
Towards a Coalition Refinement Approach in the
Strategic Verification of Multi-Agent Systems
Angelo Ferrando

Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Italy

Abstract
In the context of formal verification of Multi-Agent Systems, it is common to check whether a subset
of agents (also called a coalition) can achieve specific goals of interest, usually expressed as temporal
properties. However, each coalition is hand-picked, and there is no guarantee that the agents within it
will actually cooperate during system execution. This creates a gap between what the agents are assumed
to achieve statically and what they can achieve in practice dynamically. In this paper, we explore and
lay the foundation for an engineering approach to guide a coalition refinement technique. Multi-Agent
Systems are first statically verified with respect to certain coalitions and then revised based on the actual
dynamic behaviour of the agents during runtime.

Keywords
Multi-Agent Systems, Model Checking, Runtime Monitoring, Strategic Reasoning

1. Introduction

Multi-Agent Systems (MAS) are distributed systems composed of intelligent components, de-
fined as agents. Nowadays, software systems are at the centre of our lives and are becoming
more ubiquitous, decentralised, and complex. MAS are a good abstraction and engineering
methodology to both tackle the theory and practice of nowadays software systems [2]. Nonethe-
less, as it is hard for monolithic software systems, it is even harder for distributed ones to
guarantee correctness. The process of testing [3], debugging [4], and verifying [5] such systems
can be quite complex.

In the research area of MAS, formal verification is especially used to check whether a subset
of agents (also called coalition) is capable of achieving a set of goals (usually specified through
temporal logics, like Alternating-Time Temporal Logic (ATL) [6]). In such scenarios, we talk
about formal verification of strategic properties; since we are interested (in general) in the
existence of strategies1 for the agents to achieve their own goals. This is usually considered for
a specific set of agents, that are assumed to cooperate. Nonetheless, it is not always possible to
predict which agents will cooperate in reality. Because of that, even though we can verify that

IPS-RCRA-SPIRIT 2023: Italian Workshop on Planning and Scheduling, RCRA Workshop on Experimental evaluation of
algorithms for solving problems with combinatorial explosion, and SPIRIT Workshop on Strategies, Prediction, Interaction,
and Reasoning in Italy. November 7-9th, 2023, Rome, Italy [1]
Envelope-Open angelo.ferrando@unige.it (A. Ferrando)
GLOBE https://angeloferrando.github.io (A. Ferrando)
Orcid 0000-0002-8711-4670 (A. Ferrando)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

1We formally present the notion of strategies later on.

mailto:angelo.ferrando@unige.it
https://angeloferrando.github.io
https://orcid.org/0000-0002-8711-4670
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org

by collaborating in a coalition, agents can indeed achieve their own goals; it is not guaranteed
whether theywill decide to do so at execution time (when the systemwill be effectively executed).
This choice affects the knowledge we have of the system (as well as the agents in it) and can
guide a refinement of which (if any) coalition of agents can be used.

In this paper, we present an approach to guide the refinement of coalition of agents for
the strategic verification of MAS. We outline the foundational steps required and focus on the
monitoring process used to detect when agents stop cooperating at runtime. By doing so, we put
the basis for further works on the combination of runtime monitoring and strategic verification
of MAS.

2. Related Work

Among the logics for strategic reasoning, we may find Strategy Logic (SL). SL is a powerful
formalism for strategic reasoning, extensively covered in the work of Mogavero et al. [7]. SL
treats strategies as first-order objects, employing existential (∃𝑥) and universal (∀𝑥) quantifiers to
denote the existence of a strategy (𝑥) and the consideration of all strategies (𝑥) in the reasoning
process.

Strategic reasoning encompasses strategy classification into memoryless and memoryful
categories, wherememoryless strategies depend solely on the current game state, andmemoryful
strategies take into account the entire game history. To connect strategies with specific agents,
SL employs an explicit binding operator (𝑎, 𝑥).

Despite its expressiveness, SL’s computational complexity presents challenges. It has been
shown that the model-checking problem for SL becomes non-elementary complete [7], and
its satisfiability becomes undecidable [8]. To mitigate this, researchers have explored various
fragments of SL.

One such fragment is Strategy Logic with Simple-Goals (SL-SG) [9], where strategic operators,
binding operators, and temporal operators are combined. Importantly, SL-SG is demonstrated
to strictly subsume ATL and shares a P-Complete model checking problem with ATL [6].

Shifting focus to agents’ information, we differentiate between perfect and imperfect infor-
mation games [10]. In perfect information games, agents possess complete knowledge of the
game. However, real-world scenarios often involve agents making decisions without access to
all relevant information, akin to situations where some system variables are private [11, 12]. In
game modeling, imperfect information is typically addressed by defining an indistinguishability
relation over game states [11, 10, 13].

