
HYASM: a Tool to Verify Hierarchical Systems
Angelo Ferrando
University of Genoa

Genoa, Italy
angelo.ferrando@unige.it

Vadim Malvone
Telecom Paris

Palaiseau, France
vadim.malvone@telecom-paris.fr

Aniello Murano
University of Naples Federico II

Naples, Italy
aniello.murano@unina.it

Silvia Stranieri
University of Naples Federico II

Naples, Italy
silvia.stranieri@unina.it

Abstract—Hierarchical state machines represent a natural and
useful framework to model and reason about modern systems.
These machines encompass the ability to model hierarchical
systems where some of the components can be reused in different
contexts, e.g., by hierarchically calling subsystems. However,
classical model checkers lack support to properly deal with
hierarchical systems. Mostly, they treat the hierarchical calls as
generic, possibly recursive, procedure calls. In this paper, we
present HYASM a model checker for hierarchical systems as an
extension of the tool YASM, a symbolic model-checker based
on the CEGAR paradigm. Our tool uses a suitable flattening
approach over hierarchical state machines, and experimental
results show that our approach works very well in practice.

Index Terms—Hierarchical State Machines, Model Checking,
Temporal Logics

I. INTRODUCTION

In formal system design, one of the most significant de-
velopments has been the discovery of model checking [17],
[34]. Such a method allows to verify whether a system is
correct with respect to a desired behaviour by translating
the system into a labeled-state transition graph (a.k.a. Kripke
structure) K, translating the desired behaviour into a temporal-
logic formula φ (i.e., a temporal specification), and then
checking whether K satisfies φ (formally, K |= φ) [18]. This
verification method has been deeply studied in the past 40
years, implemented in tools used by industries in practice,
and extended in several ways to deal with very complicated
systems, including reactive and multi-agent systems [3], [26].

The translation of a system into a model K usually involves
a painful blow-up, and the size of the model is typically
the computational bottleneck in the model-checking algorithm.
One source of such a blow-up regards coping with the pro-
cedure calls, which requires an heavy duplication of states,
especially in the case of recursive calls. However, many real
systems are inherently hierarchical and the procedure calls are
just finite hierarchical calls to sub-components, with the pos-
sibility of calling the same component in different places [4],
[6]. In [6] a formal modelling of hierarchical systems has
been proposed by means of hierarchical state machines, that
is a tuple of structures H = (K1, . . . ,Kn), where each Ki

is a classical Kripke structure (e.g., a labeled-state transition
graph) and, additionally, each Ki<n is equipped with special
states called boxes or superstates that correspond to nested
calls to Kj>i structures. In [6], a suitable model checking
procedure for hierarchical systems has been introduced, which
encompasses a “flattening” of the hierarchical state-machine

model. Specifically, the procedure first transforms the model in
a classical Kripke structure (i.e., with no boxes) by repeatedly
substituting box-references to sub-structures with copies of
these sub-structures, and then call a classical model checking
procedure. Thanks to the hierarchical structures of the calls,
the derived Kripke structure is finite. In [6], [7], [21], it has
been shown that this approach, although exponential in the
worst case (due to the possibility of having different calls to
the same sub-structure), is the best one can use in case of
branching-time temporal logics. Also, a closer look to the com-
putational complexity of the algorithm shows that it performs
very well in case the nesting depth of the hierarchical model
is small (compared with the total number of states), which
often occurs in practice [7]. Surprisingly, existing model-
checking tools lack any support to deal with hierarchical state
machines, and in particular flattening algorithms have never
been implemented and tested in practice for temporal-logics
specifications.

Our contribution. In this paper we present HYASM, a
model checking tool for hierarchical systems based on an
extension of the tool YASM [22], a symbolic model checker
based on the CEGAR paradigm [16]. Our idea is to show that
by using an ad-hoc method to handle hierarchical calls, we let
the model checking to perform much better than handling the
calls as in the classical recursive case. Our approach works
as follows: given a C-program P with hierarchical procedure
calls and a branching-time temporal logic specification φ, we
first build a hierarchical state machine H of P , then we build a
flat expansion F of H , and finally we call the classical YASM
engine to check whether F |= φ. We give an evidence of a
better performance of our approach by means of experimental
results, comparing our method with the classical one provided
by YASM. This paper originated from [30].

