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Abstract—In game theory, a classic qualitative question is to
check whether a designated set of players has a winning strategy.
In several safety-critical applications, however, it is important to
ensure that some redundant strategies also exist, to be possibly
used in case of some fault.

In this paper, we introduce Graded Strategy Logic (GSL), an
extension of Strategy Logic (SL) with graded quantifiers. SL is a
powerful formalism that allows to describe useful game concepts
in multi-agent settings by explicitly quantifying over strategies
treated as first-order citizens. In GSL, by means of the existential
construct 〈〈x≥ g〉〉ϕ one can enforce that there exist at least g
strategies satisfying ϕ. Dually, via the universal construct [[x<
g]]ϕ one can ensure that all but less than g strategies satisfy ϕ.

As different strategies may induce the same outcome, although
looking different, they need to be counted as one. While this
interpretation is natural, it heavily complicates the definition and
thus the reasoning about GSL. In order to accomplish this specific
way of counting, we formally introduce a suitable equivalence
relation over profiles based on the strategic behavior they induce.

To give evidence of GSL usability, we investigate basic
questions of one of its vanilla fragment, namely GSL[1G]. In
particular, we report on positive results about the determinacy
of games and the related model-checking problem, which we show
to be PTIME-COMPLETE.

I. INTRODUCTION

Formal methods in system design are a renowned story
of success. Breakthrough contributions in this field comprise
temporal logics, such as LTL [Pnu77], CTL [CE81], or
CTL? [EH86], and model checking [CE81], [QS81]. First appli-
cations of these methodologies involved closed systems [HP85]
generally analyzing whether a Kripke structure, modeling
the system, meets a temporal logic formula, specifying the
desired behavior [CGP02]. In the years several algorithms
have been proposed in this setting and some implemented
as tools [BBF+10]. Nevertheless these approaches turn to
be useless when applied to open systems [HP85]. The latter
are characterized, in the simplest situation, by an ongoing
interaction with an external environment on which the whole
system behavior deeply relies. To be able to deal with the
unpredictability of the environment, extensions of the basic
verification techniques have come out. A first attempt worth of
note is module checking where a Kripke structure is replaced
by a specific two-player arena. Module checking has been
first introduced in [KV96], [KVW01]. In the last decade this
methodology has been fruitfully extended in several directions
(see [ALM+13], [JM14], [JM15] for a list of related works).

Starting from the study of module checking, researchers
have looked for logics focusing on the strategic behavior
of players in multi-agent systems [AHK02]. One of the
most important developments in this field is Alternating-
Time Temporal Logic (ATL?, for short), introduced by Alur,

Henzinger, and Kupferman [AHK02]. This logic allows to
reason about strategies of agents having the satisfaction of
temporal goals as payoff criterion. Formally, it is obtained
as a generalization of CTL?, in which the existential E and
the universal A path quantifiers are replaced with strategic
modalities of the form 〈〈A〉〉 and [[A]], where A is a set of agents.
Strategic modalities over agent teams are used to describe
cooperation and competition among them in order to achieve
certain goals. In particular, these modalities express selective
quantifications over those paths that are the result of infinite
interaction between a coalition and its complement.

Despite its expressiveness, ATL? suffers from the strong
limitation that strategies are treated only implicitly in the
semantics of such modalities. This restriction makes the logic
less suited to formalize several important solution concepts,
such as Nash Equilibrium. These considerations led to the
introduction of Strategy Logic (SL, for short) [CHP07],
[MMV10], a more powerful formalism for strategic reasoning.
As a key aspect, this logic treats strategies as first-order objects
that can be determined by means of the existential 〈〈x〉〉 and
universal [[x]] quantifiers, which can be respectively read as

“there exists a strategy x” and “for all strategies x”. Remarkably,
a strategy in SL is a generic conditional plan that at each step
prescribes an action on the base of the history of the play.
Such a plan is not intrinsically glued to a specific agent but
an explicit binding operator (a, x) allows to link an agent a
to the strategy associated with a variable x.

A common aspect about all logics mentioned above is that
quantifications are either existential or universal. Per contra,
there are several real scenarios in which “more precise” quan-
tifications are crucially needed (see [BMM12], [MMS15], for
an argumentation). This has attracted the interest of the formal
verification community to graded modalities. They have been
first studied in classic modal logic [Fin72] and then exported
to the field of knowledge representation to allow quantitative
bounds on the set of individuals satisfying a certain property. In
particular, they are considered as counting quantifiers in first-
order logics [GOR97] and number restrictions in description
logics [HB91].