The presence of imperfect information significantly impacts model checking complexity. For
instance, with imperfect information and memoryful strategies, ATL becomes undecidable [14].
To address these challenges, researchers have developed various approaches, including approxi-
mations to perfect information [15, 16, 17], notions of bounded memory [18, 19], and hybrid
techniques [20, 21, 22].

To the best of our knowledge, the closest work to this paper is [23], where the authors discuss
how to abstract the notion of coalitions from ATL specifications. In [23], the coalitions are
not hard-coded by the user, but instead are automatically synthesised. This is related to the
work presented herein because, in some sense, we can see [23] as a static coalition refinement

method, while in this paper, we focus on a more dynamic refinement approach. Moreover,
in [23], no consideration is done on the actual implementation of the MAS under analysis, while
we consider its execution and guide the coalition refinement consequently.

3. Preliminaries

In this section we recall some preliminary notions. Given a set 𝑈, 𝑈 denotes its complement.
We denote the length of a tuple 𝑣 as |𝑣 |, its 𝑗-th element as 𝑣𝑗, and its last element 𝑣|𝑣 | as 𝑙𝑎𝑠𝑡(𝑣).
For 𝑗 ≤ |𝑣 |, let 𝑣≥𝑗 be the suffix 𝑣𝑗, … , 𝑣|𝑣 | of 𝑣 starting from 𝑣𝑗 and 𝑣≤𝑗 the prefix 𝑣1, … , 𝑣𝑗 of 𝑣.

3.1. Model

We start by showing a formal model for Multi-Agent Systems via concurrent game structures
with imperfect information [6, 24].

Definition 1. A Concurrent Game Structure with imperfect information (iCGS) is a tuple 𝑀=
⟨𝐴𝑔, 𝐴𝑃, 𝑆, 𝑠𝐼, {𝐴𝑐𝑡𝑖}𝑖∈𝐴𝑔, {∼𝑖}𝑖∈𝐴𝑔, 𝑑, 𝛿 , 𝑉 ⟩ such that:

• 𝐴𝑔 = {1, … , 𝑚} is a nonempty finite set of agents.
• 𝐴𝑃 is a nonempty finite set of atomic propositions (atoms).
• 𝑆 ≠ ∅ is a finite set of states, with initial state 𝑠𝐼 ∈ 𝑆.
• For every 𝑖 ∈ 𝐴𝑔, 𝐴𝑐𝑡𝑖 is a nonempty finite set of actions. Let 𝐴𝑐𝑡 = ⋃𝑖∈𝐴𝑔𝐴𝑐𝑡𝑖 be the set of
all actions, and 𝐴𝐶𝑇 = ∏𝑖∈𝐴𝑔𝐴𝑐𝑡𝑖 the set of all joint actions.

• For every 𝑖 ∈ 𝐴𝑔, ∼𝑖 is a relation of indistinguishability between states. That is, given states
𝑠, 𝑠′ ∈ 𝑆, 𝑠 ∼𝑖 𝑠′ iff 𝑠 and 𝑠′ are indistinguishable for agent 𝑖.

• The protocol function 𝑑 ∶ 𝐴𝑔 × 𝑆 → (2𝐴𝑐𝑡 ⧵ {∅}) defines the availability of actions so that
for every 𝑖 ∈ 𝐴𝑔, 𝑠 ∈ 𝑆, (i) 𝑑(𝑖, 𝑠) ⊆ 𝐴𝑐𝑡𝑖 and (ii) 𝑠 ∼𝑖 𝑠′ implies 𝑑(𝑖, 𝑠) = 𝑑(𝑖, 𝑠′).

• The transition function 𝛿 ∶ 𝑆 × 𝐴𝐶𝑇 → 𝑆 assigns a successor state 𝑠′ = 𝛿(𝑠, 𝑎) to each 𝑠 ∈ 𝑆,
for every joint action 𝑎 ∈ 𝐴𝐶𝑇 such that 𝑎𝑖 ∈ 𝑑(𝑖, 𝑠) for every 𝑖 ∈ 𝐴𝑔.

• 𝑉 ∶ 𝑆 → 2𝐴𝑃 is the labelling function.

