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Abstract
In polymatrix coordination games, each player 𝑥 is a node of a graph and must select an action in her
strategy set. Nodes are playing separate bimatrix games with their neighbors in the graph. Namely, the
utility of 𝑥 is given by the preference she has for her action plus, for each neighbor 𝑦, a payoff which
strictly depends on the mutual actions played by 𝑥 and 𝑦.

We propose the new class of distance polymatrix coordination games, properly generalizing polymatrix
coordination games, in which the overall utility of player 𝑥 further depends on the payoffs arising from
mutual actions of players 𝑣, 𝑧 that are the endpoints of edges at any distance ℎ < 𝑑 from 𝑥, for a
fixed threshold value 𝑑 ≤ 𝑛. In particular, the overall utility of player 𝑥 is the sum of all the above
payoffs, where each payoff is proportionally discounted by a factor depending on the distance ℎ of the
corresponding edge.

Under the above framework, which is a natural generalization that is well-suited for capturing
positive community interactions, we study the social inefficiency of equilibria resorting to standard
measures of Price of Anarchy and Price of Stability. Namely, we provide suitable upper and lower bounds
for the aforementioned quantities, both for bounded-degree and general graphs.
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1. Introduction

Polymatrix games [2] are a well-known universal framework for modelling multi-agent games,
which considers only pairwise interactions and thus allows a concise representation. They
have been thoroughly studied since, both in some classical works [3, 4, 5, 6] and also more
recently with a special focus on equilibria [7, 8, 9, 10]. In polymatrix games each player plays a
separate bimatrix game with every other player. In the restricted version named polymatrix
coordination games [7], an outcome of a bimatrix game gives the same payoff 𝑤{𝑥,𝑦}(𝜎𝑥, 𝜎𝑦) to
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the two players 𝑥 and 𝑦 involved in it. Moreover, every player gets also an additional payoff
𝑝𝑥(𝜎𝑥) that only depends on the strategy she chooses.

In this paper, we generalize polymatrix coordination games by allowing players to receive
a further payoff from the interactions in which they are not personally involved. The idea
here is that each player benefits not only from good relations with her immediate neighbours
but also from the positive environment stemming from good relations between them and
their respective immediate neighbours. A further generalization of this thought brings us to a
model in which the utility is computed as the sum of the payoffs from the whole connected
component of the interaction graph up to a certain maximal distance 𝑑, where 𝑑 is a parameter
of the model. Furthermore, it seems reasonable to discount the payoff received from non-
neighbouring edges by a factor between zero and one and to make such factors decrease with
the distance of the corresponding edge/interaction. In other words, an agent 𝑥 gets also the
payoff 𝛼ℎ+1 · 𝑤{𝑣,𝑧}(𝜎𝑣, 𝜎𝑧) for every edge {𝑣, 𝑧} at distance ℎ < 𝑑 from 𝑥, where 𝛼ℎ+1 is the
relative discount factor. We call the arising model that generalizes polymatrix coordination
games, distance polymatrix coordination games.

Distance polymatrix coordination games are able to capture many types of interactions in the
real world. In fact, several kinds of positive community effects easily fall within their scope. For
instance, members of a scientific community obviously benefit from successful collaborations
with their colleagues (while at the same time having personal preferences of what they would
like to work on). However, any individual also benefits, albeit to a smaller degree, when his
close colleagues have successful collaborations that he is not personally a part of. This is quite
obvious when thinking about the student-advisor relationship but also noticeable for researchers
working at the same university or institution. A further example comes from politics, where
a person who belongs to a party profits not only from her direct contacts but also from the
contacts of her contacts, etc. At the same time, it is also common that the benefit obtained by
relations at second or higher distance level generate less payoff, which is taken into account by
our discount factors.

In the setting described above, we will be focusing on the efficiency of the system. Our
reference point for stability will be 𝑘-strong Nash equilibria, which are action profiles from
which no group of up to 𝑘 agents can simultaneously deviate such that all of them profit from
the deviation. Our analysis provides bounds which depend on 𝑘 and the discounting factors for
the part of the utility of the agents coming from non-first-hand interactions.