First applications of graded modalities in formal verification
concern closed systems. In [KSV02], graded µCALCULUS
has been introduced in order to express statements about a
given number of immediately accessible worlds. Successively
in [FNP09], [BMM09], [BMM10], [BMM12], the notion of
graded modalities have been extended to deal with number
of paths. Among the others graded CTL (GCTL, for short)
has been introduced with a suitable axiomatization of count-
ing [BMM12].



In open systems verification, we are aware of just two
orthogonal approaches in which graded modalities have been
investigated, but in a very restricted form: module checking
for graded µCALCULUS [FMP08] and an extension of ATL
with graded path modalities (GATL, for short) [FNP10]. In
particular, the former involves a counting of one-step moves
among two agents, the latter allows for a more restricted
counting on the histories of the game, but in a multi-player
setting. Both approaches suffer of several limitations. First, not
surprisingly, they cannot express powerful game reasoning due
to the limitation of the underlying logic. Second, it is based
on a very rigid and restricted counting of strategies.

In this paper, we take a completely different approach by
formally introducing a solid machinery to count strategies in a
multi-agent setting and use it upon the powerful framework of
SL. Precisely, we introduce and study Graded Strategy Logic
(GSL) which extends SL with the existential 〈〈x ≥ g〉〉ϕ and
universal [[x < g]]ϕ graded strategy quantifiers. They allow to
express that there are at least g or all but less than g strategies x
satisfying ϕ, respectively. Then, by using the classical binding
operator of SL, it is possible to associate these strategies to
specific agents.

As far as the counting of strategies concerns, one of the main
difficulties resides on the fact that some strategies, although
looking different, produce the same outcome and therefore
have to be counted as one. To overcome this problem while
preserving a correct counting over paths for the underlining
logic SL, we formally introduce a suitable equivalence relation
over profiles based on the strategic behavior they induce. This
is by its own an important contribution of this paper.

To show the applicability of GSL we positively inves-
tigate basic game-theoretic and verification questions over
a powerful fragment of GSL. Recall that model checking
is non-elementary-complete for SL and this has spurred
researchers to investigate fragments of the logic for practical
applications. Here, we concentrate on the vanilla version of the
SL[1G] fragment of SL. We recall that SL[1G] was introduced
in [MMPV12]. As for ATL, vanilla SL[1G] (for the first time
introduced here) requires that two successive temporal operators
in a formula are always interleaved by a strategy quantifier.
We prove that the model-checking problem for this logic is
PTIME-COMPLETE. We also show positive results about the
determinacy of turn-based games.

GSL can have useful applications in several multi-agent
game scenarios. For example, in safety-critical systems, it may
be worth knowing whether a controller agent has a redundant
winning strategy to play in case of some fault. Having more than
a strategy may increase the chances for a success [ATO+09].
Such a redundancy can easily be expressed in GSL by requiring
that at least two different strategies exist for the achievement
of the safety goal. The universal graded strategy quantifier
may turn useful to grade the “security” of a system. For
example, one can check whether preventing the use of at
most k strategies, the remaining ones are all winning. In a
network this may correspond to prevent some attacks while
leaving the communication open.

Due to the lack of space, all proofs are omitted. We also
refer to [MMPV14] for an introduction to SL and SL[1G].

Outline: The sequel of the paper is structured as follows.
In Section II, we introduce GSL and provide some preliminary
related concepts. In Section III, we describe a customized
equivalence relation to count strategies by means of several
axioms, one for each operator of GSL[1G]. In Section IV, we
address the determinacy and the model-checking problem for
the vanilla GSL[1G] fragment of GSL. Finally we conclude
in Section V by giving some discussion and future works.

II. GRADED STRATEGY LOGIC

In this section, we introduce GSL. As stated in the Intro-
duction, GSL extends SL to allow for reasoning about the
number of winning strategies for the agents. We also recall that
SL extends LTL with two strategy quantifiers and a binding
operator to associate agents to strategies.

A. Model

Similarly to SL, as semantic framework we use a game
structure [AHK02] in which the system is modeled as a game
where players perform actions chosen as a function on the
history of the play.

Definition II.1 (Game Structure). A game structure is a tuple
G , 〈AP,Ag,Ac,St, tr, ap, sI〉, where AP is a set of atomic
propositions, Ag, Ac, and St are finite non-empty sets of agents,
actions and states, respectively, sI ∈ St is an initial state, and
ap : St→ 2AP is a labeling function mapping each state to the
set of atomic propositions true in that state. Let Dc,Ag⇀Ac
be the set of decisions, i.e., partial functions describing the
choices of an action by some agent. Then, tr : Dc→(St⇀St)
denotes the transition function mapping every decision δ∈Dc
to a partial function tr(δ) ⊆ St×St representing a deterministic
graph over the states.