According to Definition 1, a Concurrent Game Structure with imperfect information (iCGS)
characterises how a collection of agents denoted as 𝐴𝑔 interact. This interaction originates
from an initial state 𝑠𝐼 ∈ 𝑆 and follows the guidance of a transition function 𝛿. The behaviour of
this function is confined by the feasible actions available to agents, which are determined by the
protocol function 𝑑. Additionally, we make the assumption that agents might possess incomplete
information about the game. Consequently, in any given state 𝑠, agent 𝑖 regards all states 𝑠′ that
are indistinguishable from 𝑠 with respect to agent 𝑖, as being epistemically possible [25]. When
each relation ∼𝑖 reduces to the identity, meaning that 𝑠 ∼𝑖 𝑠′ only when 𝑠 = 𝑠′, the outcome is a
conventional Concurrent Game System (CGS) exhibiting perfect information [6].

A history ℎ ∈ 𝑆+ is a finite (non-empty) sequence of states. The indistinguishability rela-
tions are extended to histories in a synchronous, point-wise way, i.e., histories ℎ, ℎ′ ∈ 𝑆+ are
indistinguishable for agent 𝑖 ∈ 𝐴𝑔, or ℎ ∼𝑖 ℎ′, iff (i) |ℎ| = |ℎ′| and (ii) for all 𝑗 ≤ |ℎ|, ℎ𝑗 ∼𝑖 ℎ′𝑗 .

3.2. Syntax

We use ATL∗ [6] to reason about the strategic abilities of agents.

Definition 2. State (𝜑) and path (𝜓) formulas in ATL∗ are defined as follows:

𝜑 ∶∶= 𝑞 ∣ ¬𝜑 ∣ 𝜑 ∧ 𝜑 ∣ ⟨⟨Γ⟩⟩𝜓
𝜓 ∶∶= 𝜑 ∣ ¬𝜓 ∣ 𝜓 ∧ 𝜓 ∣ 𝑋𝜓 ∣ (𝜓𝑈 𝜓)

where 𝑞 ∈ 𝐴𝑃 and Γ ⊆ 𝐴𝑔.
Formulas in ATL∗ are all and only the state formulas.

As usual, a formula ⟨⟨Γ⟩⟩Φ is read as “the agents in coalition Γ have a strategy to achieve Φ”.
The meaning of temporal operators next 𝑋 and until 𝑈 is standard [26]. Operators [[Γ]], release
𝑅, eventually 𝐹, and globally 𝐺 can be introduced as usual.

3.3. Semantics

We assume that agents employ uniform strategies [24], i.e., they perform the same action
whenever they have the same information.

Definition 3. A uniform perfect recall strategy for agent 𝑖 ∈ 𝐴𝑔 is a function 𝜎𝑖∶𝑆+→𝐴𝑐𝑡𝑖 such
that for all histories ℎ, ℎ′ ∈𝑆+, (i) 𝜎𝑖(ℎ)∈𝑑(𝑖, 𝑙𝑎𝑠𝑡(ℎ)) and (ii) ℎ∼𝑖 ℎ′ implies 𝜎𝑖(ℎ)=𝜎𝑖(ℎ′).

As per Definition 3, any strategy adopted by agent 𝑖 necessitates the selection of actions that
are valid for that specific agent. Additionally, whenever two histories appear indistinguishable
to agent 𝑖, the same action is expected to be chosen. It is worth noting that in cases involving
perfect information, condition (ii) is met by any strategy 𝜎. Moreover, memoryless (or imperfect
recall) strategies can be achieved by considering the domain of 𝜎𝑖 within 𝑆; in other words,
𝜎𝑖 ∶ 𝑆 → 𝐴𝑐𝑡𝑖. In the context of an iCGS 𝑀, a “path” 𝜋 signifies an unending sequence of states.
The collection of such paths over 𝑆 is denoted as 𝑆𝜔. Given a collective strategy ΣΓ, which
includes an individual strategy for each agent within the coalition Γ, a path 𝜋 is considered
ΣΓ-compatible if, for each 𝑗 ≥ 1, 𝜋𝑗+1 = 𝛿(𝜋𝑗, 𝑎) for some joint action 𝑎, where for every 𝑖 ∈ Γ,
𝑎𝑖 = 𝜎𝑖(𝜋≤𝑗) and for each 𝑖 ∈ Γ, 𝑎𝑖 ∈ 𝑑(𝑖, 𝜋𝑗). The set of all ΣΓ-compatible paths starting from state
𝑠 is denoted as 𝑜𝑢𝑡(𝑠, ΣΓ).

Now, we have all the ingredients to give the semantics of ATL∗.

