall)
2, turnR);

6. (⊤∗ · ¬Krvwall · (fog∗ ·Krvwall)
3, turnR);

7. (⊤∗, turnR).

That is, if fog is in the maze, the rover remains stationary until visibility improves. Upon
encountering an adversary, it promptly eliminates it. In the event of confronting a wall, the
rover initially attempts to turn left. If a wall persist in that direction, it iteratively turns right
until discovering an unobstructed pathway.

The complexity of the strategy is compl(σrv) = {11+5+6+19+31+43+2} = 117. Note
also that, if we add to the model an atomic proposition fog that labels all the “foggy” states,
we can use it instead of fog to specify the same behavior. This would reduce the complexity
of the strategy to {4 + 5 + 6 + 12 + 17 + 22 + 2} = 66.

Finally, we observe that a classic strategy may result in a very ineffective traversal of the
maze, i.e., the number of steps between the start and the exit can be large. Still, the natural
strategy above has two important advantages. First, it is much simpler – and therefore much
easier to store and use – than the combinatorial strategy that specifies the right choice for
every position of the rover. Secondly, it is general in the sense that it does not depend on the
actual shape of the labyrinth.
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2.3 Natural Strategies in ATL

Natural ATL (NatATL, for short) is obtained by replacing in ATL the modality ⟨⟨A⟩⟩ with the
bounded strategic modality ⟨⟨A⟩⟩≤k. Intuitively, ⟨⟨A⟩⟩≤kϕ reads as “coalition A has a collective
strategy of size less or equal than k to enforce the property ϕ.” As in ATL, the formulas of
NatATL make use of classical temporal operators: X (“in the next state”), G (“always from
now on”), F (“now or sometime in the future”), U (strong “until”), and W (weak “until”).

Thus, the language of NatATL can be defined by the following grammar:

φ ::= a | ¬φ | φ ∧ φ | ⟨⟨A⟩⟩≤kXφ | ⟨⟨A⟩⟩≤kφUφ | ⟨⟨A⟩⟩≤kφWφ

where A ⊆ Ag, k ∈ N, and a ∈ AP .
Given an iCGS M , a state s ∈ St, a path ρ, atom a ∈ AP , and k ∈ N, the semantics of

NatATL is defined as follows:

(M, s) |= a iff a ∈ L(s)
(M, s) |= ¬φ iff (M, s) ̸|= φ
(M, s) |= φ ∧ φ′ iff (M, s) |= φ and (M, s) |= φ′

(M, s) |= ⟨⟨A⟩⟩≤kXφ iff for some joint natural strategy σA,
such that compl(σA) ≤ k and,
for all path ρ ∈ out(s, σA), (M,ρ2) |= φ

(M, s) |= ⟨⟨A⟩⟩≤kφUφ′ iff for some joint natural strategy σA, such that
compl(σA) ≤ k and, for all path ρ ∈ out(s, σA),
(M,ρi) |= φ′ for some i ≥ 1 and
(M,ρj) |= φ for all 1 ≤ j < i

(M, s) |= ⟨⟨A⟩⟩≤kφWφ′ iff for some joint natural strategy σA, such that
compl(σA) ≤ k and, for all path ρ ∈ out(s, σA),
either (M,ρi) |= φ′ for some i ≥ 1 and (M,ρj) |= φ
for all 1 ≤ j < i or (M,ρi) |= φ for all i ≥ 1

Once again, we emphasize that when evaluating the formula ⟨⟨A⟩⟩≤kϕ, we do not assume
the opponents to play a natural strategy (bounded or otherwise). This corresponds to the
pessimistic approach to evaluating ability based on ’surely winning’: the agents in A win only
if they have a strategy that wins against every — even accidental — behavior of the rest of
the system.

2.3.1 Model Checking Results

We begin by showing the model checking of NatATL under the assumption that the complexity
bounds k used in formulas are constant or bounded. In other words, they are not a parameter
of the model checking problem. Under this restriction, one can show a polynomial reduction
to the model checking problem for CTL formulas. In consequence, we obtain the following
result.

Theorem 2.3.1 ([22, 23]). The model checking problem for NatATL with memoryless natural
strategies and fixed k is in PTIME with respect to the size of the model and the length of
the formula.
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For the general case, in which k is a variable of the problem, we need of an oracle for
each strategic operator involved in the formula. Thus, we can define a polynomial algorithm
that calls a non-deterministic algorithm that generates a natural strategy. In consequence, we
obtain the following result.

Theorem 2.3.2 ([22, 23]). The model checking problem for NatATL with memoryless natural
strategies is ∆P

2 -complete with respect to the size of the model, the length of the formula,
and the maximal bound k in the formula.

In the context of natural strategies with recall, when the bound of the strategies is fixed or
bounded by a constant, we can still use an oracle. This leads to the following result.

Theorem 2.3.3 ([22, 23]). The model checking problem for NatATL with natural strategies
with recall and fixed k is in ∆P

2 with respect to the size of the model and the length of the
formula.

Applying the same algorithm as proposed for the fixed k case to the general scenario with a
variable k would result in an exponential algorithm. Consequently, when analyzing the memory
space required to solve the algorithm, we arrive at the following outcome.

Theorem 2.3.4 ([22, 23]). The model checking problem for NatATL with natural strategies
with recall is in PSPACE with respect to the size of the model, the length of the formula,
and the maximal bound k in the formula.

Notice that, the above results hold for both perfect and imperfect information contexts.
Before concluding this chapter, we would like to clarify that unfortunately, our logic cannot

use the ATL model checking algorithm, which is in PTIME. This is because, with the ATL
fixed-point algorithm, we cannot determine the complexity of a strategy, which is the key
notion of the NatATL strategic operator. However, as mentioned at the beginning of this
chapter, the importance of introducing NatATL lies in the fact that in certain contexts where
there is a need to produce a compact strategy, using ATL model checking may not be sufficient.
In fact, verifying that a strategy exists but is not usable only gives us a false positive in the
verification process.
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Chapter 3

Specification: Logics in Cybersecurity

The logics outlined in this chapter have direct applications in the cybersecurity domain, partic-
ularly in the design of active security response strategies during ongoing attacks. Our models
facilitate the encapsulation of interactions between attackers, whose potential actions are
modeled using Attack Graphs [78], and defenders that can dynamically deploy Moving Target
Defense (MTD) mechanisms [79] based on these attack graphs.
Related Works. In recent years, some works have focused on the strategic abilities of agents
in dynamic game models. For instance, [80] addresses planning in a dynamic, but predictable,
environment. However, it does not allow agents to select specific subsets of successors, unlike
our approach. Additionally, [80] permanently removes edges, while our method only temporar-
ily deactivates them based on quantitative information. Sabotage games and Sabotage Modal
Logic [81, 82, 83] study the computational complexity of graph-reachability problems where
agents can erase edges. Our approach is incomparable with Sabotage games since we give
the ability to temporarily select subsets of edges while in Sabotage games the saboteur can
erase only one edge at each turn. In [84], NTL, a temporal logic for normative systems, is
introduced. NTL evaluates CTL formulas on models with deleted arcs, but the assignment
function is non-local and non-quantitative. Module checking [85, 86, 87] is also related to our
logic. Although there are similarities with our contribution, the approaches are orthogonal. In
our logics, each state is controlled by the environment (the Demon), and we seek a winning
strategy for the environment, not whether all strategies are winning.

The rest of this chapter is structured as follows. In Section 3.1, we introduce Obstruction
Logic (OL), an extension of CTL that allows an agent (the Demon) to modify the structure of
a model in a two-agent setting. Meanwhile, in Section 3.2, we present an extension of ATL,
called Obstruction Alternating-time Temporal Logic (OATL), which allows an agent to modify
the structure of a model in a multi-agent context. For both logics, we demonstrate that the
model checking complexity is polynomial, thereby showing that we increase expressiveness with
respect to CTL and ATL without incurring any additional computational costs.