A full version of our results can be found in [11]. At the same time, a further generalisation to
hypergraphs can be found in [12]. Related to our work are also (symmetric) additively separable
hedonic games [13] and hypergraph hedonic games [14], where the players are embedded in a
weighted graph, and the utility is computed as the sum of the edges or hyperedges towards
members of the same coalition. The difference from our model, however, is that in hedonic
games in general, every coalition is a feasible choice for every player, there are no individual
preferences, and the weights in each bimatrix are all equal to either 0 or to a fixed value 𝑤.

Another model related to our work is the group activity selection problem [15, 16, 17], standing
between polymatrix coordination games and hedonic games. Also, here, in each bimatrix, all
the weights are either 0 or a fixed value 𝑤, but there are also individual preferences that depend
on the chosen activity.

The idea of obtaining utility from non-neighbouring players has been explored recently for a



variant of hedonic games, called distance hedonic games, that are not additively separable since
the coalition size also plays a role in determining the payoffs [18]. They generalize fractional
hedonic games [19, 20, 21, 22, 23] similarly as our model does with polymatrix games.

2. Model and Definitions

Distance Polymatrix CoordinationGames. Given an integer 𝑑 ≥ 1, a 𝑑-distance polymatrix
coordination game 𝒢 = (𝐺, (Σ𝑥)𝑥∈𝑉 , (𝑤𝑒)𝑒∈𝐸 , (𝑝𝑥)𝑥∈𝑉 , (𝛼ℎ)ℎ∈[𝑑]) is a tuple defined as follows:

• 𝐺 = (𝑉,𝐸) is an undirected graph, where 𝑉 is the set of players and 𝐸 the set of edges
between players.

• For any𝑥 ∈ 𝑉 ,Σ𝑥 is a finite set of strategies of player𝑥. A strategy profile𝜎 = (𝜎1, . . . , 𝜎𝑛)
is a configuration in which each player 𝑥 ∈ 𝑉 plays strategy 𝜎𝑥 ∈ Σ𝑥.

• For any edge {𝑣, 𝑧} ∈ 𝐸, let 𝑤{𝑣,𝑧} : Σ𝑣 ×Σ𝑧 → R≥0 be the weight function that assigns,
to each pair of strategies 𝜎𝑣, 𝜎𝑧 played respectively by 𝑣 and 𝑧, a weight 𝑤{𝑣,𝑧}(𝜎𝑣, 𝜎𝑧) ≥
0.

• For any 𝑥 ∈ 𝑉 , let 𝑝𝑥 : Σ𝑥 → R≥0 be the player-preference function that assigns, to
each strategy profile 𝜎𝑥 played by player 𝑥, a non-negative real value 𝑝𝑥(𝜎𝑥), called
player-preference.

• Let (𝛼ℎ)ℎ∈[𝑑] be the distance-factors sequence of the game, that is a non-negative sequence
of real parameters, called distance-factors, such that 1 = 𝛼1 ≥ 𝛼2 ≥ . . . ≥ 𝛼𝑑 ≥ 0.

In what follows, for the sake of brevity, given any strategy profile 𝜎, we will often denote
𝑤{𝑣,𝑧}(𝜎𝑣, 𝜎𝑧) and 𝑝𝑥(𝜎𝑥) simply as 𝑤{𝑣,𝑧}(𝜎) and 𝑝𝑥(𝜎), respectively. For any ℎ ∈ [𝑑], let
𝐸ℎ(𝑥) be the set of edges {𝑣, 𝑧} such that the minimum distance between 𝑥 and one of the
players 𝑣 and 𝑧 is exactly ℎ− 1. Then, for any 𝑥 ∈ 𝑉 , the utility function 𝑢𝑥 : ×𝑥∈𝑉 Σ𝑥 → R of
player 𝑥, for any strategy profile 𝜎 is defined as 𝑢𝑥(𝜎) := 𝑝𝑥(𝜎) +

∑︀
ℎ∈[𝑑] 𝛼ℎ

∑︀
𝑒∈𝐸ℎ(𝑥)

𝑤𝑒(𝜎).
Given a strategy profile 𝜎, the social welfare of 𝜎 is defined as SW(𝜎) =

∑︀
𝑥∈𝑉 𝑢𝑥(𝜎). A social

optimum of game 𝒢 is a strategy profile 𝜎* that maximizes the social welfare. We denote by
OPT(𝒢) = SW(𝜎*) the corresponding value.