Definition 4. The satisfaction relation ⊧ for an iCGS 𝑀, state 𝑠 ∈ 𝑆, path 𝜋 ∈ 𝑆𝜔, atom 𝑞 ∈ 𝐴𝑃,
and ATL∗ formula 𝜙 is defined as (clauses for Boolean connectives are immediate and thus omitted):

(𝑀, 𝑠) ⊧ 𝑞 iff 𝑞 ∈ 𝑉 (𝑠)
(𝑀, 𝑠) ⊧ ⟨⟨Γ⟩⟩𝜓 iff for some joint strategy ΣΓ,

for all 𝜋∈𝑜𝑢𝑡(𝑠, ΣΓ), (𝑀, 𝜋)⊧𝜓
(𝑀, 𝜋) ⊧ 𝜑 iff (𝑀, 𝜋1) ⊧ 𝜑
(𝑀, 𝜋) ⊧ 𝑋𝜓 iff (𝑀, 𝜋≥2) ⊧ 𝜓
(𝑀, 𝜋) ⊧ 𝜓𝑈 𝜓 ′ iff for some 𝑘 ≥ 1, (𝑀, 𝜋≥𝑘) ⊧𝜓 ′, and

for all 1≤ 𝑗 <𝑘, (𝑀, 𝜋≥𝑗) ⊧𝜓

We say that formula 𝜑 is true in an iCGS 𝑀, or 𝑀 ⊧ 𝜑, iff (𝑀, 𝑠𝐼) ⊧ 𝜑. Now, we state the model
checking problem.

Definition 5. Given an iCGS 𝑀 and a formula 𝜑, the model checking problem concerns determin-
ing whether 𝑀 ⊧ 𝜑.

Given that the interpretation presented in Definition 4 corresponds to the conventional
understanding of ATL∗ [6], it is a recognised fact that verifying ATL∗ through model checking
against iCGS characterised by imperfect information and perfect recall is an undecidable
problem [27]. Since in this paper we are interested in proposing an engineering approach to
revise the coalitions used in the verification of ATL∗ formulas, we assume to be always in the
decidable fragments. That is, CGSs with perfect recall strategies, or, iCGSs with imperfect recall
strategies.

4. Towards a coalition refinement approach

In this section, we overview our envisaged engineering methodology. It consists of the following
steps (as depicted in Figure 1). First, an iCGS (representing a MAS) is verified against one (or
multiple) ATL∗ properties. Naturally, this requires choosing the coalition we assume the agents
will be in. Afterwards, by verifying these properties, we extract the strategies employed by the
agents in the coalitions (i.e., the strategies that, if properly enacted, enable the agents to achieve
their temporal goals). Once these strategies are extracted, we can synthesise the corresponding
monitors to check at execution time whether the agents adhere to the winning strategies or
not. If that is the case, then the approach concludes. However, if at least one agent is not
following any of the winning strategies as intended (i.e., such an agent is not collaborating
with the agents in its coalition), then two outcomes need to be reported. Firstly, the temporal
objective related to the compromised coalition is no longer guaranteed to be achieved (this
information is available at runtime while the system is still operational and can be used to
trigger fail-safe behaviours). Secondly, the coalition that has been compromised at runtime is
consistently updated for further verification rounds.

Remark 1. Note that, when solving the model checking problem, we only receive a Boolean result,
indicating whether the formal specification of interest is satisfied in the model under analysis or
not. However, in our proposed approach, we envision utilising model checking to extract strategies,
similar to what can be accomplished with tools like the MCMAS model checker. This approach
extends beyond conventional formal verification and moves towards formal synthesis. Consequently,
if formal verification is employed, an additional engineering step becomes necessary to reconstruct
the actual joint winning strategy, rather than solely relying on the Boolean verification outcome.

Please note that in Figure 1 and in the rest of the section, we consider only strategic properties
with a single strategic operator. This choice is made to enhance readability and serves as a
foundation for a more comprehensive approach (which will require further study, as we will
discuss in Section 5).

We outline the steps envisioned for our approach, deferring detailed analysis for future
exploration and research.

Model Checking

ΣΓ1 ΣΓ𝑛

𝜑1, 𝜑2, … , 𝜑𝑛

ATL∗ formulas

iCGS

ΣΓ1 , ΣΓ2 , … , ΣΓ𝑛

⊤

⊥

ΣΓ1
…

Winning Joint-Strategies

Monitors

Multi-Agent System

Refine Coalitions

⊥

Actions and Propositions

Figure 1: Overview of the approach, where each ATL formula is of the form 𝜑𝑖 = ⟨⟨Γ𝑖⟩⟩𝜓𝑖 (with 𝜓𝑖
comprising only temporal operators).

1. Step i: Formal Verification. The initial stage of our methodology involves formal verifica-
tion. Specifically, we verify one or multiple ATL∗ properties against an iCGS, representing
the model of the Multi-Agent System under analysis. This verification is accomplished by
solving the corresponding model checking problem, as defined in Definition 5.