3.1 Obstruction Logic

First of all, we present the syntax of our logic.

Definition 3.1.1. Formulas of Obstruction Logic (OL, for short) are defined by the following
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grammar:
φ ::= a | ¬φ | φ ∧ φ | ⟨⟨‡n⟩⟩Xφ | ⟨⟨‡n⟩⟩(φUφ) | ⟨⟨‡n⟩⟩(φRφ)

where a ∈ AP and n ∈ N.
The boolean and temporal connectives can be derived as usual. The intuitive meaning

of a formula ⟨⟨‡⟩⟩φ is “there is a demonic strategy such that all paths of the model that
are compatible with the strategy satisfy φ” where “demonic strategy” means a strategy for
disabling arcs. Formulas of OL will be interpreted over obstruction models. The definition
follows.

Definition 3.1.2. An Obstruction Model (OM) is a pair M‡ = ⟨M, $⟩, where M is a CGS
and $ : St×ACT → N+ is the (partial) cost function. Such function associates to any state
s and joint action α⃗ such that δ(s, α⃗) is defined, a positive natural number $(s, α⃗).

Our logic is designed to encompass strategies for obstruction models in which one of the two
agents, referred to as the Demon, possesses the ability to temporarily deactivate arcs within
the model. Specifically, given a history h, a demonic strategy selects a subset of arcs adjacent
to last(h), ensuring that the sum of their weights does not exceed a predefined threshold.
The arcs chosen by the demonic strategies are then temporarily removed from the set of arcs
available for selection by the other agent. In this manner, the structure of the OM is altered
by the actions of the Demon. We formally define the notion of a demonic strategy as follows.

Definition 3.1.3. Let n ∈ N be a natural number, a demonic n-strategy is a function σ‡ :
St+ → 2ACT that given an history h, returns a subset of joint actions AC ∈ ACT such that:

1. for each α⃗ ∈ AC, for each i ∈ Ag, α⃗i ∈ P(i, last(h));

2. (
∑

α⃗∈AC $(last(h), α⃗)) ≤ n.

As it happens for the logic ATL, the notion of path that is compatible with a strategy, is
the central pivot of the semantic of OL formulas. We define this notion by saying that: a
path ρ is compatible with a n-strategy σ‡ if for all i ≥ 1 we have that δ(ρi, α⃗) = ρi+1 implies
α⃗ /∈ σ‡(ρ≤i). Given a state s and a n-strategy σ‡, Out(s, σ‡) denotes the set of paths whose
first state is s and that are compatible with σ‡. We can now define the semantics of OL
formulas.

Definition 3.1.4. The satisfaction relation between a model M‡, a state s of M‡, and a
formula φ is defined by induction on the structure of φ:

(M‡, s) |= a iff a ∈ L(s)
(M‡, s) |= ¬φ iff (M‡, s) ̸|= φ
(M‡, s) |= φ ∧ φ′ iff (M‡, s) |= φ and (M‡, s) |= φ′

(M‡, s) |= ⟨⟨‡n⟩⟩Xφ iff for some n-strategy σ‡, for all ρ ∈ Out(s, σ‡), (M‡, ρ2) |= φ
(M‡, s) |= ⟨⟨‡n⟩⟩(φUφ′) iff for some n-strategy σ‡, for all ρ ∈ Out(s, σ‡) there is a

j ≥ 1, (M‡, ρj) |= φ′ and for all 1 ≤ k < j, (M‡, ρk) |= φ
(M‡, s) |= ⟨⟨‡n⟩⟩(φRφ′) iff for some n-strategy σ‡, for all ρ ∈ Out(s, σ‡) either

(M‡, ρi) |= φ′ for all i ≥ 1 or there is a k ≥ 1,
(M‡, ρk) |= φ and (M‡, ρj) |= φ′ for all 1 ≤ j ≤ k

In [50], we demonstrate that the fixed-point characterization for temporal operators also
holds in OL, and consequently, we can produce an algorithm that is an extension of CTL,
yielding the following result.
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Theorem 3.1.1 ([50]). The model checking problem for OL is PTIME-complete.

3.2 Obstruction Alternating-time Temporal Logic

First, we now introduce the syntax of this new logic.

Definition 3.2.1. State φ and path ψ formulas of Obstruction Alternating-time Temporal
Logic (OATL, for short) are defined by the following grammar:

φ ::= a | ¬φ | φ ∧ φ | ⟨⟨A‡
n⟩⟩ψ

ψ ::= Xφ | φUφ | φRφ
where a ∈ AP , A is any subset of Ag, and n ∈ N.

Formulas of OATL are all and only the state formulas.
As for OL, an obstruction model is a CGS provided with a function that assigns a cost (a

positive natural number) to any pair composed of a state and a joint action that defines a
transition from the given state. Thus, a model is a labeled, directed weighed graph. Now, we
have all the ingredients to provide the semantics of OATL.

Definition 3.2.2. The satisfaction relation (M‡, s) |= φ between an obstruction model M‡,
a state s of M‡, and a state formula φ is defined as follows:

(M‡, s) |= a iff a ∈ L(s)
(M‡, s) |= ¬φ iff (M‡, s) ̸|= φ
(M‡, s) |= φ ∧ φ′ iff (M‡, s) |= φ and (M‡, s) |= φ′

(M‡, s) |= ⟨⟨A‡
n⟩⟩ψ iff for some demonic n-strategy σ‡, for all strategies σA

if Out(s, σ‡) ∩ out(s, σA) ̸= ∅, then
there is a ρ ∈ Out(s, σ‡) ∩ out(s, σA), (M‡, ρ) |= ψ

The satisfaction relation (M‡, ρ) |= φ between a model M‡, a path ρ of M‡, and path formula
ψ is defined as follows:

(M‡, ρ) |= Xφ iff (M‡, ρ2) |= φ
(M‡, ρ) |= φUφ′ iff there is an i ≥ 1, (M‡, ρi) |= φ′ and

(M‡, ρj) |= φ for all 1 ≤ j < i
(M‡, ρ) |= φRφ′ iff either (M‡, ρi) |= φ′ for all i ≥ 1 or there is a k ≥ 1,

(M‡, ρk) |= φ and (M‡, ρj) |= φ′ for all 1 ≤ j ≤ k

The idea behind the strategic operator is to existentially quantify over the Demon’s strat-
egy, universally over the strategies of the other agents (who, from the Demon’s perspective,
are adversaries), and finally to existentially quantify over the paths. Note that the last two
quantifications are semantically equivalent to the universal operator of ATL. We made this
choice to be able to verify if there exists a strategy for the Demon against all those of the
other agents. Furthermore, we remark that since any demonic n-strategy can select only a
strict subset of the set of joint actions available at last(h) for a given history h, we can never
have that Out(σ‡, s) ∩ out(σA, s) = ∅ for every strategy σA.

As shown for OL, we can also find the fixed-point characterization for OATL, and thus
demonstrate the following result.

Theorem 3.2.1 ([51]). The model-checking problem for OATL is PTIME-complete.
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3.3 Use Case Scenario in Cybersecurity

To conclude this chapter, we show a toy example1 of how obstruction logics are useful for
defining properties in the context of cybersecurity.

In a wireless network scenario involving three users (referred to as Alice, Bob, and David),
each user has the capability to alter their status within the network, including their position
and granted privileges. These modifications can be accomplished either through legitimate
requests to the network or through malicious attacks. Among the users, two (Alice and Bob,
forming coalition C) are malicious and aim to compromise the network’s integrity. Their
objective is to orchestrate a situation where Alice obtains root access on a specific network
server, Bob gains root access on another server, and David successfully requests and obtains a
specific resource from the network. At each moment, Alice and Bob have the option to either
remain inactive (⋆) or execute an attack on the network to obtain root privileges on their
desired server (att). David, on the other hand, can choose to either make a specific request
(reqi) to the network or take no action (⋆). Let ra be the atomic proposition expressing that
Alice is root of the needed server, rb be the atomic proposition expressing that Bob is root of
the needed server, and that g1 and g2 be the atomic proposition expressing the fact that David
has been granted access to resources 1 and 2, respectively. Given these premises, a possible
interaction between Alice, Bob, and David is depicted in the model M‡ of Figure 3.1.