A game structure G naturally induces a graph 〈St,Ed 〉 with
Ed =

⋃
δ∈Dc tr(δ), where the infinite paths starting at the initial

state sI represent all possible plays (whose set is denoted by
Pth) and its finite paths are called histories (whose set is
denoted by Hst). A strategy is a function σ∈Str,Hst→Ac
prescribing which action has to be performed given a certain
history. We say that σ ∈ Str(A) ⊆ Str is A-coherent w.r.t. a
set of agents A if σ(ρ · s) ∈ Ac, for all histories ρ · s ∈ Hst
and agents a ∈ A. We assume, w.l.o.g. that, in each state, all
agents can always take an action. Hence, we assume no end
states.

As a running example, consider the game structure GS
depicted in Figure 1. It models a scheduler system that
comprises three agents, including two processes, P and P,
willing to access a shared resource (such as a processor), and
an arbiter A used to solve conflicts arisen under contending
requests. The processes can use four actions: i for idle, which
means that the process does not want to change the current
situation in which the entire system resides, r for (resource)
request, used to ask the resource, when this is not yet owned,
f for free (a resource), used to release the resource, when this
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Figure 1. A scheduler system GS .

is yet owned, and a for abandon (a pending request), that is
asserted by a process that, although has asked for the resource,
did not obtain it and so it decides to relinquish the request.
The system can reside in the states I, 1, 2, 1/2, 2/1 and W.
The first three are ruled by the processes, the last by all the
agents, and 1/2 (resp, 2/1) by P (resp., P) and A. The idle
state I indicates that none of the processes owns the resource,
while a state k ∈ {1, 2} asserts that process Pk is using it.
The state 1/2 (resp. 2/1) indicates that the process P (resp.,
P) has the resource, while its competitor requires it. Finally,
the waiting state W represents the case in which an action
from the arbiter is required in order to solve a conflict. To
denote who is the owner of the resource, we label 1 and 1/2
(resp., 2 and 2/1) with the atomic proposition r (resp., r).
A decision is graphically represented by ~a 7→ ~c, where ~a is
a sequence of agents and ~c is a sequence of corresponding
actions. For example PP → ir indicates that agents P and
P take actions i and r, respectively.

B. Syntax

GSL extends SL by replacing its universal and existential
strategy quantifiers 〈〈x〉〉 and [[x]], where x belongs to a
countable set of variables Vr, with their graded version 〈〈x≥g〉〉
and [[x< g]], in which the finite number g ∈ N denotes the
corresponding degree. Intuitively, these quantifiers are read
as “there exist at least g strategies” and “all but less than g
strategies”, respectively.

Definition II.2 (GSL Syntax). GSL formulas are built induc-
tively by means of the following context-free grammar, where
a ∈ Ag, x ∈ Vr, and g ∈ N:

ϕ := LTL(ϕ) | 〈〈x ≥ g〉〉ϕ | [[x < g]]ϕ | (a, x)ϕ.

By LTL(ϕ) we mean the set of LTL formulas. As usual, to
provide the semantics of a predicative logic, it is necessary to
define the concept of free and bound placeholders of a formula.
As for SL, since strategies can be associated to both agents
and variables, we need the set of free agents/variables free(ϕ)
as the subset of Ag ∪Vr containing (i) all agents a for which
there is no binding (a, x) before the occurrence of a temporal
operator and (ii) all variables x for which there is a binding
(a, x) but no quantification 〈〈x ≥ g〉〉 or [[x < g]]. A detailed
definition can be found in [MMPV14]. In case free(ϕ) = ∅
the formula ϕ is named sentence. Since a variable x may be
bound to more than one agent at the time, we also need the
subset shr(ϕ, x) of Ag containing those agents for which a
binding (a, x) occurs in ϕ.

For complexity reasons, we restrict to the One-Goal fragment
of GSL (GSL[1G], for short), which is the graded extension of
SL[1G] [MMPV14]. To formalize its syntax, we first introduce
some notions. A quantification prefix over a set V ⊆ Vr of
variables is a word ℘∈{〈〈x≥g〉〉, [[x<g]] : x∈V∧g∈N}|V| of
length |V| such that each x∈V occurs just once in ℘. A binding
prefix over A⊆Ag is a word [∈{(a, x) : a∈A ∧ x∈Vr}|A|
such that each a∈A occurs exactly once in [. GSL[1G] restricts
GSL by forcing, after a quantification prefix, a single goal to
occur i.e., a formula of the kind [ψ, where [ is a binding prefix
on all the agent Ag. We now give the syntax of GSL[1G].