2. Step ii: Formal Synthesis. Once the verification step is completed, the joint winning
strategies Σ𝑤𝑖𝑛Γ can be extracted and analysed, a task that can be performed using the
MCMAS model checker.

3. Step iii: Strategy Violation Detection. With the set Σ𝑤𝑖𝑛Γ of winning strategies in hand, we
synthesise corresponding monitors to assess the agents’ runtime conformance. These
monitors check whether the agents adhere to their winning strategies, as extracted in the
previous step.

4. Step iv: Coalition Revision. In case a violation is detected, this information can be lever-
aged to adjust the agent coalitions employed during the static verification phase. This
adjustment is based on the observation that certain agents may not have adhered to their
winning strategies, potentially jeopardising the attainment of the temporal goals.

Up to this point, our primary focus has been on verifying the MAS under analysis and
assessing whether the agents (integral to the verification) adhere to expected behaviour (i.e.,

whether they enact winning strategies or not). However, there are two crucial aspects that
require consideration. Firstly, we need to address how the monitors will gather information
about the MAS. Secondly, once a monitor reports a violation, we must determine the appropriate
course of action.

Firstly, the first aspect is quite pragmatic, as it pertains to the practical verification of the
MAS runtime execution. To accomplish this, we require a method to map the state of the MAS
to the iCGS state, as well as a means to track the actions executed by the agents within the MAS.
The latter is a straightforward process and can be achieved by logging every time an agent
performs an action during runtime. This logging can be implemented by instrumenting the
software system, much like in runtime verification practices [28], where additional instructions
(typically for logging) are added to the source code. Consequently, when the instrumented
MAS is executed, it produces additional information that the monitors utilise to assess the
agents’ adherence to any winning strategies. Instrumentation can also be employed to gather
information about the agents’ states, such as their beliefs. This information can be mapped to
the corresponding atomic propositions represented in the iCGS at the verification stage. This
alignment allows the runtime execution of the MAS to align with its abstract representation (the
model). It is worth noting that this mapping step may depend on domain-specific knowledge
and may necessitate at least partial hard-coding.

Secondly, the second aspect we need to address is the coalition revision process. This is, in
our opinion, the most significant and challenging aspect of the approach. Indeed, the revision
of coalitions can impact both the verification of the MAS and the agents’ behaviour during
runtime. In this paper, we have laid the foundation and outlined a potential road-map for this
approach, with much more to be developed. However, we firmly believe that by combining
runtime monitoring and formal verification for strategic reasoning, we can achieve highly
flexible and reliable MAS. Runtime monitoring can detect violations of (winning) strategies
and, consequently, of agent coalitions. This information can be used to revise the coalitions
employed during static verification of strategic properties in the MAS. Furthermore, the presence
of monitors that assess agent behaviour during runtime enhances the system’s reliability [29, 30].
Indeed, when strategy violations are detected, we can trigger fail-safe behaviours to assist the
agents in still achieving their respective temporal goals.

5. Conclusions and Future Work

In this paper, we have highlighted the steps of a potential approach to utilise runtime monitoring
to guide coalition revision in the formal verification of strategic properties in MAS. Our primary
focus has been on presenting the core idea and emphasising the significance of the resulting
approach. We have introduced the high-level concept and outlined its steps.

Given that this paper serves as a foundational step toward the development of a coalition
refinement methodology, we hope that the insights presented herein can provide a valuable
starting point. Our envisioned future work involves the actual design, implementation and
further investigation of the implications of coalition refinement on MAS verification. In this
concise paper, we have only scratched the surface, but we firmly believe that deeper exploration
will be beneficial for advancing the formal verification of strategic properties in MAS.

Acknowledgments

I would like to express my heartfelt gratitude to VadimMalvone for his invaluable con-
tributions to this paper. His insightful discussions and thoughtful comments have played a
pivotal role in shaping the content and direction of this work. Vadim’s expertise and dedication
have been instrumental, and I am truly grateful for his support throughout this research en-
deavour. His input has enriched the quality of this paper, and I am honoured to acknowledge
his significant role in its development.

References

[1] R. D. Benedictis, M. Castiglioni, D. Ferraioli, V. Malvone, M. Maratea, E. Scala, L. Serafini,
I. Serina, E. Tosello, A. Umbrico, M. Vallati, Preface to the italian workshop on planning and
scheduling, rcra workshop on experimental evaluation of algorithms for solving problems
with combinatorial explosion, and spirit workshop on strategies, prediction, interaction,
and reasoning in italy (ips-rcra-spirit 2023), in: Proceedings of the Italian Workshop on
Planning and Scheduling, RCRA Workshop on Experimental evaluation of algorithms
for solving problems with combinatorial explosion, and SPIRIT Workshop on Strategies,
Prediction, Interaction, and Reasoning in Italy (IPS-RCRA-SPIRIT 2023) co-located with
22th International Conference of the Italian Association for Artificial Intelligence (AI* IA
2023), 2023.