Figure 3.1: A model M‡ depicting the considered attack scenario. The symbol ⋆ stands for {⋆, ⋆, ⋆}.

In the given scenario, let’s suppose there is an intelligent agent, referred to as the defender,
capable of temporarily blocking the collective actions of users. Blocking these actions incurs
specific costs, which may vary depending on the nature of each user’s action. For instance,
considering Figure 3.1, joint actions corresponding to blue edges have a cost of 1, black edges
have a cost of 2, and red edges have a cost of 3. Given an initial state s0 in the model, the
question is whether there exists a strategy for the defender such that, for any strategy adopted
by coalition C (Alice and Bob), there is at least one scenario where Alice and Bob are never in

1Examples of such real case studies, at least for the attack part, can be found in [88].
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a position to launch the fatal attack. By using OATL, we can express this property as follows:

φ = ⟨⟨C‡
n⟩⟩(⊥R¬(ra ∧ rb ∧ g1))

Clearly, with φ we can determine whether there exists a winning strategy for the coalition C
to compromise the network. In particular, if the formula holds, it means that coalition C does
not have a winning strategy, whereas if φ turns out to be false, then coalition C has a winning
strategy to attack the network regardless of any countermeasure the defender may take. On
our example, the truth value of the formula φ is determined by the value n. In particular, the
minimum n for which ⟨⟨C‡

n⟩⟩(⊥R¬(ra ∧ rb ∧ g1)) holds is 3. In fact, the 3-demonic strategy
σ‡ selecting the joint action α⃗ such that α⃗Alice = ⋆, α⃗Bob = ⋆ and α⃗David = req1 given any
history h where last(h) = s0, is a good candidate. Indeed, the set of paths in Out(s0, σ‡)
contains s0 · sω1 and s0 · sω3 , and the strategies σC such that Out(s0, σ‡)∩Out(s0, σC) ̸= ∅ are
those in which Alice and Bob both choose att on s0. For all these strategies, there is a path
(i.e., s0 · sω1 ) that satisfies ⊥R¬(ra ∧ rb ∧ g1).
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Chapter 4

Verification: Decidable Fragments

As mentioned in the introduction, the model checking problem of ATL with imperfect infor-
mation and memoryfull strategies is undecidable in general. In this chapter, we will present
sound but incomplete approximation methods that allow us to make fragments of this problem
decidable. In particular, in Section 4.1, we present an abstraction-refinement method related
to agent information. In Section 4.2, we focus on the other problem that makes model check-
ing for ATL undecidable, namely the memory of strategies. In particular, we show a method
to approximate perfect recall strategies through bounded recall strategies. Finally, in Section
4.3, we present another approach in which model abstraction and formula approximation are
used to find the decidability.
Related Works. Several approaches for verifying specifications in ATL under imperfect in-
formation and perfect recall have been proposed recently. One line restricts how information
is shared among agents to retain decidability [89]. Another line limits interactions to pub-
lic actions only [90, 91]. These approaches differ from ours as they seek decidable classes,
whereas we define a general verification procedure for the whole class of iCGS. An abstraction-
refinement framework for CTL over three-valued semantics was studied in [92, 93] and hierar-
chical systems are considered in [94]. [95] introduces an abstraction-refinement technique for
full µ-calculus. [96] and [97] present abstraction-refinement for network games with perfect in-
formation and two-player games, respectively. [98] studies games with incomplete information
for safety goals, using abstraction and refinement to transform imperfect information games
into perfect information ones. Model checking MAS by abstraction in an epistemic context
is discussed in [99, 100]. Three-valued abstractions for verifying ATL properties are found
in [101, 102, 20, 103]. These methods focus on decidable settings, interpreting ATL under
perfect information [101, 92] or considering non-uniform strategies [102, 20, 103], aiming to
speed up verification tasks. Finally, in [104], a multi-valued semantics for ATL∗ is presented
as a conservative extension of the classical two-valued variant, addressing the model checking
problem for perfect information games and providing results for imperfect information games.

4.1 Approximate the information

At the core of our contribution is the notion that, within a three-valued semantics framework,
MAS with imperfect information can be effectively approximated by perfect information sys-
tems. This abstraction process empowers us to devise a robust yet incomplete verification
procedure for the strategy logics ATL and ATL∗, operating under conditions of imperfect in-
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formation and perfect recall. In essence, given an iCGS representing a MAS, we construct a
perfect information abstraction that preserves satisfaction for a three-valued variant of ATL∗.
As we will show, if the ATL∗ specification holds true (or false) in the perfect information ab-
straction, it similarly holds true (or false) in the original iCGS. Conversely, if the specification
remains undefined, we have the opportunity to refine the abstraction in pursuit of assigning it
a defined truth value. It is important to acknowledge that the original model checking problem
is undecidable. Therefore, there is no guarantee that by successive refinements, the truth or
falsity of a given property can ever be fully established in a general context. However, the
procedure we have outlined offers a constructive method for partially model checking ATL∗

under conditions of imperfect information and perfect recall. This approach enables us to
make progress towards verifying properties of MAS, even though complete verification may
not always be attainable.

4.1.1 Three-valued semantics

Here, we introduce a generalization of iCGS in terms of over- and under-approximations. Then,
we develop a three-valued semantics for ATL∗, and show that it conservatively extends the
two-valued semantics presented in the preliminaries. In the rest of the section, for x = may
(resp. must), we set x = must (resp. may).

Definition 4.1.1. Given sets Ag of agents and AP of atoms, a generalized iCGS is a tuple
M = ⟨St, sI , {Acti}i∈Ag, {∼i}i∈Ag,Pmay ,Pmust , δmay , δmust ,L⟩ such that:

1. St, sI , {Acti}i∈Ag, {∼i}i∈Ag are defined as in Definition 1.2.1.

2. Pmay and Pmust are protocol functions from Ag × St to 2Act \ ∅ such that for every
i ∈ Ag and s ∈ St, (i) Pmust(i, s) ⊆ Pmay(i, s) ⊆ Acti and (ii) s ∼i s

′ implies
Px(i, s) = Px(i, s′).

3. δmay and δmust are transition relations on St × ACT × St such that s′ ∈ δx(s, α⃗) is
defined for some s′ ∈ St only if α⃗i ∈ Px(i, s) for every i ∈ Ag. Moreover, δmust(s, α⃗) ⊆
δmay(s, α⃗).

4. L : St× AP → {⊤,⊥, uu} is a three-valued labelling function.

Intuitively, must-components are more stringent than may-components: must-transitions
can be seen as under-approximations of the actual transitions in the iCGS, while may-
transitions can be considered as over-approximations. The undefined value uu can be in-
terpreted in various ways, for instance, unknown, unspecified, or inconsistent, depending on
the application at hand. We say that the truth value τ is defined whenever τ ̸= uu. In the
case that under- and over-approximations coincide, i.e., Pmay = Pmust and δmay = δmust are
functions, and the truth value of every atom is defined, then we have a standard iCGS as per
Definition 1.2.1. On the other hand, if each equivalence relation ∼i is the identity, then we
have a generalized CGS.

Now, we introduce must- and may-strategies.

Definition 4.1.2. For x ∈ {may ,must}, a uniform x-strategy with perfect recall for agent
i ∈ Ag is a function σx

i : St+ → Acti such that for every history h, h′ ∈ St+, (i) σx
i (h) ∈

Px(i, last(h)); and (ii) h ∼i h
′ implies σx

i (h) = σx
i (h

′).
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Here we distinguish between may and must strategies to over- and under-approximate the
strategic abilities of agents. Again, the distinction collapses in the case of standard (two-
valued) iCGS.