Definition II.3 (GSL[1G] Syntax). GSL[1G] formulas are built
inductively through the following grammar:

ϕ := LTL(ϕ) | ℘[ϕ,

with ℘ quantification prefix over free([ϕ) and [ϕ a goal.

An example of a GSL[1G] property, in the context of the
scheduler system, is given by the sentence ϕ = ℘[ψ, with
℘=〈〈x≥k〉〉[[y<g1]][[y<g2]], [=(A, x)(P, y)(P, y), and
ψ=F(r ∨ r). It states the existence of at least k strategies
for the arbiter A ensuring that one of the two processes P and
P receives the resource, once less than g1 and g2 strategies
can be avoided by them, respectively.

C. Semantics

As for SL, the interpretation of a GSL formula requires a
valuation for its free placeholders. This is done via assignments,
i.e., partial functions χ ∈ Asg , (Vr ∪ Ag) ⇀ Str mapping
variables/agents to strategies. By Asg(X) ⊆ Asg we denote
the set of assignments over X⊆Vr ∪Ag.

An assignment χ is complete if it is defined on all agents
in Ag, i.e., χ(a) ∈ Str({a}), for all a ∈ Ag ⊆ dom(χ).
In this case, it directly identifies the profile χ�Ag given
by the restriction of χ to Ag. In addition, χ[e 7→ σ],
with e ∈ Vr ∪ Ag and σ ∈ Str, denotes the assignment
defined on dom(χ[e 7→ σ]),dom(χ) ∪ {e} that differs from
χ only on the fact that e is associated with σ. Formally,
χ[e 7→ σ](e) = σ and χ[e 7→ σ](e′) = χ(e′), for all
e′ ∈ dom(χ)\{e}. Finally, for a formula ϕ, we say that χ is
ϕ-coherent iff (i) free(ϕ) ⊆ dom(χ), (ii) χ(a) ∈ Str({a}), for



all a ∈ dom(χ) ∩Ag, and (iii) χ(x) ∈ Str(shr(ϕ, x)), for all
x ∈ dom(χ) ∩Vr.

We now define the semantics of a GSL formula ϕ w.r.t. a
game structure G and a ϕ-coherent assignment χ. In particular,
we write G, χ |= ϕ to indicate that ϕ holds in G under
χ. The semantics of LTL formulas and agent bindings are
defined as in SL. The definition of graded strategy quantifiers,
instead, makes use of a family of equivalence relations ≡ϕG on
assignments that depend on the structure G and the formula
ϕ under examination. This equivalence is used to reasonably
count the number of strategies that satisfy a formula w.r.t. an
a priori fixed criterion. Observe that we use a relation on
assignments instead of a more direct one on strategies, since
the classification may also depend on the context determined
by the strategies previously quantified. In Section III, we will
come back on the properties the equivalence has to satisfy in
order to be used in the semantics of GSL.

Definition II.4 (GSL Semantics). Let G be a Game Structure
and ϕ a GSL formula. For all ϕ-coherent assignments χ ∈
Asg, the relation G, χ |= ϕ is inductively defined as follows.

1) All LTL operators are interpreted as usual.
2) For each x ∈ Vr, g ∈ N, and ϕ ∈ GSL, it holds that:

a) G, χ |= 〈〈x ≥ g〉〉ϕ iff
|({χ[x 7→ σ] : σ ∈ ϕ[G, χ](x)}/≡ϕG)| ≥ g;

b) G, χ |= [[x < g]]ϕ iff
|({χ[x 7→ σ] : σ ∈ ¬ϕ[G, χ](x)}/≡¬ϕG )| < g;

where η[G, χ](x), {σ∈Str(shr(η, x)) : G, χ[x 7→σ] |=
η} is the set of shr(η, x)-coherent strategies that, being
assigned to x in χ, satisfy η.

3) For each a ∈ Ag, x ∈ Vr, and ϕ ∈ GSL, it holds that
G, χ |= (a, x)ϕ iff G, χ[a 7→ χ(x)] |= ϕ.

