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Abstract
Hedonic Games and the Group Activity Selection Problem are two well-established models to describe the
coalition formation of strategic agents. While most of the literature has been focusing on the existence
and computation of stable outcomes, under the demanding assumption of complete knowledge of agents’
preferences, very little has been made on the elicitation of true preferences.

With this paper, we provide an overview of strategyproof mechanisms for the aforementioned games
with particular attention on mechanisms having a good approximation guarantee in terms of social
welfare. Moreover, we outline future challenges in this area.

Keywords
Strategyproof Mechanisms, Hedonic Games, Group Activity Selection Problem, Coalition Formation,
Additively Separable, Approximation Mechanisms, Mechanisms without Money

1. Introduction

In many real-world scenarios, individuals prefer to perform tasks or activities by gathering into
groups rather than being on their own. Simply think about researchers or employees working
on different projects, politicians forming parties, people attending social events, and so forth.
The increasing interest in economic, political, and social contexts in which individuals attempt
common goals by splitting into groups led to the definition of Coalition Formation Games.

Coalition Formation Games model multi-agent systems where selfish agents form coalitions
and have preferences over the possible outcomes of the game. More specifically, an outcome of a
Coalition Formation Game is a partition of the agents into disjoint coalitions, and agents express
their satisfaction with an outcome through preference relations. When agents’ preferences only
depend on the coalition they belong to, and not on how the other agents aggregate, we talk
about Hedonic Games (HGs), introduced by Dreze and Greenberg in [2]. Hedonic Games have
been widely studied [3] and, according to the properties of agents’ preferences or other possible
constraints, numerous classes have been defined.
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While on the one hand, Hedonic Games offer a model sophisticated enough to describe a
large variety of settings, on the other hand, they are not able to capture the satisfaction that
agents have for the task they are eventually supposed to perform together. To this aim, the
Group Activity Selection Problem (GASP), a proper generalization of the Hedonic Games, was
introduced in [4]. Here, a set of possible tasks (or activities) is available, and the agents in a
coalition have to perform a common task, one for each coalition. Thus, agents’ preferences are
based on both the coalition they belong to and the activity they are supposed to perform.

In the Hedonic Games and Group Activity Selection Problem literature, different approaches
have been considered, that can be broadly attributed to one of the two following research
scenarios: i) the understanding of which kind of outcomes the selfish behavior of the agents
leads to or ii) the elicitation of the agents’ real preferences while maintaining good properties
for the designed outcome of the game.
Regarding the first research direction, agents’ preferences are known in advance and one

of the main goals is to understand the outcomes that may be reached by the agents, both
from an existential and an algorithmic perspective. To this aim, several stability concepts
have been defined and studied which are based either on individual [5, 6, 7, 8, 9] or group
deviations [10, 11, 12, 7, 13, 14].

In addition, when agents’ preferences are expressed by utilities, it is possible to measure the
quality of stable outcomes by comparing their social welfare to the optimum (the maximum
achievable one) [15, 16, 17, 18].
Regarding the second research direction, agents’ preferences are private information and

must be communicated to a designer who splits agents accordingly. Being agents selfish, they
may misreport their preferences so as to maximize their satisfaction with the final outcome
of the game. Then the designer, solely based on the reported preferences, must compute an
outcome of the game in order to induce, without any monetary request, a truthful behavior of
the agents while satisfying good properties, for instance, stability or a good approximation of the
optimum. This is known as the Mechanism Design without Money framework. In particular, in
this setting, the outcome of the game is computed by an algorithm commonly calledmechanism;
a mechanism is said to be a strategyproof if no agent has an incentive to misreport her private
information.

We focus on strategyproof mechanisms guaranteeing a good approximation to the optimum
in the context of HGs and the GASP. The paper is organized as follows: In Section 2, we give an
overview of the state of the art. In Section 3, we point out the limits of the current literature
and establish which are the key challenges in this area.

2. State of the Art

In this section, we give an overview of the literature on strategyproof mechanisms with good
guarantees with respect to the optimum. We assume that agents’ preferences are expressed
by means of utilities and that the utility of an agent for a given outcome can be univocally
determined by the individual values given to the other agents and the activities. Such values are
a private information of the agents and have to be communicated to the central authority so as
to compute an outcome of the game. More formally, we assume that, given a set of agents 𝑁 and



a set of activities 𝐴, every agent 𝑖 has a weight 𝑣𝑖𝑗 for any other agent 𝑗 ∈ 𝑁 ⧵ {𝑖} and a preference
𝑝𝑖𝑎 for each activity 𝑎 ∈ 𝐴1. Hence, the utility an agent has for being a member of a specific
group and participating in a certain activity can be computed according to the weights she has
for her coalition members and the preference she has for the activity they are performing. We
will describe specific classes that fit this definition in the subsequent paragraphs.