For x ∈ {may ,must} and a joint strategy σx
A = {σx

i | i ∈ A}, a path ρ ∈ Stω is σx
A-

compatible iff for every j ≥ 1, ρj+1 = δx(ρj, α⃗) for some joint action α⃗ such that for every
i ∈ A, α⃗i = σx

i (ρ≤j), and for every i /∈ A, α⃗i ∈ Px(i, ρj). Then, out(s, σ
x
A) is the set of all σ

x
A-

compatible paths starting from s. Intuitively, when computing the outcomes of a joint strategy
σmust
A from state s, we take a “conservative” approach regarding the abilities of agents in A.

This involves considering only actions enabled according to the under-approximated protocol
Pmust , while maintaining an “optimistic” stance about the capabilities of agents in A, as
provided by the over-approximated protocol Pmay and transition δmay functions. Conversely,
for out(s, σmay

A ), the reasoning is reversed. However, since σmay
A returns may-actions and

paths in out(s, σmay
A ) are generated by considering the δmust -transitions, out(s, σmay

A ) may
turn out to be empty. In such cases, according to the definition of the semantics below, the
formula will be undefined.

Formally we define the three-valued semantics for ATL∗ as follows.

Definition 4.1.3. The three-valued satisfaction relation |=3 for an iCGS M , state s ∈ St,
path ρ ∈ Stω, atom a ∈ AP , τ ∈ {⊤,⊥}, state formula φ, and path formula ψ is defined as
follows:

((M, s) |=3 a) = τ iff L(s, a) = τ
((M, s) |=3 ¬φ) = τ iff ((M, s) |=3 φ) = ¬τ
((M, s) |=3 φ ∧ φ′) = ⊤ iff ((M, s) |=3 φ) = ⊤ and ((M, s) |=3 φ

′) = ⊤
((M, s) |=3 φ ∧ φ′) = ⊥ iff ((M, s) |=3 φ) = ⊥ or ((M, s) |=3 φ

′) = ⊥
((M, s) |=3 ⟨⟨A⟩⟩ψ) = ⊤ iff for some joint strategy σmust

A ,
for all paths ρ ∈ out(s, σmust

A ), ((M,ρ) |=3 ψ) = ⊤
((M, s) |=3 ⟨⟨A⟩⟩ψ) = ⊥ iff for every joint strategy σmay

A ,
for some path ρ ∈ out(s, σmay

A ), ((M,ρ) |=3 ψ) = ⊥
((M,ρ) |=3 φ) = τ iff ((M,ρ1) |=3 φ) = τ
((M,ρ) |=3 ¬ψ) = τ iff ((M,ρ) |=3 ψ) = ¬τ
((M,ρ) |=3 ψ ∧ ψ′) = ⊤ iff ((M,ρ) |=3 ψ) = ⊤ and ((M,ρ) |=3 ψ

′) = ⊤
((M,ρ) |=3 ψ ∧ ψ′) = ⊥ iff ((M,ρ) |=3 ψ) = ⊥ or ((M,ρ) |=3 ψ

′) = ⊥
((M,ρ) |=3 Xψ) = τ iff ((M,ρ≥2) |=3 ψ) = τ
((M,ρ) |=3 ψUψ

′) = ⊤ iff for some k ≥ 1, ((M,ρ≥k) |=3 ψ
′) = ⊤, and

for all j, 1 ≤ j < k implies ((M, p≥j) |=3 ψ) = ⊤
((M, p) |=3 ψUψ

′) = ⊥ iff for all k ≥ 1, ((M, p≥k) |=3 ψ
′) = ⊥, or

for some j ≥ 1, ((M, p≥j) |=3 ψ) = ⊥, and
for all j′, 1 ≤ j′ ≤ j implies ((M, p≥j′) |=3 ψ

′) = ⊥

In all other cases the value of ϕ is uu.

Observe that, in the clauses for ATL∗ operators must-strategies are used to check the truth
of formulas, while may-strategies appear in the clauses for falsehood. Specifically, to check
whether ((M, s) |=3 ⟨⟨A⟩⟩ψ) = ⊤ we consider all paths in out(s, σmust

A ), which are defined
by δmay -transitions. This restricts the choices available to coalition A, while increasing the
number of paths in which the formula needs to be satisfied. Similarly, to verify whether
((M, s) |=3 ⟨⟨A⟩⟩ψ) = ⊥ we need to use δmust -transitions over the paths in out(s, σmay

A ), so
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as to decrease the number of candidates witnessing the falsehood of the formula. Notice also
that, as regards Boolean operators, our semantics correspond to Kleene’s three-valued logic.

By the following lemma we show that the three-valued semantics for ATL∗ is a conservative
extension of its two-valued semantics, as the two coincide whenever we consider standard iCGS
with defined atoms.

Lemma 4.1.1 ([14]). Let M be a standard iCGS, that is, Pmay = Pmust , δmay = δmust are
functions, and the truth value of every atom is defined (i.e., it is equal to either ⊤ or ⊥).
Then, for every formula ϕ in ATL∗,

((M, s) |=3 ϕ) = ⊤ ⇔ (M, s) |= ϕ (4.1)

((M, s) |=3 ϕ) = ⊥ ⇔ (M, s) ̸|= ϕ (4.2)

Thus, it immediately follows that model checking ATL∗ formulas under the three-valued
semantics, with imperfect information and perfect recall is also undecidable.

However, for perfect information we can show the following.

Theorem 4.1.1 ([14]). The model checking problem for generalized CGS (with perfect infor-
mation) is 2EXPTIME-complete for ATL∗ and PTIME-complete for ATL.

4.1.2 Abstraction

We now proceed to define perfect information, three-valued abstractions for iCGS. Subse-
quently, we demonstrate that defined truth values for ATL∗ formulas transfer from these
abstractions to the original iCGS with imperfect information. Given that the model checking
problem on the abstractions is decidable (as per Theorem 4.1.1), this preservation result can
serve as the foundation for establishing a sound, albeit partial, verification procedure under
imperfect information and perfect recall.

To begin with, given a coalition A ⊆ Ag of agents, we define the common knowledge
relation∼C

A as the reflexive and transitive closure (
⋃

i∈A ∼i)
∗ of the union of indistinguishability

relations ∼i for i ∈ A [6]. That is, s ∼C
A s

′ iff s′ is reachable from s by a sequence s1, . . . , sn
of states such that (i) s1 = s, (ii) sn = s′, and (iii) for every j < n, sj ∼i sj+1 for some
i ∈ A. Clearly, ∼C

A is an equivalence relation. Now, let [s]A = {s′ ∈ St | s′ ∼A s} be
the equivalence class of s according to ∼A. The relation ∼C

A is extended to histories in a
synchronous, pointwise way, i.e., given h, h′ ∈ St+, h ∼C

A h′ iff (i) |h| = |h′| and (ii) for all
j ≤ |h|, hj ∼C

A h
′
j. So, we introduce the notation [h]A = {h′ ∈ St+ | h′ ∼C

A h}.
Definition 4.1.4. Given an iCGS M and a coalition A ⊆ Ag, the abstract (generalized) CGS
MA = ⟨StA, [sI ]A, {Acti}i∈Ag,Pmay

A ,Pmust
A , δmay

A , δmust
A ,LA⟩ is defined as follows:

1. StA = {[s]A | s ∈ St} is the set of equivalence classes for all states s ∈ St, with initial
state [sI ]A;

2. for every t, t′ ∈ StA and joint action α⃗, t′ ∈ δmay
A (t, α⃗) iff for some s ∈ t and s′ ∈ t′,

δ(s, α⃗) = s′;

3. for every t, t′ ∈ StA and joint action α⃗, t′ ∈ δmust
A (t, α⃗) iff for all s ∈ t there is s′ ∈ t′

such that δ(s, α⃗) = s′;

4. for x ∈ {may ,must}, t ∈ StA, and i ∈ Ag, Px
A(i, t) = {α⃗i ∈ Acti | δxA(t, (α⃗i, α⃗i))

is defined for some tuple of actions α⃗i};
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5. for τ ∈ {⊤,⊥}, a ∈ AP , and t ∈ StA, LA(t, a) = τ iff L(s, a) = τ for all s ∈ t;
otherwise, LA(t, a) = uu.