Intuitively, the existential quantifier 〈〈x ≥ g〉〉ϕ allows us to
count the number of equivalence classes w.r.t. ≡ϕG over the set
of assignments {χ[x 7→ σ] : σ ∈ ϕ[G, χ](x)} that, extending
χ, satisfy ϕ. The universal quantifier [[x < g]]ϕ is the dual
of 〈〈x≥ g〉〉ϕ and counts how many classes w.r.t. ≡¬ϕG there
are over the assignments {χ[x 7→ σ] : σ ∈ ¬ϕ[G, χ](x)} that,
extending χ, do not satisfy ϕ. It is worth noting that all GSL
formulas with degree 1 are SL formulas. Also, the verification
of a sentence ϕ does not depend on assignments, so, we just
write G |= ϕ.

Consider again the sentence ϕ = 〈〈x≥ k〉〉[[y < g1]][[y <
g2]](A, x)(P, y)(P, y)F(r ∨ r) of the scheduler example.
Once a reasonable equivalence relation on assignments is fixed
(see Section III), one can see that GS |= ϕ with k ≥ 0 and
(g1, g2) = (1, 2) but GS 6|= ϕ with (k, g1, g2) = (1, 1, 1).
Indeed, if the processes use the same strategy, they may
force the play to be in (I+ · W)∗ · Iω + (I+ · W)ω, so they
either avoid to do a request or relinquish a request that is not
immediately served. Consequently, to satisfy ϕ, we need to
verify the property against all but one strategy of P, i.e., the
one used by P. Under these assumptions, we can see that
the arbiter A has an infinite number of different strategies by
suitably choosing the actions on all histories ending in the

state W.
Before continuing, we show how graded ATL [FNP10] can

be translated to GSL[1G]. In [FNP10], the authors introduce
two different semantics for their logic, called off-line and on-
line. Under the first one, over a game structure with agents
α and α, the graded ATL formula 〈〈α〉〉gψ is equivalent to
the GSL[1G] sentence 〈〈x ≥ g〉〉[[x < 1]](α, x)(α, x)ψ. Under
the second semantics, instead, it is equivalent to the sentence
[[x < 1]]〈〈x ≥ g〉〉(α, x)(α, x)ψ. Note that the counting over
strategies in graded ATL is limited to existential agents and,
so, the SL[1G] formula [[x<2]]〈〈y≥1〉〉(α, x)(α, y)ψ does not
have any ATL equivalent. Moreover, the criteria used for the
strategy classification is strictly coupled with the temporal
operators Xϕ, ϕ1Uϕ2, and Gϕ along the syntax, and we do not
see how this can be extended to the whole LTL, unless one
uses the approach proposed in [BMM12].

III. STRATEGY EQUIVALENCE

Our definition of GSL semantics makes use of an arbitrary
family of equivalence relation on assignments. This choice
introduces flexibility in its description, since one can come
up with different logics by opportunely choosing different
equivalences.

In this section, we focus on a particular relation whose
key feature is to classify as equivalent all assignments that
reflect the same “strategic reasoning”, although they may have
completely different structures. Just to get an intuition about
what we mean, consider two assignments χ and χ and the
corresponding involved strategies associated with the agents a
and a. Assume now that, for each i∈{1, 2}, the homologous
strategies χ(ai) and χ(ai) only differ on histories never met
by a play because of a specific combination of their actions.
Clearly, χ and χ induce the same agent behaviors, which
means to reflect the same strategic reasoning. Therefore, it is
natural to set them as equivalent, as we do. In addition, take two
equivalent formulas. We have that either two assignments are
equivalent for both formulas or for none of them. Furthermore,
if two assignments do not satisfy the same formulas, they are
not equivalent.

In the sequel, in order to illustrate the introduced concepts,
we analyze subformulas of the previously described sentence
〈〈x ≥ k〉〉[[y < 1]][[y < 2]](A,x)(P,y)(P,y)F(r ∨ r),
together with their negations, over the game structure GS of
Figure 1.

A. Elementary Requirements

Logics usually admit syntactic redundancy. For example, in
LTL we have ¬X(p ∧ q) ≡ X¬(p ∧ q) ≡ X(¬p ∨ ¬q). Also,
the semantics is normally closed under substitution. Yet for
LTL, this means that ¬X(p∧q) can be replaced with X¬(p∧q)
or X(¬p ∨ ¬q), without changing the meaning of a formula.
GSL should not be an exception. To ensure this, we require
the invariance of the equivalence relation on assignments w.r.t.
the syntax of the involved formulas.