To conclude, we want to summarize the strengths and
weaknesses of YASM that have influenced our decision to
extend it for handling hierarchical model checking. On the one
hand, YASM takes input programs with procedures, making
it easy to represent them as hierarchical models, that is a
model for each procedure. In addition, since YASM employs
an abstraction-refinement method, it incorporates the concept
of abstract state, that is closely related to the box state. On
the other hand, YASM requires the help of a domain expert
to define the right abstraction, impacting its success in recent
years. However, with the introduction of IA, we believe that
this tool will strengthen its position.

A. Related Work

Hierarchical system verification has received a lot of at-
tention from the formal-verification community, in the past 25
years [4], [9], [11], [13], [14], [19], [20], [25], [27], [31], [33].
Mainly, the work has concentrated on understanding in which
situations it is better not to flatten the hierarchical model (using
an ad-hoc hierarchical verification procedure) or, conversely,
state that one cannot gain much with respect to the flattening
approach. Notably, most of the works only report a theoretical
study.

In [4], [6], it is shown that for LTL model checking, it
is much better not to flatten the hierarchical model (saving
an exponential blow-up), whereas for CTL the exponential
blow-up is unavoidable, except for very restricted cases. The
authors in [7], [21] reached the same conclusion for µ-calculus
specifications, showing that one can trade for an exponential
blow-up in the (often much smaller) size of the formula and
the maximal number of exits of sub-structures. Slightly more
efficient model-checking algorithms have been obtained by
considering hierarchical state machines in which also boxes (in
addition to regular states) are labeled with atomic propositions
[28], [29].

In [2], [5], a verification tool for hierarchical systems called
HERMES is presented. However HERMES just deals with
reachability specifications and, contrarily to our approach,
it works directly on the hierarchical representation of the
hierarchical system, by exploiting its modularity.

In [35] a flattening technique has been also considered
and implemented in a tool named SCOPE - a code gener-
ator targeting constrained embedded systems. However, the
flattening approach used there is substantially different from
the expansion to a product machine we use. In fact, the
flat procedure used in SCOPE is a predecessor language of
statecharts: a set of traditional Mealy machines operating
concurrently.

The extension of hierarchical state machines with recur-
sive calls have been studied in [1]. Recursive machines are
equivalent to pushdown systems [10]. Formal verification of
pushdown systems is also an important field of research
(e.g., [8], [12], [24]) with recent promising developments in
the multi-agent setting [15], [32]. Note however that flattening
a recursive machine may produce an infinite state model.

II. HIERARCHICAL SYSTEMS

Hierarchical systems can be modeled by means of hierar-
chical state machines, i.e., hierarchical labeled-state transition
graphs, where states can be ordinary states (as in classical
Kripke structures) or superstates (also named Boxes) rep-
resenting hierarchical calls to submodels. Hierarchical state
machines have become popular not only because the super-
states allow to model the intrinsic modularity of hierarchical
systems, but also because hierarchical models allow a sharing
of preexisting model components, to be used in different
contexts [4].

As an example, in Figure 1, we provide a hierarchical state
machine for a digital clock [29]. The model K1 is made of 24

superstates, one for every hour of the day. Each of them, in
turn, calls a machine K2, which is composed of 60 superstates,
one for every minute, and each superstate, in turn, calls a
machine K3. Finally, machine K3 is made of 60 ordinary
states, one for every second, in fact, K3 is a classical Kripke
structure. Remarkably, as shown in the figure, each superstate
of the model K1 refers to the same model K2, and each
superstate in K2 refers to the same model K3, but in different
contexts. The hierarchical approach, in this case, considerably
reduces the number of states used to specify the behavior of
the system, allowing the reuse of the same structure in several
contexts. In the following, we are going to formally define
a hierarchical state machine (formally, a hierarchical Kripke
structure) and the corresponding flattened structure.

60

K3 K3

K2 K2 K2

K3

60 60 60

60 60 60

K1

K2

K3

00:00 am 01:00 am 11:00 pm

1 2 60

1 2 3

Fig. 1: Hierarchical model of a digital clock.