We evaluate the quality of an outcome by its utilitarian welfare, that is, the sum of agents’
utilities, and measure the performances of the provided strategyproof mechanisms by comparing
the social welfare they achieve (deterministically or in expectation) to the optimal one. In
principle, a strategyproof mechanism may have an unbounded approximation guarantee to the
optimum; whenever a mechanism has a bounded approximation guarantee we simply call it a
bounded mechanism.
In what follows, having a lower bound of value 𝛼 means no strategyproof mechanism can

achieve an approximation better than 𝛼. In turn, we say we have an upper bound of value 𝛼 if
a strategyproof mechanism guaranteeing an 𝛼-approximation exists. Moreover, whenever a
lower bound is > 1 means that any mechanism returning the optimum is not strategyproof.

Additively Separable Hedonic Games. In additively separable HGs (ASHGs) an agent 𝑖
values a coalition 𝐶, such that 𝑖 ∈ 𝐶, by simply summing up the weights she has for each member,
that is, 𝑢𝑖(𝐶) = ∑𝑗∈𝐶⧵{𝑖} 𝑣𝑖𝑗. In [19, 20], the problem of achieving good approximate mechanisms
with respect to the maximum utilitarian welfare has been considered under several assumptions
on the weights 𝑣𝑖𝑗, see Table 1. First of all, the authors showed that there is a dichotomy between
the cases where 𝑣𝑖𝑗 ∈ [−1, 1] and 𝑣𝑖𝑗 ∈ [0, 1]: In the former, no bounded deterministic/randomized
strategyproof mechanism exists, while in the latter, returning the optimum, that is achieved
by gathering all agents in the same coalition, is strategyproof. Given the general impossibility
result, the authors further restrict the attention to the scenario where agents equally like or
dislike, or simply don’t care about any other agent, i.e., 𝑣𝑖𝑗 ∈ {−1, 0, 1}. In this case, non-trivial
bounded randomized/deterministic mechanisms together with theoretical lower bounds have
been provided. Nonetheless, there exists a linear gap between the obtained lower and upper
bounds both for deterministic and randomized mechanisms, and closing these gaps remains so
far an open problem.

Table 1
Lower and upper approximation bounds of strategyproof mechanisms for ASHGs. L.B. and U.B. stand
for lower and upper bound, respectively. Randomized mechanisms are denoted by ∗ and 𝑛 is the number
of agents.

𝑣𝑖𝑗 ∈ [−1, 1] [0, 1] {−1, 0, 1}

U.B. ∞∗ 1
𝑂(𝑛2), 𝑂(𝑛)∗

L.B. Ω(𝑛), 2 − 𝜖∗

1HGs can be seen as a special case of the GASP where there are arbitrarily many activities, so it is possible to form
any partition of agents, and the activity that agents are performing has no impact on their utility. We therefore do
not refer to preferences towards activities in the case of HGs.



Fractional Hedonic Games. Similarly to ASHGs, in fractional HGs (FHGs), the utility
an agent 𝑖 ∈ 𝐶 ⊆ 𝑁 derives in being included in the coalition 𝐶 is obtained by summing
up the weights she has for the other participants and then normalizing by the coalition size;

formally, 𝑢𝑖(𝐶) =
∑𝑗∈𝐶⧵{𝑖} 𝑣𝑖𝑗

|𝐶| . The work [20] gives a complete picture of approximate strategyproof
mechanisms for FHGs by making a case distinction between the possible values for the weights
𝑣𝑖𝑗 and we showcase them in Table 2. Similarly to the ASHGs case, the freedom of choosing
both negative and positive weights in the interval [-1,1] does not allow bounded mechanisms,
not even by means of randomization. In turn, given the more involved structure of utilities,
only a linear approximation is possible for positive weights, and the provided deterministic
mechanism has been proven to be optimal. The special cases where weights are in {−1, 0, 1}
and {0, 1} have also been considered and a constant approximation, at least in expectation, is
possible. In these two cases, whether the provided mechanisms are the best possible remains an
open problem.