Definition III.1 (Syntax Independence). An equivalence rela-
tion on assignments ≡·G is syntax independent if, for any pair



of equivalent formulas ϕ1 and ϕ2 and (free(ϕ1) ∪ free(ϕ2))-
coherent assignments χ, χ ∈ Asg, we have that χ ≡ϕ

G χ
iff χ ≡ϕ

G χ.

As declared above, our aim is to classify as equivalent w.r.t.
a formula ϕ all assignments that induce the same strategic
reasoning. Therefore, we cannot distinguish them w.r.t. the
satisfiability of ϕ itself.

Definition III.2 (Semantic Consistency). An equivalence
relation on assignments ≡·G is semantically consistent if, for
any formula ϕ and ϕ-coherent assignments χ, χ ∈ Asg, we
have that if χ ≡ϕGχ then either G, χ |= ϕ and G, χ |= ϕ
or G, χ 6|= ϕ and G, χ 6|= ϕ.

B. Play Requirement

We now deal with the equivalence relation for the basic case
of temporal properties. Before disclosing the formalization,
we give an intuition on how to evaluate the equivalence of
two complete assignments χ and χ w.r.t. their agreement on
the verification of a generic LTL property ψ. Let π and π
with π 6= π be the plays satisfying ψ induced by χ and
χ, respectively. Also, consider their maximal common prefix
ρ = prf(π, π) ∈ Hst. If ρ can be extended to a play in such a
way that ψ does not hold, we are sure that the reasons why both
the assignments satisfy the property are different, as they reside
in the parts where the two plays diverge. Consequently, we can
assume χ and χ to be non-equivalent w.r.t. ψ. Conversely,
if all infinite extensions of ρ necessarily satisfy ψ, we may
affirm that this is already a witness of the verification of the
property by the two plays and, so, by the two assignments.
Hence, we can assume χ and χ to be equivalent w.r.t. ψ.

In the following, we often make use of the concept of
witness of an LTL formula ψ as the set Wψ , {ρ ∈ Hst :
∀π ∈ Pth . ρ < π ⇒ π |= ψ} containing all histories that
cannot be extended to a play violating the property.

Definition III.3 (Play Consistency). An equivalence relation
on assignments ≡·G is play consistent if, for any LTL formula
ψ and ψ-coherent assignments χ, χ ∈ Asg, we have that
χ≡ψGχ iff either π=π or prf(π, π)∈Wψ, where π=
play(χ�Ag) and π = play(χ�Ag) are the plays induced by
χ and χ, respectively, and Wψ ⊆ Hst is the witness set of
ψ.

To see how to apply the above definition, consider the
formula ψ = F(r ∨ r) and let Wψ be the corresponding
witness set, whose minimal histories can be represented by the
regular expression I+ · (1+2)+(I+ ·W)+ · (1+2+1/2+2/1).
Moreover, let χ, χ, χ ∈ Asg({A, P, P}) be three complete
assignments on which we want to check the play consistency.
We assume that each χi associates a strategy χi(a) = σai with
the agent a ∈ {A, P, P} as defined in the following, where
ρ, ρs ∈ Hst with lst(ρ) 6= I and ρs · s ∈ Hst: for the arbiter A,
we set σA/(ρW ·W),2, σA//(ρ/ · 1/2)=σA(ρ/ · 2/1),i,
and σA(ρW ·W)=σA/(ρ/ ·2/1),1; for the processes, instead,
we set σP//(ρ)=σP//(ρ),i, σP/(ρI·I)=σP//(ρI·I),

r, and σP (ρI · I), i. Now, one can see that χ ≡ψGχ, but
χ6≡ψGχ.

Indeed, χ, χ, and χ induce the plays π=I·W·2/1·1/2ω ,
π = I · W · 2/1ω, and π = I · 2ω, respectively, where ρ =
prf(π, π) = I · W · 2/1 and ρ = prf(π, π) = I are the
corresponding common prefixes. Thus, ρ belongs to the
witness Wψ , while ρ does not.

As another example, consider the formula ψ = G(¬r∧¬r),
which is equivalent to the negation of the previous one,
and observe that its witness set Wψ is empty. Moreover,
let χ, χ, χ ∈ Asg({A, P, P}) be the three complete
assignments we want to analyze. The strategies for the arbiter
A are defined as above, while those of the processes follows:
σPi//(ρ) , i, σPi/(ρI · I) , r, σPi/(ρW · W) , a, and
σPi (ρI · I)=σPi (ρW · W),i, for all i ∈ {1, 2} and ρ, ρs ∈ Hst
with lst(ρ) 6∈ {I, W} and ρs · s ∈ Hst. Now, one can see that
χ ≡ψGχ, but χ 6≡ψGχ. Indeed, χ and χ induce the same
play (I · W)ω, while χ runs along Iω. Thus, χ and χ are
equivalent, but χ and χ are not.