𝑘-strong Nash equilibrium. Given two strategy profiles 𝜎 = (𝜎1, . . . , 𝜎𝑛) and 𝜎* =

(𝜎*
1, . . . , 𝜎

*
𝑛), and a subset 𝑍 ⊆ 𝑉 , let 𝜎 𝑍→ 𝜎* be the strategy profile 𝜎′ = (𝜎′

1, . . . , 𝜎
′
𝑛)

such that 𝜎′
𝑥 = 𝜎*

𝑥 if 𝑥 ∈ 𝑍 , and 𝜎′
𝑥 = 𝜎𝑥 otherwise. Given 𝑘 ≥ 1, a strategy profile 𝜎 is a

𝑘-strong Nash equilibrium of 𝒢 if, for any strategy profile 𝜎* and any 𝑍 ⊆ 𝑉 such that |𝑍| ≤ 𝑘,

there exists 𝑥 ∈ 𝑍 such that 𝑢𝑥(𝜎) ≥ 𝑢𝑥(𝜎
𝑍→ 𝜎*). We denote the (possibly empty) set of

𝑘-strong Nash equilibria of 𝒢 by NE𝑘(𝒢).

𝑘-strong Price of Anarchy (PoA) and Price of Stability (PoS). The 𝑘-strong Price of
Anarchy of a game 𝒢 is defined as PoA𝑘(𝒢) := max𝜎∈NE𝑘(𝒢)

OPT(𝒢)
SW(𝜎) , i.e., it is the worst-case

ratio between the optimal social welfare and the social welfare of a 𝑘-strong Nash equilibrium.
The 𝑘-strong Price of Stability of game 𝒢 is defined as PoS𝑘(𝒢) := min𝜎∈NE𝑘(𝒢)

OPT(𝒢)
SW(𝜎) , i.e., it

is the best-case ratio between the optimal social welfare and the social welfare of a 𝑘-strong
Nash equilibrium.



3. Our Contribution

We study the inefficiency of 𝑘-stable Nash equilibria of 𝑑-distance polymatrix coordination
games and provide suitable bounds on both the Price of Anarchy and the Price of Stability.
To the best of our knowledge, there are no previous results of this kind in the literature that
would apply to our model. In Section 3.1, we give upper and lower bounds for bounded-degree
graphs, with the gap being reasonably small, and in Section 3.2, a tight bound on the Price of
Anarchy for general graphs. Finally, in Section 3.3, we show that in general graphs, the Price
of Stability is asymptotically equal to the Price of Anarchy, meaning that the inefficiency of
𝑘-strong equilibria is fully characterized. We remark that our results also apply to the subclass
of the classical polymatrix coordination games, for which, in turn, we get the first upper and
lower bounds on the Price of Anarchy for bounded-degree graphs and the first asymptotically
tight lower bound on the Price of Stability for general graphs.

3.1. 𝑘-strong PoA of Bounded-Degree Graphs

In this section we compute upper and lower bounds on the 𝑘-strong Price of Anarchy of
bounded-degree graphs. More formally, a game 𝒢 is ∆-bounded-degree if the degree of each
node/player 𝑥 ∈ 𝑉 in graph 𝐺 is at most ∆.

First we remark that for 𝑘 = 1, 𝑑 ≥ 1, and ∆ = 1, there exists a simple ∆-bounded-degree
𝑑-distance polymatrix coordination game 𝒢 such that PoA𝑘(𝒢) = ∞ [7]. Thus, we will only
consider the case of 𝑘 ≥ 2. Furthermore, if ∆ = 1, w.l.o.g. we can assume that the graph
consists of 2 agents and an edge between them. This special case is encompassed by Section 3.2,
so here we will assume that ∆ ≥ 2.