Table 2
Lower and upper approximation bounds of strategyproof mechanisms for fractional HGs. L.B. and U.B.
stand for lower and upper bound, respectively. Randomized mechanisms are denoted by ∗ and 𝑛 is the
number of agents.

𝑣𝑖𝑗 ∈ [−1, 1] [0, 1] {−1, 0, 1} {0, 1}

U.B. ∞∗
𝑛
2

𝑂(𝑛), 8∗ 2
L.B. 𝑛

2
2 − 𝜖, 3

2
− 𝜖∗ 6

5

Friends and Enemies Games. Considering the impossibility result for general ASHGs, a
natural question was to understand whether there exist other special classes of ASHGs, as
for the case 𝑣𝑖𝑗 ∈ {−1, 0, 1}, where bounded mechanisms are possible. An interesting HG class
where agents split the others into friends and enemies, the so-called Friends and Enemies Games,
has been introduced by [21] with respect to two different types of preference profiles: Friends
Appreciation (FA) and Enemies Aversion (EA). Under FA, agents prefer coalitions with a higher
number of friends. When the number of friends is the same, they prefer a coalition with a
smaller number of enemies. Conversely, under EA, agents always prefer coalitions with a
smaller number of enemies and, in case of a tie, the ones with a bigger number of friends. FA
and EA have been shown to belong to the ASHGs class for suitable choices of weights. Namely,
for FA profiles it is sufficient to set 𝑣𝑖𝑗 ∈ {−1, 𝑛} while, for EA, 𝑣𝑖𝑗 ∈ {−𝑛, 1}.
For these two specific classes, the existence of strategyproof mechanisms outputting core

or weak core stable solutions is well-established. However, these results are either inefficient
or require exponential time to be executed. In [22], a complete picture of both positive and
negative results on approximate strategyproof mechanisms is provided and we summarize their
main results in Table 3. For FA preference profiles it is well-known that splitting the agents into
maximal strongly connected components, in the directed graphs where agents are the nodes and
directed edges represent friendship relationships, is strategyproof and core stable [23]; however,
this mechanism is particularly inefficient in approximating the utilitarian welfare. In turn, [22]



shows that splitting agents into maximal weakly connected components is still strategyproof
and guarantees an approximation linear in the number of agents; however, such mechanism
does not necessarily provide core stable outcomes. Furthermore, a 4-approximation is possible
when relying on randomization. Concerning EA profiles, repeatedly extracting and creating a
coalition with a maximum clique, in the undirected graph of mutual friendship, is strategyproof
and provides a weak core stable outcome [23]; moreover, it gives a constant approximation w.r.t.
the optimal utilitarian welfare [22]. Unfortunately, such a procedure is not computationally
efficient. In turn, via a matching algorithm, it is possible to achieve a strategyproof mechanism
having linear approximation in the number of agents.

Table 3
Lower and upper approximation bounds of strategyproof mechanisms for FA and EA preferences profiles
in HGs. L.B. and U.B. stand for lower and upper bound, respectively; 𝑛 denotes the number of agents.

FA profiles Deterministic Randomized

U.B. 𝑛 4
L.B. 2 > 1

EA profiles Poly-time Exp-time

U.B. (1 + √2)𝑛 1 + √2
L.B. Ω(𝑛) > 1

Additively Separable Group Activity Selection Problem. In this paragraph, we present
the results obtained in [24] on approximate strategyproofmechanisms for the additively separable
GASP (ASGASP). Here, the utility of an agent 𝑖 ∈ 𝐶 ⊆ 𝑁 for participating in an activity 𝑎 with
the coalition 𝐶 is given by the sum of the weights for the other coalition members and the
preference she has for the activity 𝑎, that is, 𝑢𝑖(𝐶, 𝑎) = 𝑝𝑖𝑎+∑𝑗∈𝐶⧵{𝑖} 𝑣𝑖𝑗. The provided results take
into account the possible values of the preferences among the activities and of the individual
weights between the agents. Considering the impossibility result for ASHGs when weights may
be both positive and negative reals, we can conclude that no bounded strategyproof mechanism
exists for the ASGASP as well. Therefore, the authors distinguished the analysis considering
non-negative or binary values towards agents/activities. A complete picture of the results is
given in Table 4.
In the case of non-negative preferences, it is possible to show that, even if 𝑣𝑖𝑗 ∈ {0, 1}, no