C. Strategy Requirements

The semantics of a binding construct ϕ=(a, x)η involves a
redefinition of the underlying assignment χ, as it asserts that ϕ
holds under χ once the inner part η is satisfied by associating
the agent a to the strategy χ(x). Thus, the equivalence of two
assignments χ and χ w.r.t. ϕ necessarily depends on that of
their extensions on a w.r.t. η.

Definition III.4 (Binding Consistency). An equivalence rela-
tion on assignments ≡·G is binding consistent if, for a formula
ϕ = (a, x)η and ϕ-coherent assignments χ, χ ∈ Asg, we
have that χ ≡ϕGχ iff χ[a 7→χ(x)]≡ηGχ[a 7→χ(x)].

To get familiar with the above concept, consider the formula
[ψ, where [ , (A, x)(P, y)(P, y), and let χ, χ, χ ∈
Asg({x, y, y}) be the assignments assuming as values the
strategies χi(x) , σAi and χi(yj) , σ

Pj
i previously defined,

where i ∈ {1, 2, 3} and j ∈ {1, 2}. Then, by definition, it is
immediate to see that χ ≡[ψG χ, but χ6≡[ψG χ.

Before continuing with the analysis of the equivalence, it
is important to make an observation about the dual nature of
the existential and universal quantifiers w.r.t. the counting of
strategies. We do this by exploiting the classic game-semantics
metaphor originally proposed for first-order logic by Lorenzen
and Hintikka, where the choice of an existential variable is
done by a player called ∃ and that of the universal ones by its
opponent ∀. Consider a sentence 〈〈x≥g1〉〉[[x<g2]]η, having
〈〈y≥h1〉〉η1 and [[y<h2]]η2 as two subformulas in η. When
player ∃ tries to choose h1 different strategies y to satisfy
η1, it also has to maximize the number of strategies x by
verifying [[x<g2]]η to be sure that the constraint ≥ g1 of the
first quantification is not violated. At the same time, player ∀
tries to do the opposite while choosing h2 different strategies
y not satisfying η2, i.e., it needs to maximize the number of
strategies x falsifying η in order to violate the constraint < g2
of the second quantifier.



With this observation in mind, we now treat the equivalence
for the existential quantifier. Two assignments χ and χ are
equivalent w.r.t. a formula ϕ= 〈〈x≥ g〉〉η if player ∃ is not
able to find a strategy σ among those satisfying η, to associate
with the variable x, that allows the corresponding extensions
of χ and χ on x to induce different behaviors w.r.t. η. In
other words, ∃ cannot distinguish between the two assignments,
as they behave the same independently of the way they are
extended.

Definition III.5 (Existential Consistency). An equivalence
relation on assignments ≡·G is existentially consistent if, for
any formula ϕ = 〈〈x ≥ g〉〉η and ϕ-coherent assignments
χ, χ ∈ Asg, we have that χ ≡ϕGχ iff, for each strat-
egy σ ∈ η[G, χ](x) ∪ η[G, χ](x), it holds that χ[x 7→
σ]≡ηGχ[x 7→ σ].

To clarify the above definition, consider the formula ϕ =
〈〈y ≥ 2〉〉[ψ and let χ, χ, χ ∈ Asg({x, y}) be the three
assignments having as values the strategies χi(x) , σAi
and χi(y) , σPi previously defined, where i ∈ {1, 2, 3}.
By a matter of calculation, one can see that χ≡ϕGχ, but
χ 6 ≡ϕGχ. By definition, χ ≡ϕGχ iff, for each strategy
σ ∈ ([ψ)[G, χ](y) ∪ ([ψ)[G, χ](y), it holds that χ[y 7→
σ] ≡[ψG χ[y 7→ σ]. Now, observe that the strategy σP
introduced above is the unique one that allows χ and χ
to satisfy [ψ once extended on y. At this point, we can easily
show that χ[y 7→ σP ] ≡[ψG χ[y 7→ σP ], as the derived
complete assignments χ[y 7→ σP ] ◦ [ and χ[y 7→ σP ] ◦ [
induce the same play (I · W)ω . The non-equivalence of χ and
χ easily follows from the fact that σP 6∈([ψ)[G, χ](y), as
χ[y 7→σP ]◦[ induces the play I · 2ω that does not satisfy ψ.
Thus, χ[y 7→σP ] 6≡[ψG χ[y 7→σP ].