[2] F. Bergenti, M.-P. Gleizes, F. Zambonelli, Methodologies and software engineering for
agent systems: the agent-oriented software engineering handbook, volume 11, Springer
Science & Business Media, 2006.

[3] M. Winikoff, BDI agent testability revisited, Auton. Agents Multi Agent Syst.
31 (2017) 1094–1132. URL: https://doi.org/10.1007/s10458-016-9356-2. doi:10.1007/
s10458-016-9356-2.

[4] M. Winikoff, Debugging agent programs with why?: Questions, in: Proceedings of the
16th Conference on Autonomous Agents and MultiAgent Systems, AAMAS 2017, São
Paulo, Brazil, May 8-12, 2017, ACM, 2017, pp. 251–259. URL: http://dl.acm.org/citation.
cfm?id=3091166.

[5] L. A. Dennis, M. Fisher, M. P. Webster, R. H. Bordini, Model checking agent pro-
gramming languages, Autom. Softw. Eng. 19 (2012) 5–63. URL: https://doi.org/10.1007/
s10515-011-0088-x. doi:10.1007/s10515-011-0088-x.

[6] R. Alur, T. A. Henzinger, O. Kupferman, Alternating-time temporal logic, J. ACM 49 (2002)
672–713. URL: https://doi.org/10.1145/585265.585270. doi:10.1145/585265.585270.

[7] F. Mogavero, A. Murano, G. Perelli, M. Vardi, Reasoning about strategies: On the model-
checking problem, ACM Trans. Comp. Log. 15 (2014) 34:1–34:47. URL: http://doi.acm.org/
10.1145/2631917. doi:10.1145/2631917.

[8] F. Mogavero, A. Murano, G. Perelli, M. Y. Vardi, Reasoning about strategies: on the
satisfiability problem, Log. Methods Comput. Sci. 13 (2017). URL: https://doi.org/10.23638/
LMCS-13(1:9)2017. doi:10.23638/LMCS-13(1:9)2017.

[9] F. Belardinelli, W. Jamroga, D. Kurpiewski, V. Malvone, A. Murano, Strategy logic with

https://doi.org/10.1007/s10458-016-9356-2
http://dx.doi.org/10.1007/s10458-016-9356-2
http://dx.doi.org/10.1007/s10458-016-9356-2
http://dl.acm.org/citation.cfm?id=3091166
http://dl.acm.org/citation.cfm?id=3091166
https://doi.org/10.1007/s10515-011-0088-x
https://doi.org/10.1007/s10515-011-0088-x
http://dx.doi.org/10.1007/s10515-011-0088-x
https://doi.org/10.1145/585265.585270
http://dx.doi.org/10.1145/585265.585270
http://doi.acm.org/10.1145/2631917
http://doi.acm.org/10.1145/2631917
http://dx.doi.org/10.1145/2631917
https://doi.org/10.23638/LMCS-13(1:9)2017
https://doi.org/10.23638/LMCS-13(1:9)2017
http://dx.doi.org/10.23638/LMCS-13(1:9)2017

simple goals: Tractable reasoning about strategies, in: S. Kraus (Ed.), Proceedings of the
Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI 2019, Macao,
China, August 10-16, 2019, ijcai.org, 2019, pp. 88–94. URL: https://doi.org/10.24963/ijcai.
2019/13. doi:10.24963/ijcai.2019/13.

[10] J. H. Reif, The complexity of two-player games of incomplete information, J. Comput.
Syst. Sci. 29 (1984) 274–301.

[11] O. Kupferman, M. Y. Vardi, Module checking revisited, in: CAV’97, Springer, 1997, pp.
36–47.

[12] R. Bloem, K. Chatterjee, S. Jacobs, R. Könighofer, Assume-guarantee synthesis for concur-
rent reactive programs with partial information, in: TACAS, 2015, pp. 517–532.

[13] A. Pnueli, R. Rosner, Distributed reactive systems are hard to synthesize, in: FOCS, 1990,
pp. 746–757.

[14] C. Dima, F. Tiplea, Model-checking ATL under Imperfect Information and PerfectRecall
Semantics is Undecidable., Technical Report, 2011.