Definition 1 (Hierarchical Kripke Structure): A hierarchical
Kripke structure K, over a set of atomic propositions AP ,
is a tuple of structures ⟨K1, . . .Kn⟩, where each Ki =
⟨Ni, Bi, n

i
0, Oi, Xi, Yi, Ei⟩, such that:

• Ni is the finite set of states or nodes;
• Bi is the finite set of superstates or boxes;
• ni

0 ∈ Ni is the starting node;
• Oi ⊂ Ni is the set of exit nodes;
• Xi : Ni → 2AP is an evaluation function associating the

subset of atomic propositions holding in each node;
• Yi : Bi → {i + 1, . . . , n} is a function associating an

index to each box. Such an index leads to one of the
underlying structures to which the box refers to;

• Ei ⊆ (Ni∪Bi)×(Ni∪Bi) is the set of edges. Precisely,
in the case of edges (b, v) having a box as the source
node, we can write such an edge as the pair ((b, o), v),
where b ∈ Bi, and o ∈ Oj with j = Yi(b).

Notice that Kn does not contain any box. In fact, it is a
classical Kripke structure.

A hierarchical Kripke structure can be “flattened” into a
standard Kripke structure (that is, without boxes) by recur-
sively replacing each box (superstate) with the corresponding
associated structure as described below. Note that the flattening
needs to remember the context in which each substructure

is called (see [6] for more details and proofs of semantic
equivalence).

Definition 2 (Flattened Structure): Given a Hierarchical
Kripke Structure K = ⟨K1, . . .Kn⟩, its flattened structure is
denoted by KF and it is computed by flattening each Ki of
K from n to 1. Formally, KF = KF

1 where, for each i, the
flattened structure KF

i = ⟨Si, ini, δi, λi⟩ is as follows:

• Si = Ni ∪ {(u, v) | u ∈ Bi ∧ v ∈ Sj ,with j = Yi(u)} is
the set of states made of (i) all the ordinary nodes of Ki,
and (ii) the pairs of superstates and nodes of the flattened
Kripke structure they refer to.

• ini = ni
0 is the starting state, which is as in Ki.

• δi = {(u, v) ∈ Ei | v ∈ Ni}∪{(u, (v, inj)) | (u, v) ∈ Ei,
v ∈ Bi ∧ Yi(v) = j} ∪ {((w, u), (w, v)) | w ∈ Bi∧
Yi(w) = j ∧ (u, v) ∈ δj} is the transition relation s.t.:

– Each pair (u, v) ∈ Ei, such that the target v is an
ordinary node, is added to δi;

– Each pair (u, v) ∈ Ei, such that the target v is a
superstate, a transition from the source node u to the
initial state of the structure to which the box refers
to is added to δi;

– For each superstate w in Ki referring to the Kripke
structure Kj and for each transition (u, v) in KF

j , a
transition ((w, u), (w, v)) is added to δi.

• λi(w) =

{
Xi(w) if w ∈ Ni

λj(v) if w = (u, v) ∧ u ∈ Bi ∧ Yi(u) = j
is an evaluation function, corresponding to the evaluation
function of the ordinary nodes in Ki, or, in case of a
superstate, to the evaluation function of the associated
nodes in the flattened Kripke structure.

III. YASM: A SYMBOLIC MODEL CHECKER

In this section, we present the model cheker YASM, along
with its main features. We also provide a running example that
will be used in the rest of the paper.

YASM [22] is a symbolic model checker based on the
Counter-Example Guided Abstraction Refinement (CEGAR)
framework [16]. A typical YASM execution requires the
following phases:

1) Abstractions are represented through Boolean programs,
by approximating weakest precondition of program
statements.

2) The model checking is performed through a BDD-based
symbolic model checker.

3) The model checker provides counterexamples for incon-
clusive properties.

4) When the verification result is not defined, a refinement
phase can be performed to determine a more precise
abstraction.

The main strength of the tool is the determination of three
possible states [22]:

• States from which the error is unavoidable.
• States from which the error is unreachable.
• States that have paths leading to the error.

Only the third set of states may lead to undefined results,
requiring the refinement phase.

In the following, we explain the main features of the tool
and how we modify them to manage a hierarchical model
checking, starting with a running example. We present a simple
program in pseudo-code (Algorithm 1) that will be used in
the sequel to show the behavior of the tool. The resulting C
program is what we verify with YASM. In order to do so,
we define a CTL formula, such as ϕ = EF (pc = END),
meaning that we are asking whether, for any path, eventually
the program terminates.