We now show that the abstraction of an iCGS is indeed a generalized CGS as defined in
Definition 4.1.1. In particular, the indistinguishability relation for every i ∈ Ag is assumed to
be the identity relation.

Lemma 4.1.2 ([14]). For every coalition A ⊆ Ag, any abstraction MA of an iCGS M is a
generalized CGS.

By next result, if an A-formula has a defined truth value in an abstract CGS MA, built on
an iCGS M , then the A-formula has the same truth value in M .

Theorem 4.1.2 ([14]). Given an iCGSM , state s, and coalition A ⊆ Ag, for every A-formula
ϕ in ATL∗, we have that

((MA, [s]A) |=3 ϕ) = ⊤ ⇒ (M, s) |= ϕ (4.3)

((MA, [s]A) |=3 ϕ) = ⊥ ⇒ (M, s) ̸|= ϕ (4.4)

4.1.3 Refinement

As stated in Theorem 4.1.2, if a formula is undefined on MA, then no definitive conclusion
can be drawn regarding the model checking problem for M . In this section, we provide a
brief overview of the refinement procedure and its impact on the verification process, inspired
by the concept of a ”failure” state sf as outlined in [14]. This procedure takes sf as input
and returns a refined CGS M r

A. Intuitively, our procedure looks at incoming transitions into
sf . For concrete states s and s′ in sf , if the A-component of actions ending respectively
in s and s′ are different, any uniform strategy for A will visit either s or s′. As a result,
the abstract state sf can be split “safely” into an s- and an s′-component. We iterate this
process until we analyze all possible relationships between concrete states in sf with the goal
of finding a partition that divides the failure state sf in two new abstract states v and w while
respecting the uniformity of the coalition A. If successful, the state space M r

A is the state
space MA minus the failure state sf plus the two new abstract states v and w created, that is
StrA = (StA \ {sf}) ∪ {v, w}. Given this new state space, we can construct the refined CGS
M r

A following the same construction rules as shown in Definition 4.1.4 for MA. Note that if
it is not possible to split the failure state sf in a way that respects the uniformity of agents
in the coalition A, our procedure cannot produce a refined CGS M r

A different from MA, and
consequently terminates the verification process with an undefined value.

Given the high-level idea of our refinement procedure, we now show that must strategies
respect uniformity on the set of their outcomes in refined CGS. First of all, note that given a
path ρ in a refined CGS M r

A, we can construct at least one path ρ′ in its concrete CGS M
such that for all i ≥ 1, ρ′i ∈ ρi. Since we could potentially construct multiple paths from ρ,
we denote by ρ′ ∈ ρ a concrete path ρ′ from ρ. Now, we have all the ingredients to present
the following result.

Lemma 4.1.3 ([14]). Given a refined CGS M r
A, for every joint strategy σmust

A , for all ρ, ρ̂ ∈
out(t, σmust

A ), all ρ′ ∈ ρ, ρ̂′ ∈ ρ̂, and all i ∈ A, j ∈ N, if ρ′≤j ∼i ρ̂
′
≤j then σmust

i (ρ≤j) =
σmust
i (ρ̂≤j).
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By Lemma 4.1.3 we can prove the main preservation result of this section. In particular,
the lemma is used in the inductive step for strategy operators.

Theorem 4.1.3 ([14]). Given an iCGS M , state s, coalition A, its abstract CGS MA with
refinement M r

A, and state srA ∋ s, for every A-formula ϕ in ATL∗,

((M r
A, s

r
A) |=3 ϕ) = ⊤ ⇒ (M, s) |= ϕ (4.5)

((M r
A, s

r
A) |=3 ϕ) = ⊥ ⇒ (M, s) ̸|= ϕ (4.6)

Then, we can conclude with the complexity of our procedure.

Theorem 4.1.4 ([14]). Our procedure terminates in 2EXPTIME if φ is in ATL∗, in PTIME
if φ is in ATL.

It is important to note that our procedure may not always terminate with a defined truth
value. The model checking problem for ATL (and by extension, for ATL∗) in the context
of imperfect information and perfect recall is undecidable in general. Thus, our procedure is
designed to be a sound, albeit partial, verification algorithm.

4.2 Approximate the memory of the strategies

In this contribution, we introduce a novel three-valued semantics for ATL∗ under bounded re-
call, which encompasses perfect recall as well as a limit case. We investigate the corresponding
model checking problem and explore the formal properties of three-valued ATL∗ in compar-
ison to the traditional, two-valued semantics. Our key finding is that bounded recall serves
as a provably sound approximation of perfect recall in terms of verification. Building upon
these theoretical findings, we establish the groundwork for a verification procedure for model
checking MAS under imperfect information and perfect recall. This procedure involves itera-
tively checking bounded recall versions of the same MAS in the three-valued semantics, with
increasing levels of memory. While the algorithm may not provide complete results in all cases,
we demonstrate that assuming a bound on recall enables termination within EXPTIME.

First of all, given St<n representing the set of histories of length less than or equal to n,
we provide the formal definition of bounded recall strategy.

Definition 4.2.1. For n ∈ N+ ∪ {ω}, a uniform strategy with n-bounded recall for agent
i ∈ Ag is a function σn

i : St<1+n → Acti such that for all histories h, h′ ∈ St<1+n, (i)
σn
i (h) ∈ P(i, last(h)); and (ii) h ∼i h

′ implies σn
i (h) = σn

i (h
′).

The semantics of ATL∗ with n-bounded recall strategies is the same as in Definition 1.2.4
but replacing “|=” with “|=n” and “strategy” with “n-bounded recall strategy”.

Now, we show the model checking problem for bounded recall within the two-valued se-
mantics, defined as follows.

Definition 4.2.2. The bounded model checking problem concerns determining whether, given
an iCGS M , ATL∗ formula ϕ, bound n ∈ N+ ∪ {ω}, truth value τ ∈ {⊤,⊥}, it is the case
that (M |=n ϕ) = τ .

Based on the definition provided above, in [10, 11], we establish that model checking ATL∗

with perfect recall (i.e., for n = ω) and imperfect information is undecidable. Conversely,
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model checking ATL∗ with bounded recall and imperfect information is shown to be decidable.
This decidability result forms the foundation for a partial model checking procedure for perfect
recall, which involves incrementally increasing the bound n on the memory of agents. However,
as demonstrated below, increasing memory only preserves relatively limited fragments of ATL∗

and may, therefore, be of limited interest.

Lemma 4.2.1 ([11]). Let m,n ∈ N+ ∪ {ω} be such that m ≤ n; let ψ be an existential and
ϕ an universal formula in ATL∗. Then,

(M, s) |=m ψ ⇒ (M, s) |=n ψ (4.7)

(M, s) ̸|=m ϕ ⇒ (M, s) ̸|=n ϕ (4.8)

By Lemma 4.2.1 adding memory preserves the truth of existential formulas as well as
falsehood of universal formulas. However, it is not difficult to find counterexamples to the
extensions of (4.7) and (4.8) even in ATL.

Lemma 4.2.2 ([11]). Let m,n ∈ N+ ∪ {ω} be such that m < n. There exists formulas φ
and φ′ = ¬φ in ATL such that

(M, s) ̸|=m φ and (M, s) |=n φ (4.9)

(M, s) |=m φ′ and (M, s) ̸|=n φ′ (4.10)

By Lemmas 4.2.1 and 4.2.2 any naive attempt to approximate perfect recall by increasing
bounded recall is severely restricted in two ways. Firstly, Lemma 4.2.1 holds only for the
existential and universal fragments of ATL∗. Secondly, only the truth of existential formulas
is preserved by adding memory, whereas negative results can only be lifted for the universal
fragment. For this reason, we introduce a three-valued semantics to overcome these difficulties.