deterministic mechanism can achieve a bounded approximation ratio. In turn, when relying
on randomized mechanisms, a simple 𝑘-approximate mechanism, where 𝑘 is the number of
activities, exists. Such a result is indeed possible by selecting uniformly at random to which
activity all agents will be assigned; this makes the mechanisms independent of the agents’
preferences for the activity and therefore no misreport can be successful. In fact, the main reason
for the impossibility of a bounded deterministic mechanism is the freedom of agents in selecting
high values for the most preferred activity. In contrast, when agents have limited expressiveness
on their preferences over activities, bounded deterministic mechanisms are possible. Specifically,
if agents’ preferences are boolean, a 𝑘-approximate deterministic mechanism exists; however, it
was only possible to show an Ω(√𝑘) lower bound. An interesting fact is that the 𝑘-approximate
mechanism is indeed tight when restricting the attention on anonymous mechanisms2. Finally,

2Anonymous means that the computation of the outcome does not depend on the agents’ identities.



when the weights towards other agents are also binary, a 2-approximate deterministic, and
therefore randomized, mechanism is attainable.

Table 4
Lower and upper bounds of strategyproof mechanisms for the additively separable GASP. L.B. and U.B.
stand for lower and upper bounds respectively. Randomized mechanisms are denoted by ∗, results for
anonymous mechanisms are denoted by †, and 𝑘 is the number of activities.

𝑣𝑖𝑗 ∈ ℝ≥0 {0, 1}

U.B. ∞ 𝑘∗ ∞ 𝑘∗

L.B. 2 − 2
𝑘+1

∗
4/3∗

Non-negative preferences: 𝑝𝑖𝑎 ∈ ℝ≥0.

𝑣𝑖𝑗 ∈ ℝ≥0 {0, 1}

U.B. 𝑘 2
L.B. Ω(√𝑘) Ω(𝑘)† > 1

Boolean preferences: 𝑝𝑖𝑎 ∈ {0, 1}.

3. Future Challenges

As we already mentioned, very little is known about mechanisms design for HGs and the
GASP. Other than good approximation guarantees, strategyproof mechanisms or manipulability
aspects, that is, non-strategyproofness of a certain allocation rule, are considered for example
in [25, 26].

In this section, we draw a landscape of compelling future research directions in the sense of
approximate strategyproof mechanisms. We anyway consider the goal of finding strategyproof
mechanisms guaranteeing some stability notion clearly of interest.

Dealing with the impossibility results. We have seen there exists a number of settings
where bounded strategyproof mechanisms are not possible. In these circumstances, strate-
gyproofness turns out to be very demanding and it looks natural to question whether a more
relaxed notion may lead to a bounded approximation. More specifically, one could allow the
agents to misreport their private information up to some extent, e.g. the distance from their
actual private information can be bounded by some constant or the number of misreported
values is limited. On the other hand, the reason why bounded mechanisms are not possible
in some contexts can be attributed to the fact that agents have too much freedom in their
declarations. Since agents do not incur any penalty for arbitrarily raising their values, this
allows them to manipulate not only optimal but also approximate solutions. Monetary transfers
could disincentivize such kinds of manipulations and, therefore, considering mechanisms with
payments is another way we may hope to circumvent impossibility results.

Closing gaps. Although some of the provided mechanisms are bounded, the question if their
guarantee is the best attainable in conjunction with strategyproofness remains open. In the case
of the ASGASP, with binary preferences and arbitrary weights, a matching lower bound was
possible only by assuming anonymity while, in general, the gap remains open. We suspect that
anonymity is indeed not needed to show a lower bound of 𝑘 and that the provided mechanism
is the best possible. Such a belief is driven by what happened in the study of strategyproof



mechanisms for machine scheduling. Here, some tasks must be split among machines and
machines can declare their completion time for each task; the goal is to minimize the make-span.
In [27] the authors provide an 𝑚-approximate mechanism, where 𝑚 is the number of machines,
together with a lower bound of 2. Subsequently, this gap has been closed for anonymous
mechanisms: no anonymous mechanism can have an approximation better than 𝑚 [28]. Only
recently, the lower bound has been shown to be 𝑚 (without the anonymity condition) both
with or without money [29]. It would be interesting therefore to understand if a similar result
is possible for the ASGASP; moreover, it is also worth considering anonymous mechanisms
in the context of HGs as a first step for tightening bounds. We finally want to highlight that
while, on the one hand, the mechanisms have been designed to work in polynomial time (if not
specified otherwise), on the other hand, the obtained lower bounds do not depend on the time
complexity. Hence, it might be possible to establish whether the provided upper bounds are the
best possible for poly-time mechanisms.