Theorem 1. For any integer 𝑘 ≥ 2 and any ∆-bounded-degree 𝑑-distance polymatrix coordination
game 𝒢 having a distance-factors sequence (𝛼ℎ)ℎ∈[𝑑], it holds that

PoA𝑘(𝒢) ≤ 2
∑︁
ℎ∈[𝑑]

𝛼ℎ ·∆ · (∆− 1)ℎ−1. (1)

Remark 1. From Eq. (1), notice that the 𝑘-strong price of anarchy of ∆-bounded-degree 𝑑-
distance polymatrix coordination games, as a function of 𝑑, grows at most as 𝑂((∆− 1)𝑑).

In the following theorem we provide a lower bound on the 𝑘-strong Price of Anarchy, relying
on a nice construction from graph theory.

Theorem 2. For any 𝑘 ≥ 2, ∆ ≥ 2, 𝑑 ≥ 1, and any distance-factors sequence (𝛼ℎ)ℎ∈[𝑑], there
exists a ∆-bounded-degree 𝑑-distance polymatrix coordination game 𝒢 such that

PoA𝑘(𝒢) ≥
∑︀

ℎ∈[𝑑] 𝛼ℎ ·∆ · (∆− 1)ℎ−1∑︀
ℎ∈[𝑑] 𝛼ℎ(∆− 1)⌊ℎ/2⌋

. (2)

Remark 2. Notice that, if all the distance-factors are not lower than a constant 𝑐 > 0, from
Eq. (2) we can conclude that the 𝑘-strong price of anarchy of ∆-bounded-degree 𝑑-distance
polymatrix coordination games, as a function of 𝑑, can grow as Ω((∆− 1)𝑑/2).



3.2. 𝑘-strong PoA of General Graphs

In this section, we provide tight bounds on the 𝑘-strong Price of Anarchy when there is no
particular assumption on the underlying graph of the considered game. Such bounds depend
on 𝑘, on the number of players 𝑛, and on the value 𝛼2 of the distance-factors sequence.

Theorem 3. For any integer 𝑘 ≥ 2 and any 𝑑-distance polymatrix coordination game 𝒢 having a
distance-factors sequence (𝛼ℎ)ℎ∈[𝑑], we have

PoA𝑘(𝒢) ≤
(2 + 𝛼2 · (𝑛− 2)) · (𝑛− 1)

𝑘 − 1
.

In the following theorem, we provide a tight lower bound.

Theorem 4. For any 𝑘 ≥ 2, 𝑑 ≥ 1, 𝑛 ≥ 2, and any distance-factors sequence (𝛼ℎ)ℎ∈[𝑑], there is
a 𝑑-distance polymatrix coordination game 𝒢 with

PoA𝑘(𝒢) ≥
(2 + 𝛼2 · (𝑛− 2)) · (𝑛− 1)

𝑘 − 1
.

3.3. 𝑘-strong PoS of General Graphs

In this section, we show that there exists a 𝑑-distance polymatrix coordination game 𝒢 such that
PoS𝑘(𝒢) is asymptotically equal to the upper bound on PoA𝑘 shown in Theorem 3; thus we
characterise entirely the inefficiency of 𝑑-distance polymatrix coordination games for general
graphs. The modus operandi that we use to create the lower bound for PoS𝑘 is to start from
the lower bound instance on PoA𝑘 provided in the proof of Theorem 4, in which the optimal
outcome is a 𝑘-strong Nash equilibrium, and to suitably transform it in such a way that all the
outcomes with social welfare close to the optimum cannot be stable.

Theorem 5. For any 𝑛 ≥ 6, there exists a 𝑑-distance polymatrix coordination game 𝒢 such that

PoS𝑘(𝒢) =
2𝑛− 3 + 𝛼2(𝑛− 2)(𝑛− 3/2)

(1 + 𝛼2)𝑘
.

4. Conclusion and future works

In this work, we have introduced the class of 𝑑-distance polymatrix coordination games and
studied their performance (by means of the 𝑘-strong Price of Anarchy and Stability). Some
open problems left by our work are that of closing the gap between the upper and lower
bound on the strong Price of Anarchy for bounded-degree graphs and providing better bounds
on the strong Price of Stability specifically for the case of bounded-degree graphs. Another
interesting research direction is extending the idea of obtaining utilities from non-neighbouring
players (as in [18] and our work) to other graphical games [24, 25], and then studying the social
performance of their equilibria in general graphs or specific topologies.
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