Definition 4.2.3. Let n ∈ N+ ∪ {ω}. The three-valued satisfaction relation |=n
3 for an iCGS

M , state s, path ρ, ATL∗ formula ϕ, and τ ∈ {⊤,⊥} is defined as follows, where ¬⊤ = ⊥
and ¬⊥ = ⊤:

((M, s) |=n
3 a) = τ iff L(s, a) = τ

((M, s) |=n
3 ¬φ) = τ iff ((M, s) |=n

3 φ) = ¬τ
((M, s) |=n

3 φ ∧ φ′) = ⊤ iff ((M, s) |=n
3 φ) = ⊤ and ((M, s) |=n

3 φ
′) = ⊤

((M, s) |=n
3 φ ∧ φ′) = ⊥ iff ((M, s) |=n

3 φ) = ⊥ or ((M, s) |=n
3 φ

′) = ⊥
((M, s) |=n

3 ⟨⟨A⟩⟩ψ) = ⊤ iff for some σn
A, for all ρ ∈ out(s, σn

A), ((M,ρ) |=n
3 ψ) = ⊤

((M, s) |=n
3 ⟨⟨A⟩⟩ψ) = ⊥ iff for some σn

Ā
, for all ρ ∈ out(s, σn

Ā
), ((M,ρ) |=n

3 ψ) = ⊥
((M,ρ) |=n

3 φ) = τ iff ((M,ρ1) |=n
3 φ) = τ

((M,ρ) |=n
3 ¬ψ) = τ iff ((M,ρ) |=n

3 ψ) = ¬τ
((M,ρ) |=n

3 ψ ∧ ψ′) = ⊤ iff ((M,ρ) |=n
3 ψ) = ⊤ and ((M,ρ) |=n

3 ψ
′) = ⊤

((M,ρ) |=n
3 ψ ∧ ψ′) = ⊥ iff ((M,ρ) |=n

3 ψ) = ⊥ or ((M,ρ) |=n
3 ψ

′) = ⊥
((M,ρ) |=n

3 Xψ) = τ iff ((M,ρ≥2) |=n
3 ψ) = τ

((M,ρ) |=n
3 ψUψ

′) = ⊤ iff for some k ≥ 1, ((M,ρ≥k) |=n
3 ψ

′) = ⊤, and
for all j, 1 ≤ j < k implies ((M,ρ≥j) |=n

3 ψ) = ⊤
((M,ρ) |=n

3 ψUψ
′) = ⊥ iff for all k ≥ 1, either ((M,ρ≥k) |=n

3 ψ
′) = ⊥

or for some j, 1 ≤ j < k and ((M,ρ≥j) |=n
3 ψ) = ⊥

In all other cases the value of ϕ is undefined (uu).
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As for the two-valued case, in [10, 11] we show that model checking ATL∗ for tree-valued
semantics with perfect recall (i.e., for n = ω) and imperfect information is undecidable while
model checking ATL∗ with bounded recall and imperfect information is decidable. Our aim
in the rest of this section is to lay the theoretical foundations of a (partial) model checking
procedure that is able to deal with the whole of ATL∗. To this end, the next result, which is akin
to Lemma 4.2.1, details the preservation of ATL∗ formulas when adding memory. However,
differently from Lemma 4.2.1, this result holds for all ATL∗ formulas.

Lemma 4.2.3. Let m,n ∈ N+∪{ω} be such that m ≤ n; let ϕ be a formula in ATL∗. Then,

((M, s) |=m
3 ϕ) = ⊤ ⇒ ((M, s) |=n

3 ϕ) = ⊤ (4.11)

((M, s) |=m
3 ϕ) = ⊥ ⇒ ((M, s) |=n

3 ϕ) = ⊥ (4.12)

By Lemma 4.2.3 adding memory preserves defined truth values for all formulas in ATL∗.
This is in marked contrast with Lemma 4.2.1. Indeed, even though in some cases the value
of an ATL∗ formula may be undefined in the three-valued semantics, whenever it is defined,
it does not change if memory is added.

Now, we have all the elements to conclude our main result on the relationship between
bounded recall and the two-and three-valued semantics.

Lemma 4.2.4. Let m,n ∈ N+∪{ω} be such that m ≤ n; let ϕ be a formula in ATL∗. Then,

((M, s) |=m
3 ϕ) = ⊤ ⇒ (M, s) |=n ϕ (4.13)

((M, s) |=m
3 ϕ) = ⊥ ⇒ (M, s) |=n ϕ (4.14)

We can conclude this section with a partial decision procedure for model checking ATL∗

under the assumptions of imperfect information and n-bounded recall. It is partial, as it is not
guaranteed to terminate for the case of perfect recall, that is, for n = ω. This procedure is
described in algorithm Iterative MC(M,ϕ, n).

Algorithm 1 Iterative MC(M,ϕ, n)

1: j = 1, k = uu;
2: while j ≤ n and k = uu do
3: if MC3(M,ϕ, j,⊤) then k = ⊤
4: else if MC3(M,ϕ, j,⊥) then k = ⊥
5: end if
6: j = j + 1;
7: end while
8: if k ̸= uu then return (j, k);
9: else return -1;

10: end if

It takes as input an iCGSM , an ATL∗ formula ϕ, and a bound n ∈ N+∪{ω}. It comprises
a while-loop (lines 2-7), which checks whether the bound has not yet been reached (j < n)
and ϕ has not yet been decided (k = uu). Within the loop, the formula ϕ is model-checked in
M according to the three-valued semantics using the subroutine MC3(), and the result is stored
in variable k. Upon exiting the loop, variable k is examined (line 8). If k ̸= uu, it indicates
that the loop was exited due to a defined answer for the three-valued model checking problem
with j-bounded recall (and possibly the bound n was reached). By Lemma 4.2.4, we can then
transfer the returned value to the corresponding model checking problem for the two-valued

30



Algorithm 2 MC3(M, ⟨⟨A⟩⟩ϕ, n, τ)
1: if τ = ⊤ then return M |=n ⟨⟨A⟩⟩ϕ
2: else if τ = ⊥ then return M |=n ⟨⟨Ā⟩⟩¬ϕ
3: else
4: if τ = uu and M |=n ⟨⟨A⟩⟩ϕ ∨M |=n ⟨⟨Ā⟩⟩¬ϕ then return ⊥
5: else return ⊤
6: end if
7: end if

semantics. Conversely, if k = uu, it signifies that the bound has been reached in the loop, and
the default value −1 is returned to indicate termination without a defined truth value. We
will now demonstrate the termination of the algorithm for n ∈ N+, as well as its soundness.

Theorem 4.2.1 ([11]). For n ∈ N+, Iterative MC() terminates in EXPTIME. Moreover,
Iterative MC() is sound: if the value returned is different from −1, then M |=n ϕ iff k = ⊤
and M ̸|=n ϕ iff k = ⊥.

An important application of Iterative MC() is for n = ω, namely model checking perfect
recall. In such a case termination is no longer guaranteed, but soundness is.

Theorem 4.2.2 ([11]). For n = ω, Iterative MC() does not necessarily terminate. However,
Iterative MC() is sound: if the value returned is different from -1, then M |=n ϕ iff k = ⊤
and M ̸|=n ϕ iff k = ⊥.

4.3 Approximate the model and logic

In this section, we introduce another technique to approximate the verification of ATL∗ under
imperfect information and perfect recall, a problem known to be undecidable. Our approach
involves generating sub-models of the original model M , wherein each sub-model M ′ satisfies
a sub-formula φ′ of φ, and the verification of φ′ in M ′ is decidable. We then leverage CTL∗

model checking to obtain a verification result of φ onM . We demonstrate that our procedure is
sound and shares the same complexity class as ATL∗ model checking under perfect information
and perfect recall.