[15] F. Belardinelli, A. Lomuscio, V. Malvone, An abstraction-based method for verifying
strategic properties in multi-agent systems with imperfect information, in: The Thirty-
Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative
Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium
on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA,
January 27 - February 1, 2019, AAAI Press, 2019, pp. 6030–6037. URL: https://doi.org/10.
1609/aaai.v33i01.33016030. doi:10.1609/aaai.v33i01.33016030.

[16] F. Belardinelli, V. Malvone, A three-valued approach to strategic abilities under imperfect
information, in: D. Calvanese, E. Erdem, M. Thielscher (Eds.), Proceedings of the 17th
International Conference on Principles of Knowledge Representation and Reasoning, KR
2020, Rhodes, Greece, September 12-18, 2020, 2020, pp. 89–98. URL: https://doi.org/10.
24963/kr.2020/10. doi:10.24963/kr.2020/10.

[17] F. Belardinelli, A. Ferrando, V.Malvone, An abstraction-refinement framework for verifying
strategic properties in multi-agent systems with imperfect information, Artif. Intell.
316 (2023). URL: https://doi.org/10.1016/j.artint.2022.103847. doi:10.1016/j.artint.2022.
103847.

[18] F. Belardinelli, A. Lomuscio, V. Malvone, Approximating perfect recall when model
checking strategic abilities, in: M. Thielscher, F. Toni, F. Wolter (Eds.), Principles of
Knowledge Representation and Reasoning: Proceedings of the Sixteenth International
Conference, KR 2018, Tempe, Arizona, 30 October - 2 November 2018, AAAI Press, 2018,
pp. 435–444. URL: https://aaai.org/ocs/index.php/KR/KR18/paper/view/18010.

[19] F. Belardinelli, A. Lomuscio, V. Malvone, E. Yu, Approximating perfect recall when model
checking strategic abilities: Theory and applications, J. Artif. Intell. Res. 73 (2022) 897–932.
URL: https://doi.org/10.1613/jair.1.12539. doi:10.1613/jair.1.12539.

[20] A. Ferrando, V. Malvone, Strategy RV: A tool to approximate ATL model checking under
imperfect information and perfect recall, in: F. Dignum, A. Lomuscio, U. Endriss, A. Nowé
(Eds.), AAMAS ’21: 20th International Conference on Autonomous Agents and Multiagent
Systems, Virtual Event, United Kingdom, May 3-7, 2021, ACM, 2021, pp. 1764–1766. URL:
https://www.ifaamas.org/Proceedings/aamas2021/pdfs/p1764.pdf. doi:10.5555/3463952.
3464230.

https://doi.org/10.24963/ijcai.2019/13
https://doi.org/10.24963/ijcai.2019/13
http://dx.doi.org/10.24963/ijcai.2019/13
https://doi.org/10.1609/aaai.v33i01.33016030
https://doi.org/10.1609/aaai.v33i01.33016030
http://dx.doi.org/10.1609/aaai.v33i01.33016030
https://doi.org/10.24963/kr.2020/10
https://doi.org/10.24963/kr.2020/10
http://dx.doi.org/10.24963/kr.2020/10
https://doi.org/10.1016/j.artint.2022.103847
http://dx.doi.org/10.1016/j.artint.2022.103847
http://dx.doi.org/10.1016/j.artint.2022.103847
https://aaai.org/ocs/index.php/KR/KR18/paper/view/18010
https://doi.org/10.1613/jair.1.12539
http://dx.doi.org/10.1613/jair.1.12539
https://www.ifaamas.org/Proceedings/aamas2021/pdfs/p1764.pdf
http://dx.doi.org/10.5555/3463952.3464230
http://dx.doi.org/10.5555/3463952.3464230

[21] A. Ferrando, V. Malvone, Towards the combination of model checking and runtime verifi-
cation on multi-agent systems, in: F. Dignum, P. Mathieu, J. M. Corchado, F. de la Prieta
(Eds.), Advances in Practical Applications of Agents, Multi-Agent Systems, and Complex
Systems Simulation. The PAAMS Collection - 20th International Conference, PAAMS 2022,
L’Aquila, Italy, July 13-15, 2022, Proceedings, volume 13616 of Lecture Notes in Computer
Science, Springer, 2022, pp. 140–152. URL: https://doi.org/10.1007/978-3-031-18192-4_12.
doi:10.1007/978-3-031-18192-4_12.

[22] A. Ferrando, V. Malvone, Towards the verification of strategic properties in multi-agent
systems with imperfect information, in: N. Agmon, B. An, A. Ricci, W. Yeoh (Eds.),
Proceedings of the 2023 International Conference on Autonomous Agents and Multiagent
Systems, AAMAS 2023, London, United Kingdom, 29 May 2023 - 2 June 2023, ACM, 2023,
pp. 793–801. URL: https://dl.acm.org/doi/10.5555/3545946.3598713. doi:10.5555/3545946.
3598713.