Algorithm 1 Example

(a) Main
y ← 10
y ← y + 1
if y == 11 then
y ← PROCEDURE(y)

else
y ← y + 1
y ← PROCEDURE(8)

end if
y ← PROCEDURE1(8)

(b) PROCEDURE
Require: y

if y == 10 then
y ← PROCEDURE1(y)

return y
else

return 11
end if

(c) PROCEDURE1
Require: z

if z > 5 then
return 35

else
return 53

end if

A. YASM Predicate Program

The predicate program or Boolean program represents the
first (and most important) transformation of the program to
verify [23]. From now on, this will be called pProgram, for
short. Each node of the pProgram is an object of the class
PStmt having the following features:

• a string specifying the label of the statement;
• a connection with the syntactic successor statement

(next), represented with a solid arrow;
• a connection with the control-flow successor statement

(dest), represented with a dashed arrow.
We illustrate in Figure 2 the resulting pProgram for the running
example.

IV. HYASM A HIERARCHICAL MODEL CHECKER

The main goal of this work is to provide a hierarchical
model to perform model checking operations with YASM. In
order to do so, we adapted some transformations of the YASM
modules. Here, we will focus on the Hierarchical pProgram.
The full package of HYASM, the hierarchical extension of
YASM, can be found here1.

The verification is made through the flattened structure
shown in Section II. Moreover, we provide a comparison be-
tween the original YASM tool and HYASM, not only in terms
of coherence of the results but also from the performances
point of view. The execution flow is shown in Figure 3.

A. Hierarchical and flattened pProgram

A hierarchical pProgram is created by splitting a flat pPro-
gram. Each pProgram is a function of the input program and
is not related to any of the other programs, i.e. it represents a
separated entity.

1https://github.com/AngeloFerrando/hierarchical model checking

https://github.com/AngeloFerrando/hierarchical_model_checking
https://github.com/AngeloFerrando/hierarchical_model_checking

0/init

1/END

14/main RETURN SELECTOR HEAD

15/main ENTRY

16/l17

17/l18

18/l19

19/PROCEDURE CALL 0 21/l22

20/PROCEDURE RETURN 0 22/PROCEDURE CALL 1

24/PROCEDURE1 CALL 0

25/PROCEDURE1 RETURN 0

2/PROCEDURE RETURN SELECTOR HEAD

3/PROCEDURE ENTRY

4/l5

8/l95/PROCEDURE1 CALL 1

6/PROCEDURE1 RETURN 1

7/l8

9/PROCEDURE1 RETURN SELECTOR HEAD

10/PROCEDURE1 ENTRY

11/l12

12/l13 13/l14

Fig. 2: pProgram of the running example.

Flat Program

Flat CFA

Flat XKripke

Hierarchical
Program

Hierarchical CFA

Hierarchical
XKripke

Flattening

Flat MC

Yasm Modified Yasm

Fig. 3: YASM tools flow execution.

For each function invocation, a new statement is created as:

Box function-name invocation-number (1)

where the parameters are the function name and a specific
index identifying each function invocation, respectively. The
invocation number is defined to uniquely identify each invo-
cation procedure.

In order to create those pProgram, first we have to modify
the compiling phase. Indeed, in the original YASM tool,
invoking a procedure whose body is not in the file would
have generated an error. Instead, in HYASM, a situation like
the one just explained needs to be handled, since we have to
create several pPrograms including fragments of the same C
code. We also produce the new Box statement, as anticipated.
Precisely, for each procedure invocation, we replace each
CALL/RETURN statement with the Box one, having the same
incoming edges of the CALL and the same outgoing ones of
the RETURN.

In Figures 4 and 5, we show the hierarchical pPrograms
associated to the functions PROCEDURE and main of the
running example (the pProgram for PROCEDURE1 is left out
since not hierarchical and trivial).

0.

1. END

2. PROCEDURE RETURN SELECTOR HEAD

3. PROCEDURE_ENTRY

4. l5

5. Box_PROCEDURE1_0

6. l7

7. l8

Fig. 4: Hierarchical pProgram of the function PROCEDURE.

0.

1. END

2. main RETURN SELECTOR HEAD

3. main_ENTRY

4. l5

5. l6

6. l7

7. Box_PROCEDURE_0 8. l9

9. Box_PROCEDURE_1

10. Box_PROCEDURE1_2

Fig. 5: Hierarchical pProgram of the main function.