Considering new classes of games. Other than the aforementioned, there exist other HGs
classes that are suitable for the study of approximate strategyproof mechanisms. For example,
social distance [30] and distance hedonic [31] games are two generalizations of (simple) FHGs
where agents lay in a social network and derive their utility according to their induced distance
from the other agents in their coalition. In such games, agents can only hide their connections
to other agents rather than provide the values they retain by being in a certain coalition. This
intuitively suggests that the agents do not have much room for manipulation which makes
attractive the idea of studying approximate strategyproof mechanisms in this setting. In the
paper [32], strategyproof and approximately envy-free mechanisms for ASHGs with bounded
coalition size are considered. Their main contribution is a mechanism that achieves good
experimental performances. Approximate strategyproof mechanisms (w.r.t. the utilitarian social
welfare) for HGs and the GASP with bounded coalition size are also worth considering.

All in all, the study of strategyproof mechanisms is clearly of interest in all those scenarios
where strategic agents have to be split by a central authority into coalitions. So far, very little is
known in the case of HGs and the GASP, and many questions are open.

Acknowledgments

This paper was supported by the PNRR MIUR project FAIR – Future AI Research (PE00000013)
and the DFG, German Research Foundation, grant (Ho 3831/5-1).

The author is grateful toMichele Flammini and Simone Fioravanti for their helpful comments.

References

[1] R. D. Benedictis, M. Castiglioni, D. Ferraioli, V. Malvone, M. Maratea, E. Scala, L. Serafini,
I. Serina, E. Tosello, A. Umbrico, M. Vallati, Preface to the Italian Workshop on Planning
and Scheduling, RCRA Workshop on Experimental evaluation of algorithms for solving
problems with combinatorial explosion, and SPIRIT Workshop on Strategies, Prediction,



Interaction, and Reasoning in Italy (IPS-RCRA-SPIRIT 2023), in: Proceedings of the Italian
Workshop on Planning and Scheduling, RCRA Workshop on Experimental evaluation
of algorithms for solving problems with combinatorial explosion, and SPIRIT Workshop
on Strategies, Prediction, Interaction, and Reasoning in Italy (IPS-RCRA-SPIRIT 2023)
co-located with 22th International Conference of the Italian Association for Artificial
Intelligence (AI* IA 2023), 2023.

[2] J. H. Dreze, J. Greenberg, Hedonic coalitions: Optimality and stability, Econometrica:
Journal of the Econometric Society (1980) 987–1003.

[3] H. Aziz, R. Savani, Hedonic games, in: Handbook of Computational Social Choice.,
Handbook of Computational Social Choice. Cambridge University Press, 2016.

[4] A. Darmann, E. Elkind, S. Kurz, J. Lang, J. Schauer, G. Woeginger, Group activity selection
problem, in: Proceedings of the 8th International Conference on Web and Internet
Economics (WINE), Springer, 2012, pp. 156–169.

[5] F. Bloch, E. Diamantoudi, Noncooperative formation of coalitions in hedonic games, Int. J.
Game Theory 40 (2011) 263–280.

[6] M. Feldman, L. Lewin-Eytan, J. Naor, Hedonic clustering games, TOPC 2 (2015) 4:1–4:48.
[7] M. Gairing, R. Savani, Computing stable outcomes in symmetric additively separable

hedonic games, Math. Oper. Res. 44 (2019) 1101–1121.
[8] V. Bilò, A. Fanelli, M. Flammini, G. Monaco, L. Moscardelli, Optimality and nash stability

in additively separable generalized group activity selection problems, in: Proceedings of
the 28th International Joint Conference on Artificial Intelligence(IJCAI), 2019, pp. 102–108.

[9] A. Darmann, Stable and pareto optimal group activity selection from ordinal preferences,
volume 47, 2018, pp. 1183–1209.

[10] A. Bogomolnaia, M. O. Jackson, et al., The stability of hedonic coalition structures, Games
and Economic Behavior 38 (2002) 201–230.

[11] S. Banerjee, H. Konishi, T. Sönmez, Core in a simple coalition formation game, Social
Choice & Welfare 18 (2001) 135–153.

[12] E. Elkind, M. J. Wooldridge, Hedonic coalition nets, in: Proceedings of the 8th International
Conference of Autonomous Agents and Multi-Agent Systems (AAMAS), 2009, pp. 417–424.