The idea behind sub-models lies in their ability to capture both under-approximations and
over-approximations of the original modelM . Specifically, each negative sub-modelMn serves
as an under-approximation, while positive sub-modelMp serves as an over-approximation ofM .
Consequently, negative sub-models can be employed to establish the satisfaction of properties,
whereas positive sub-models can help identify property violations. Therefore, if we manage
to find a strategy to satisfy a property in the negative sub-model, it implies that the same
strategy can be utilized in the original model. Conversely, if we fail to find a strategy in the
positive sub-model, it indicates that no strategy exists in the original model.

Definition 4.3.1. Given an iCGS M and x ∈ {n, p}, we denote with Mx = ⟨Stx, sxI ,
{Acti}i∈Ag, {∼n

i }i∈Ag,Pn, δn,Ln⟩ a sub-model of M such that:

• The set of states is defined as Stx = St⋆ ∪ {sx}, where St⋆ ⊆ St, and sxI ∈ St⋆ is the
initial state.

• ∼x
i is defined as the corresponding ∼i restricted to St⋆.
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• The protocol function is defined as Px : Ag × Stx → (2Act \ {∅}), where Px(i, s) =
P(i, s), for every s ∈ St⋆ and Px(i, sx) = Acti, for all i ∈ Ag.

• The transition function is defined as δx : Stx × ACT → Stx, where given a transition
δ(s, α⃗) = s′, if s, s′ ∈ St⋆ then δx(s, α⃗) = δ(s, α⃗) = s′ else if s′ ∈ St \ St⋆ and s ∈ Stx

then δx(s, α⃗) = sx.

• For all s ∈ St⋆, Lx(s) = L(s), and if x = n then Ln(sn) = ∅, otherwise Lp(sp) = AP .

Informally, sx is a sink state that replaces the states removed from the original model (i.e.,
St \ St⋆).

Given the definition above, we now show a preservation result from our sub-models to the
original model that we will use in our partial procedure.

Lemma 4.3.1 ([16]). Given a model M , a negative (resp., positive) sub-model with perfect
informationMn (resp.,Mp) ofM , and a formula φ of the form φ = ⟨⟨A⟩⟩ψ for some A ⊆ Ag.
For any s ∈ St⋆, we have that:

Mn, s |= φ⇒M, s |= φ
Mp, s ̸|= φ⇒M, s ̸|= φ

Before providing the idea of our procedure, we also recall a result derived from [5] that we
use to approximate the logic.

Lemma 4.3.2 ([16]). Given a model M , a formula φ in ATL∗ written in Negation Normal
Form (NNF) 1, and the CTL∗ universal 2 (resp., existential 3) version φA (resp., φE) of φ.
For any s ∈ St, we have that:

M, s |= φA ⇒M, s |= φ
M, s ̸|= φE ⇒M, s ̸|= φ

Given the above results, we are able to show our procedure.

Algorithm 3 ModelCheckingProcedure(M , φ)

1: Preprocessing(M,φ)
2: candidates = FindSubModels(M,φ)
3: if |candidates| = 1 then return M |= φ
4: end if
5: while candidates is not empty do
6: extract ⟨Mn,Mp⟩ from candidates
7: result = CheckSubFormulas(⟨Mn,Mp⟩, φ)
8: k = Verification(M,φ, result)
9: if k ̸= ? then return k

10: end if
11: end while
12: return ?

The ModelCheckingProcedure() takes as input a model M and a formula φ. It begins
by calling the Preprocessing() function to generate the NNF of φ and replace all negated

1It is an equivalent version of ATL∗ in which the negation is used only in front of atoms.
2It is the version in which we replace every ATL∗ strategic operator with a CTL∗ universal operator.
3It is the version in which we replace every ATL∗ strategic operator with a CTL∗ existential operator.
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atoms with new positive atoms inside both M and φ. Then, it invokes the FindSubModels()
function to generate all positive and negative sub-models representing all possible sub-models
with perfect information. If the number of candidates is equal to one (line 3), indicating
that the input model M has perfect information, the procedure directly calls the ATL∗ model
checking procedure for perfect information and perfect recall.

Algorithm 4 Verification (M , φ, result)

1: k = ?
2: for s ∈ St do
3: take set atoms from result(s)
4: UpdateModel(M , s, atoms)
5: end for
6: φn = φ, φp = φ
7: while result is not empty do
8: extract ⟨s, ψ, vatomψ⟩ from result
9: if v = n then φn = UpdateFormula(ψn, ψ, natomψ)

10: else φp = UpdateFormula(ψp, ψ, patomψ)
11: end if
12: end while
13: φA = FromATLtoCTL(φn, n)
14: φE = FromATLtoCTL(φp, p)
15: if M |= φA then k = ⊤
16: end if
17: if M ̸|= φE then k = ⊥
18: end if
19: return k

Subsequently, a while loop (lines 5-11) iterates through each candidate, checking the sub-
formulas of φ true on the sub-models ofM via CheckSubFormulas(), and assessing the truth
value of the entire formula via Verification(). The latter procedure utilizes the idea of the
bottom-up approach, combining the results obtained on different sub-formulas and propagating
them onto the original model, which is made valid by Lemma 4.3.1. Finally, it approximates
verification with CTL∗ using the result from Lemma 4.3.2. If the output of the latter procedure
is different from ?, indicating a defined result, it is returned directly (line 9).

We conclude with two results on the complexity and soundness of the proposed approach.

Theorem 4.3.1 ([16]). Algorithm 3 terminates in double exponential time w.r.t. the size of
φ and exponential time w.r.t. the size of M .

Theorem 4.3.2 ([16]). Algorithm 3 is sound: if the value returned is not ?, then M |= φ iff
k = ⊤ and M ̸|= ϕ iff k = ⊥.
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Chapter 5

Conclusion and Future directions

In this document, we have presented the main works in the field of multi-agent system verifica-
tion in which we have collaborated over the past decade. In particular, we have divided these
works into three major categories: modeling, specification, and verification of multi-agent sys-
tems. For each of these macro areas, we have dedicated a chapter. In Chapter 2, we have
discussed a “natural” method for modeling strategies. We have presented these strategies
in the context of perfect and imperfect information and presented model checking results.
In Chapter 3, we have illustrated logics that allow specifying properties in which there are
agents capable of modifying the MAS model. This last aspect is extremely important in the
context of cybersecurity, as illustrated in our exemplifying use case. Furthermore, we have
shown that these logics are more expressive than CTL and ATL while the model checking
complexity remains polynomial. Finally, in Chapter 4, we have shown that model checking for
some sub-classes of MAS in the context of imperfect information and memoryfull strategies,
a problem that is undecidable in general, is decidable. In particular, we have defined approxi-
mation methods on information, memory of strategies, and model topology and specification,
and provided preservation results.

The choice of the content of the three technical chapters was made considering not only the
quality of the publications produced but also to present the topics in which we have been most
involved throughout our research journey. In particular, the first work on natural strategies
(the subject of Chapter 2) was developed and published during a visit to the IPI PAN research
center in Poland during our PhD at the University of Naples, and it is still a very fertile topic
that has led to further publications in recent years and will lead to more in the near future.
The entire scope related to finding decidability in generally undecidable problems (the subject
of Chapter 4) is part of a path that we started during our postdoc at the University of Evry
and continued when we acquired the position of associate professor at Telecom Paris. Finally,
we presented the results obtained with our first postdoc, within a collaboration at Telecom
Paris, concerning logics for cybersecurity (the subject of Chapter 3), to showcase a research
line that has emerged in recent years and could have a significant impact in the next decade,
and especially to demonstrate the important results obtained in the role of supervisors. In
addition to these three research lines that will be part of our future work in the short and
medium term, we also briefly present other research objectives in which we will be involved:

• One of the main objectives in the near future will be to participate in national and
international projects as a principal investigator or partner. From this perspective, two
projects have been submitted this year with the role of principal investigator: ANR JCJC
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and ERC Starting Grant. We are waiting the final verdict for both of them. Additionally,
we have submitted an ANR PRC project, and we are currently working on a Horizon
project as a partner.