Given the three hierarchical pPrograms and by applying the
flattening rules shown in Section II, we can generate a flat
pProgram that can be passed in input for the YASM tool.

V. EXPERIMENTS

We tested our prototype on a machine with the follow-
ing specifications: Intel(R) Core(TM) i7-7700HQ CPU @
2.80GHz, 4 cores 8 threads, 16 GB RAM DDR4. We carried
out different kinds of experiments. In Table I we report
benchmarks we performed on our prototype. In more detail,

we focused on three aspects: (i) number of different function
invocations in the C program, (ii) number of times a unique
function is called in the C program, (iii) number of nested
function invocations in the C program. Each set of experiments
was aiming at showing the time performance of HYASM w.r.t.
the classic YASM tool.

The first set of experiments (i) considers a scenario where
the C programs analysed contains multiple function invoca-
tions. In (i), each function invocation corresponds to a unique
function, that is, each function invocation in the program has a
corresponding function definition (the same function is never
called twice). The second set of experiments (ii) is a variation
of (i) where the function invocations do not refer to different
functions, but to the same one. That is, a unique function
is defined, but called multiple times in the C program. The
third set of experiments (iii) is another variation of (i) and
(ii), where the functions are called in a nested way. That is,
a single function is called in the main of the C program, and
such function invokes another function, which in turn calls
another function. This is repeated a certain number of times
(to obtain the required number of function invocations).

In each experiment, the property analysed is the CTL for-
mula EF pc=END. Intuitively, the formula checks whether
there exists (E) an execution s.t. eventually (F) the program
terminates (pc = END). Naturally, other properties can be
verified but the previous one covers an interesting scenario
concerning program termination. Moreover, the END atom
corresponds to a YASM annotation, thus can be inserted in
other places of interest of the generated programs.

All the experiments have been carried out on an increasing
number of function invocations (from 10 to 100). To put this
in terms of C lines of code, in the worst case scenario the
files had around 1000 lines of code. The columns in Table I
report the execution time required by HYASM and YASM in
each scenario. As we can see, our prototype obtained really
good results in comparison with standard YASM. Indeed, in
most of the cases, our prototype even required less execution
time to perform the verification of the C program. This can
be easily observed in Figure 6, where we draw the results
reported in Table I. Note that, in Table I, we focused on
the time complexity of our approach (resp., standard YASM);
nonetheless, we also considered the memory consumption.
However, both our approach, and standard YASM, consumed
at most 300 KB of memory. This is a promising result that
may enable the use of YASM even in bigger programs.

We now comment the obtained results a little bit further. We
start with the first set of experiments (i), which are shown in
Figure 6. In such a scenario, we can observe how our approach
performs better almost in all cases. Nonetheless, the improve-
ment is not too marked. Indeed, the two approaches almost
require the same amount of time (even though for smaller
models our technique seems to perform better). Moving on
with the second set of experiments (ii), which are also shown
in Figure 6, we obtain far better results w.r.t. (i). This is
reasonable, because even though we have multiple function
invocations (as before), each one relates to the same function.

fun. Different calls Same calls Nested calls
calls HYASM YASM HYASM YASM HYASM YASM

10 377.77 639.09 313.37 589.56 379.41 639.48
20 452.45 721.81 297.89 599.52 427.21 682.48
30 517.87 802.77 316.26 612.88 519.22 720.34
40 618.74 853.83 329.83 634.50 625.63 781.18
50 692.50 935.67 360.28 636.51 708.14 834.01
60 769.99 747.42 365.11 650.33 788.69 802.94
70 849.77 836.28 387.57 639.39 843.62 827.64
80 885.71 873.26 415.82 657.51 942.35 849.94
90 986.97 1009.85 443.59 673.90 1024.65 892.26

100 1062.84 1106.57 475.35 678.70 1106.95 832.73

TABLE I: Benchmarks of HYASM and YASM (time is in ms).

Finally, we have the third set of experiments (iii), also shown
in Figure 6. This is the only case where our approach performs
worse than YASM (for bigger models). However, this is
only due to the fact that YASM does not work on such set
of experiments. Indeed, YASM raises exceptions on such C
programs. For this reason, the execution time is less than
ours; since YASM does not actually complete the verification
because of the failure. Anyway, we opted for reporting such
a set of experiments because it allows us to point out further
how our solution extends and improves YASM.