[13] A. Igarashi, E. Elkind, Hedonic games with graph-restricted communication, in: Pro-
ceedings of the 15th International Conference of Autonomous Agents and Multi-Agent
Systems (AAMAS), ACM, 2016, pp. 242–250.

[14] A. Darmann, E. Elkind, S. Kurz, J. Lang, J. Schauer, G. J. Woeginger, Group activity selection
problem with approval preferences, Int. J. Game Theory 47 (2018) 767–796.

[15] V. Bilò, A. Fanelli, M. Flammini, G. Monaco, L. Moscardelli, On the price of stability
of fractional hedonic games, in: Proceedings of the 14th International Conference of
Autonomous Agents and Multi-Agent Systems (AAMAS), ACM, 2015, pp. 1239–1247.

[16] C. Kaklamanis, P. Kanellopoulos, D. Patouchas, On the price of stability of social distance
games, in: Proceedings of the 11th International Symposium on Algorithmic Game Theory
(SAGT), volume 11059, 2018, pp. 125–136.

[17] A. Balliu, M. Flammini, G. Melideo, D. Olivetti, Nash stability in social distance games, in:
Proceedings of the 31st Conference on Artificial Intelligence (AAAI), 2017, pp. 342–348.

[18] M. Flammini, B. Kodric, M. Olsen, G. Varricchio, Distance hedonic games, in: Proceedings
of the 19th International Conference on Autonomous Agents and Multiagent Systems,



AAMAS ’20, Auckland, New Zealand, May 9-13, 2020, 2020, pp. 1846–1848.
[19] M. Flammini, G. Monaco, Q. Zhang, Strategyproof mechanisms for additively separable

hedonic games and fractional hedonic games, in: Proceedings of the 15th International
Workshop on Approximation and Online Algorithms (WAOA), 2017, pp. 301–316.

[20] M. Flammini, B. Kodric, G. Monaco, Q. Zhang, Strategyproof mechanisms for additively
separable and fractional hedonic games, Journal of Artificial Intelligence Research 70
(2021) 1253–1279.

[21] D. Dimitrov, P. Borm, R. Hendrickx, S. C. Sung, Simple priorities and core stability in
hedonic games, Social Choice & Welfare 26 (2006) 421–433.

[22] M. Flammini, B. Kodric, G. Varricchio, Strategyproof mechanisms for friends and enemies
games, Artificial Intelligence 302 (2022) 103610.

[23] D. Dimitrov, S. C. Sung, Enemies and friends in hedonic games: individual deviations,
stability and manipulation, CentER Discussion Paper Series (2004).

[24] M. Flammini, G. Varricchio, et al., Approximate strategyproof mechanisms for the ad-
ditively separable group activity selection problem, in: Thirty-First International Joint
Conference on Artificial Intelligence, 2022, pp. 300–306.

[25] A. Darmann, Manipulability in a group activity selection problem, Social Choice &Welfare
52 (2019) 527–557.

[26] N. Waxman, S. Kraus, N. Hazon, Manipulation of k-coalitional games on social networks,
in: Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence,
IJCAI-21, 2021, pp. 450–457.

[27] N. Nisan, A. Ronen, Algorithmic mechanism design, Games and Economic behavior 35
(2001) 166–196.

[28] I. Ashlagi, S. Dobzinski, R. Lavi, Optimal lower bounds for anonymous scheduling mecha-
nisms, Mathematics of Operations Research 37 (2012) 244–258.

[29] G. Christodoulou, E. Koutsoupias, A. Kovács, A proof of the nisan-ronen conjecture, in:
Proceedings of the 55th Annual ACM Symposium on Theory of Computing, 2023, pp.
672–685.

[30] S. Brânzei, K. Larson, Social distance games, in: Proceedings of the 22nd International
Joint Conference on Artificial Intelligence(IJCAI), 2011, pp. 91–96.

[31] M. Flammini, B. Kodric, M. Olsen, G. Varricchio, Distance hedonic games, in: International
Conference on Current Trends in Theory and Practice of Informatics, Springer, 2021, pp.
159–174.

[32] M. Wright, Y. Vorobeychik, Mechanism design for team formation, in: Proceedings of the
29th Conference on Artificial Intelligence (AAAI), 2015, pp. 1050–1056.


	1 Introduction
	2 State of the Art
	3 Future Challenges