[23] A. Ferrando, V. Malvone, How to find good coalitions to achieve strategic objectives,
in: A. P. Rocha, L. Steels, H. J. van den Herik (Eds.), Proceedings of the 15th Inter-
national Conference on Agents and Artificial Intelligence, ICAART 2023, Volume 1,
Lisbon, Portugal, February 22-24, 2023, SCITEPRESS, 2023, pp. 105–113. URL: https:
//doi.org/10.5220/0011778700003393. doi:10.5220/0011778700003393.

[24] W. Jamroga, W. van der Hoek, Agents that know how to play, Fundam. Informaticae
63 (2004) 185–219. URL: http://content.iospress.com/articles/fundamenta-informaticae/
fi63-2-3-05.

[25] R. Fagin, J. Y. Halpern, Y. Moses, M. Vardi, Reasoning about Knowledge., MIT, 1995.
[26] C. Baier, J.-P. Katoen, Principles of Model Checking (Representation and Mind Series),

2008.
[27] C. Dima, F. L. Tiplea, Model-checking ATL under imperfect information and perfect recall

semantics is undecidable, CoRR abs/1102.4225 (2011). URL: http://arxiv.org/abs/1102.4225.
arXiv:1102.4225.

[28] Y. Falcone, K. Havelund, G. Reger, A tutorial on runtime verification, in: M. Broy,
D. A. Peled, G. Kalus (Eds.), Engineering Dependable Software Systems, volume 34 of
NATO Science for Peace and Security Series, D: Information and Communication Security,
IOS Press, 2013, pp. 141–175. URL: https://doi.org/10.3233/978-1-61499-207-3-141. doi:10.
3233/978-1-61499-207-3-141.

[29] A. Ferrando, R. C. Cardoso, Safety shields, an automated failure handling mechanism
for BDI agents, in: P. Faliszewski, V. Mascardi, C. Pelachaud, M. E. Taylor (Eds.), 21st
International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2022,
Auckland, New Zealand, May 9-13, 2022, International Foundation for Autonomous Agents
and Multiagent Systems (IFAAMAS), 2022, pp. 1589–1591. URL: https://www.ifaamas.org/
Proceedings/aamas2022/pdfs/p1589.pdf. doi:10.5555/3535850.3536044.

[30] D. C. Engelmann, A. Ferrando, A. R. Panisson, D. Ancona, R. H. Bordini, V. Mascardi,
Rv4jaca - runtime verification for multi-agent systems, in: R. C. Cardoso, A. Ferrando,
F. Papacchini, M. Askarpour, L. A. Dennis (Eds.), Proceedings of the Second Workshop on
Agents and Robots for reliable Engineered Autonomy, AREA@IJCAI-ECAI 2022, Vienna,
Austria, 24th July 2022, volume 362 of EPTCS, 2022, pp. 23–36. URL: https://doi.org/10.
4204/EPTCS.362.5. doi:10.4204/EPTCS.362.5.

https://doi.org/10.1007/978-3-031-18192-4_12
http://dx.doi.org/10.1007/978-3-031-18192-4_12
https://dl.acm.org/doi/10.5555/3545946.3598713
http://dx.doi.org/10.5555/3545946.3598713
http://dx.doi.org/10.5555/3545946.3598713
https://doi.org/10.5220/0011778700003393
https://doi.org/10.5220/0011778700003393
http://dx.doi.org/10.5220/0011778700003393
http://content.iospress.com/articles/fundamenta-informaticae/fi63-2-3-05
http://content.iospress.com/articles/fundamenta-informaticae/fi63-2-3-05
http://arxiv.org/abs/1102.4225
http://arxiv.org/abs/1102.4225
https://doi.org/10.3233/978-1-61499-207-3-141
http://dx.doi.org/10.3233/978-1-61499-207-3-141
http://dx.doi.org/10.3233/978-1-61499-207-3-141
https://www.ifaamas.org/Proceedings/aamas2022/pdfs/p1589.pdf
https://www.ifaamas.org/Proceedings/aamas2022/pdfs/p1589.pdf
http://dx.doi.org/10.5555/3535850.3536044
https://doi.org/10.4204/EPTCS.362.5
https://doi.org/10.4204/EPTCS.362.5
http://dx.doi.org/10.4204/EPTCS.362.5

	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Model
	3.2 Syntax
	3.3 Semantics

	4 Towards a coalition refinement approach
	5 Conclusions and Future Work