Note that, even though the experiments may seem restric-
tive, they actually cover a large set of programming patterns.
One could claim that calling the same function multiple times
may not be common, but it serves us as a stressed case
scenario. Any program will have some different function calls,
some calls to the same function, and some functions with
nested calls. Thus, our experiments have to be seen more as
general execution patterns, rather than actual programs. Of
course, from the viewpoint of the model checker, they are
programs to be verified indeed; but, the information we extract
from experimenting on them is not limited to such programs.

VI. CONCLUSION AND FUTURE WORKS

The main objective of this work was to extend the model
checker YASM to verify hierarchical systems through an ad-
hoc procedure. First, the hierarchical model of the system was
produced then a flattened structure was provided to YASM
for the model checking step. As highlighted along the paper,
our empirically results demonstrate that the recursive approach
for hierarchical models performs worse than the one we
propose. This helped us to show the highly applicability of
the flattening approach for performing model checking on
hierarchical models.

As far as we are aware of, HYASM is the first model
checking tool that implements a hierarchical procedure (via
a flat expansion) and shows that it is advantageous in practice
for branching-time temporal logics. This opens for several
interesting questions for future work, mainly in two directions.
On the one hand, one may further explore ad-hoc solutions for
hierarchical model checking to speed up the evaluation process
in YASM. On the other hand, one can extend all conceived
methods to other existing model checkers.

Number of function calls

T
im

e
 [

m
s]

0

250

500

750

1000

1250

20 40 60 80 100

Ours Yasm

(i)

Number of function calls

T
im

e
 [

m
s]

0

200

400

600

800

20 40 60 80 100

Ours Yasm

(ii)

Number of function calls

T
im

e
 [

m
s]

0

250

500

750

1000

1250

20 40 60 80 100

Ours Yasm

(iii)

Fig. 6: Different (i), same (ii), and nested (iii) function invocations.

ACKNOWLEDGMENT

This research has been supported by PRIN project RIPER
(20203FFYLK), PNRR MUR project PE0000013-FAIR, and
InDAM project “Strategic Reasoning in Mechanism Design”

REFERENCES

[1] R. Alur, M. Benedikt, K. Etessami, P. Godefroid, T. Reps, and M. Yan-
nakakis. Analysis of recursive state machines. ACM Transactions on
Programming Languages and Systems (TOPLAS), 27(4):786–818, 2005.

[2] R. Alur, R. Grosu, and M. McDougall. Efficient reachability analysis of
hierarchical reactive machines. In International Conference on Computer
Aided Verification, pages 280–295. Springer, 2000.

[3] R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-time temporal
logic. Journal of the ACM, 49(5):672–713, 2002.

[4] R. Alur, S. Kannan, and M. Yannakakis. Communicating hierarchical
state machines. In International Colloquium on Automata, Languages,
and Programming, pages 169–178. Springer, 1999.

[5] R. Alur, M. McDougall, and Z. Yang. Exploiting behavioral hierarchy
for efficient model checking. In International Conference on Computer
Aided Verification, pages 338–342. Springer, 2002.

[6] R. Alur and M. Yannakakis. Model checking of hierarchical state
machines. ACM Transactions on Programming Languages and Systems
(TOPLAS), 23(3):273–303, 2001.

[7] B. Aminof, O. Kupferman, and A. Murano. Improved model checking
of hierarchical systems. Information and computation, 210:68–86, 2012.

[8] B. Aminof, A. Legay, A. Murano, O. Serre, and M. Y. Vardi. Pushdown
module checking with imperfect information. Inf. Comput., 223:1–17,
2013.

[9] B. Aminof, F. Mogavero, and A. Murano. Synthesis of hierarchical
systems. Sci. Comput. Program., 83:56–79, 2014.

[10] A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of
pushdown automata: Application to model-checking. In Int. Conf. on
Concurrency Theory, pages 135–150. Springer, 1997.

[11] L. Bozzelli, A. Murano, G. Perelli, and L. Sorrentino. Hierarchical
cost-parity games. Theor. Comput. Sci., 847:147–174, 2020.

[12] L. Bozzelli, A. Murano, and A. Peron. Pushdown module checking.
Formal Methods Syst. Des., 36(1):65–95, 2010.

[13] S. Chaki, E. M. Clarke, A. Groce, S. Jha, and H. Veith. Modular
verification of software components in C. IEEE Trans. Software Eng.,
30(6):388–402, 2004.