• We are developing a new compositional framework for model checking multi-agent sys-
tems called VITAMIN [105] that can be used by any user, expert and non-expert of formal
verification. To accelerate the development of the tool, we have submitted some projects
on this subject and we have filed two patents. We also have a prototype of tool that has
been implemented during the last two years.

• We have started, with a PhD student (in collaboration with the company EDF), an in-
depth study of cybersecurity risks. In particular, we are studying new formal methods
techniques to avoid cyberattacks. To tackle these issues we are working on a logic to
identify agents capabilities. The first work on this field has been accepted some months
ago [106].

• Related to the latter direction, we will open a new PhD position to synthesize strategies
in the context of cyberdefense by following the ideas in [50, 51].

• In the light of [59], we are working to runtime solutions in distributed and competitive
monitors with imperfect information. We think this topic could be of interest not only
for the research community but also in the industrial context.

• Finally, another line of research we are involved in, which we believe could be as relevant
for the scientific and industrial community as the cybersecurity topic, focuses on the
study of model checking techniques to verify the correctness of smart contracts within
blockchain contexts.
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[89] Raphaël Berthon, Bastien Maubert, Aniello Murano, Sasha Rubin, and Moshe Y. Vardi.
Strategy logic with imperfect information. ACM Trans. Comput. Log., 22(1):5:1–5:51,
2021.

[90] Francesco Belardinelli, Alessio Lomuscio, Aniello Murano, and Sasha Rubin. Verification
of multi-agent systems with imperfect information and public actions. In Kate Larson,
Michael Winikoff, Sanmay Das, and Edmund H. Durfee, editors, Proceedings of the 16th
Conference on Autonomous Agents and MultiAgent Systems, AAMAS 2017, São Paulo,
Brazil, May 8-12, 2017, pages 1268–1276. ACM, 2017.

[91] Francesco Belardinelli, Alessio Lomuscio, Aniello Murano, and Sasha Rubin. Verifica-
tion of broadcasting multi-agent systems against an epistemic strategy logic. In Carles
Sierra, editor, Proceedings of the Twenty-Sixth International Joint Conference on Arti-
ficial Intelligence, IJCAI 2017, Melbourne, Australia, August 19-25, 2017, pages 91–97.
ijcai.org, 2017.

[92] Sharon Shoham and Orna Grumberg. Monotonic abstraction-refinement for CTL. In
Kurt Jensen and Andreas Podelski, editors, Tools and Algorithms for the Construction
and Analysis of Systems, 10th International Conference, TACAS 2004, Held as Part
of the Joint European Conferences on Theory and Practice of Software, ETAPS 2004,
Barcelona, Spain, March 29 - April 2, 2004, Proceedings, volume 2988 of Lecture Notes
in Computer Science, pages 546–560. Springer, 2004.

[93] Sharon Shoham and Orna Grumberg. A game-based framework for CTL counterexamples
and 3-valued abstraction-refinement. ACM Trans. Comput. Log., 9(1):1, 2007.

45



[94] Benjamin Aminof, Orna Kupferman, and Aniello Murano. Improved model checking of
hierarchical systems. Inf. Comput., 210:68–86, 2012.

[95] Orna Grumberg, Martin Lange, Martin Leucker, and Sharon Shoham. When not losing is
better than winning: Abstraction and refinement for the full mu-calculus. Inf. Comput.,
205(8):1130–1148, 2007.

[96] Guy Avni, Shibashis Guha, and Orna Kupferman. An abstraction-refinement method-
ology for reasoning about network games. In Carles Sierra, editor, Proceedings of the
Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017, Mel-
bourne, Australia, August 19-25, 2017, pages 70–76. ijcai.org, 2017.

[97] Luca de Alfaro and Pritam Roy. Solving games via three-valued abstraction refinement.
Inf. Comput., 208(6):666–676, 2010.

[98] Rayna Dimitrova and Bernd Finkbeiner. Abstraction refinement for games with in-
complete information. In Ramesh Hariharan, Madhavan Mukund, and V. Vinay, edi-
tors, IARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science, FSTTCS 2008, December 9-11, 2008, Bangalore, India, volume 2 of
LIPIcs, pages 175–186. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2008.

[99] Mika Cohen, Mads Dam, Alessio Lomuscio, and Francesco Russo. Abstraction in model
checking multi-agent systems. In Carles Sierra, Cristiano Castelfranchi, Keith S. Decker,
and Jaime Simão Sichman, editors, 8th International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2009), Budapest, Hungary, May 10-15, 2009,
Volume 2, pages 945–952. IFAAMAS, 2009.

[100] Francesco Belardinelli and Alessio Lomuscio. A three-value abstraction technique for
the verification of epistemic properties in multi-agent systems. In Loizos Michael and
Antonis C. Kakas, editors, Logics in Artificial Intelligence - 15th European Conference,
JELIA 2016, Larnaca, Cyprus, November 9-11, 2016, Proceedings, volume 10021 of
Lecture Notes in Computer Science, pages 112–126, 2016.

[101] Thomas Ball and Orna Kupferman. An abstraction-refinement framework for multi-
agent systems. In 21th IEEE Symposium on Logic in Computer Science (LICS 2006),
12-15 August 2006, Seattle, WA, USA, Proceedings, pages 379–388. IEEE Computer
Society, 2006.

[102] Alessio Lomuscio and Jakub Michaliszyn. An abstraction technique for the verification
of multi-agent systems against ATL specifications. In Chitta Baral, Giuseppe De Gia-
como, and Thomas Eiter, editors, Principles of Knowledge Representation and Reason-
ing: Proceedings of the Fourteenth International Conference, KR 2014, Vienna, Austria,
July 20-24, 2014. AAAI Press, 2014.

[103] Alessio Lomuscio and Jakub Michaliszyn. Verification of multi-agent systems via pred-
icate abstraction against ATLK specifications. In Catholijn M. Jonker, Stacy Marsella,
John Thangarajah, and Karl Tuyls, editors, Proceedings of the 2016 International Con-
ference on Autonomous Agents & Multiagent Systems, Singapore, May 9-13, 2016,
pages 662–670. ACM, 2016.

46



[104] Wojciech Jamroga, Beata Konikowska, Damian Kurpiewski, and Wojciech Penczek.
Multi-valued verification of strategic ability. Fundam. Informaticae, 175(1-4):207–251,
2020.

[105] Angelo Ferrando and Vadim Malvone. VITAMIN: A compositional framework for model
checking of multi-agent systems. CoRR, abs/2403.02170, 2024.

[106] Gabriel Ballot, Vadim Malvone, Jean Leneutre, and Youssef Laarouchi. Strategic rea-
soning under capacity-constrained agents. In Proceedings of the 2024 International
Conference on Autonomous Agents and Multiagent Systems, AAMAS 2024, (to ap-
pear).

47


	Introduction
	Our research work
	Preliminaries

	Modeling: Natural Strategies
	Natural Strategies with perfect information
	Memoryless
	With Recall

	Natural Strategies with imperfect information
	Memoryless
	With Recall

	Natural Strategies in ATL
	Model Checking Results


	Specification: Logics in Cybersecurity
	Obstruction Logic
	Obstruction Alternating-time Temporal Logic
	Use Case Scenario in Cybersecurity

	Verification: Decidable Fragments
	Approximate the information
	Three-valued semantics
	Abstraction
	Refinement

	Approximate the memory of the strategies
	Approximate the model and logic

	Conclusion and Future directions