[14] S. Chaki, J. Ouaknine, K. Yorav, and E. M. Clarke. Automated
compositional abstraction refinement for concurrent C programs: A two-
level approach. In Workshop on Software Model Checking, SoftMC 2003,
volume 89 of ENTCS, pages 417–432. Elsevier, 2003.

[15] T. Chen, F. Song, and Z. Wu. Global model checking on pushdown
multi-agent systems. In Thirtieth AAAI Conference on Artificial Intelli-
gence, 2016.

[16] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-
guided abstraction refinement for symbolic model checking. Journal of
the ACM (JACM), 50(5):752–794, 2003.

[17] E.M. Clarke and E.A. Emerson. Design and synthesis of synchronization
skeletons using branching time temporal logic. In Proc. Workshop on
Logic of Programs, volume 131, pages 52–71, 1981.

[18] E.M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press,
1999.

[19] R. Faran and O. Kupferman. A parametrized analysis of algorithms on
hierarchical graphs. International Journal of Foundations of Computer
Science, 30(06n07):979–1003, 2019.

[20] P. Garoche, T. Kahsai, and X. Thirioux. Hierarchical state machines as
modular horn clauses. arXiv preprint arXiv:1607.04457, 2016.

[21] S. Göller and M. Lohrey. Fixpoint logics on hierarchical structures. In
Int. Conference on Foundations of Software Technology and Theoretical
Computer Science, pages 483–494. Springer, 2005.

[22] A. Gurfinkel, O. Wei, and M. Chechik. Yasm: A software model-checker
for verification and refutation. In International Conference on Computer
Aided Verification, pages 170–174. Springer, 2006.

[23] K. Ku. Software model-checking: Benchmarking and techniques for
buffer overflow analysis. Citeseer, 2008.

[24] O. Kupferman, N. Piterman, and M. Y. Vardi. Pushdown specifications.
In International Conference on Logic for Programming Artificial Intel-
ligence and Reasoning, pages 262–277. Springer, 2002.

[25] O. Kupferman and T. Tamir. Hierarchical network formation games. In
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, pages 229–246. Springer, 2017.

[26] O. Kupferman, M.Y. Vardi, and P. Wolper. Module checking. Informa-
tion and Computation, 164:322–344, 2001.

[27] S. La Torre, M. Napoli, M. Parente, and G. Parlato. Hierarchical
and recursive state machines with context-dependent properties. In
International Colloquium on Automata, Languages, and Programming,
pages 776–789. Springer, 2003.

[28] S. La Torre, M. Napoli, M. Parente, and G. Parlato. Verification of
succinct hierarchical state machines. 2007.

[29] S. La Torre, M. Napoli, M. Parente, and G. Parlato. Verification of scope-
dependent hierarchical state machines. Information and Computation,
206(9-10):1161–1177, 2008.

[30] V. Malvone. Implementazione di un algoritmo di verifica formale per
programmi gerarchici nel tool yasm. Bachelor’s thesis, University of
Naples Federico II, Italy, 2010.

[31] A. Murano, M. Napoli, and M. Parente. Program complexity in hierar-
chical module checking. In Int. Conference on Logic for Programming
Artificial Intelligence and Reasoning, pages 318–332. Springer, 2008.

[32] A. Murano and G. Perelli. Pushdown multi-agent system verification. In
Twenty-Fourth International Joint Conference on Artificial Intelligence,
2015.

[33] A. Petrenko, O. N. Timo, and S. Ramesh. Model-based testing of
automotive software: Some challenges and solutions. In Proc. of 52nd
Annual Design Automation Conference, pages 1–6, 2015.

[34] J.P. Queille and J. Sifakis. Specification and verification of concurrent
systems in Cesar. volume 137, pages 337–351, 1982.

[35] A. Wasowski. Flattening statecharts without explosions. In Proceed-
ings of the 2004 ACM SIGPLAN/SIGBED conference on Languages,
compilers, and tools for embedded systems, pages 257–266, 2004.

	Introduction
	Related Work

	Hierarchical Systems
	YASM: a Symbolic Model Checker
	YASM Predicate Program

	HYASM a Hierarchical Model Checker
	Hierarchical and flattened pProgram

	Experiments
	Conclusion and Future works
	References