We conclude with the equivalence for the universal quantifier.
Two assignments χ and χ are equivalent w.r.t. a formula
ϕ = [[x < g]]η if, for each index i ∈ {1, 2} and strategy σi
player ∀ chooses among those satisfying η under χi, there is
a strategy σ−i this player can choose among those satisfying
η under χ−i such that, once the two strategies are associated
with the variable x, they make the corresponding extensions
of assignments equivalent w.r.t. η. This means that the parts of
the game structure that are reachable under χ and χ contain
exactly the same information w.r.t. the verification of the inner
formula. In other words, ∀ cannot distinguish between the
two assignments, as the induced subtrees of possible plays are
practically the same.

Definition III.6 (Universal Consistency). An equivalence
relation on assignments ≡·G is universally consistent if, for any
formula ϕ=[[x < g]]η and ϕ-coherent assignments χ, χ ∈
Asg, we have that χ ≡ϕGχ iff, for all i∈{1, 2} and strategy
σi∈η[G, χi](x), there is a strategy σ−i∈η[G, χ−i](x) such
that χ[x 7→ σ]≡ηGχ[x 7→σ].

Finally, to better understand the above definition, consider
the formula ϕ = [[y < 1]]η, where η = [[y < 2]][ψ, and let
χ, χ, χ ∈ Asg({x}) be the three assignments having as

values the strategies χi(x) , σAi previously defined, where
i ∈ {1, 2, 3}. One can see that χ≡ϕGχ, but χ6≡ϕGχ.

First, observe that η[G, χ](y) = η[G, χ](y) = Str. In-
deed, for all strategies σ ∈ Str, we have that G, χ[y 7→σ] |= η
and G, χ[y 7→ σ] |= η, since G, χ[y 7→ σ, y 7→ σ′] |= [ψ
and G, χ[y 7→ σ, y 7→ σ′] |= [ψ, for all σ′ ∈ Str such that
σ 6= σ′. This is due to the fact that the plays π and π induced
by the two complete assignments χ[y 7→σ, y 7→σ′] ◦ [ and
χ[y 7→σ, y 7→σ′] ◦ [ differ from (I+ ·W)∗ ·Iω and (I+ ·W)ω ,
as the strategies of the two processes are different. Also, they
share a common prefix ρ=prf(π, π) belonging to Wψ , since
the strategies of the arbiter only differ on the histories ending in
the state 2/1. We can now show that χ and χ are equivalent,
by applying the above definition in which we assume that
σi = σ−i.

To prove that χ and χ are non-equivalent, we show that
there is a strategy σ ∈ η[G, χ](y) for χ such that, for all
strategies σ′ ∈ η[G, χ](y) for χ, it holds that χ[y 7→
σ] 6 ≡ηGχ[y 7→ σ′]. As before, observe that η[G, χ](y) =
η[G, χ](y) = Str and choose σ ∈ Str as the strategy σP
previously defined. At this point, one can easily see that all
plays compatible with χ[y 7→σ] ◦ [ pass through either I · 1
or I · W · 2/1, while a play compatible with χ ◦ [ cannot pass
through the latter history. Thus, the non-equivalence of the two
assignments immediately follows.

IV. DETERMINACY AND MODEL CHECKING

In this section, we address the determinacy and the model
checking problems for GSL[1G] over game structures. In
particular, we provide procedures for the vanilla fragment of
the logic in which all temporal properties are used as in ATL.
Technically, for the model checking question, we make use
of a technique that extends the one introduced in [MMS14b],
which allows to reduce to a simplified equivalent version of the
problem, over turn-based structures. For the matter of clarity,
in the sequel we restrict to the case of structures involving only
two players. Hence, we investigate the mentioned problems
for a fragment of GSL that we name GSL[1G, 2AG].

A. Determinacy

Recall that determinacy has been first proved for classic Borel
turn-based two-player games in [Mar75]. However, the proof
used there does not directly apply to our graded setting. To
give evidence of the differences between the two frameworks,
observe that in SL[1G, 2AG] sentences like 〈〈x〉〉[[x]]η imply
[[x]]〈〈x〉〉η, while in GSL[1G, 2AG] the corresponding implication
〈〈x ≥ i〉〉[[x < j]]η ⇒ [[x < j]]〈〈x ≥ i〉〉η does not hold.
The determinacy property we are interested in is exactly the
converse direction, i.e., [[x<j]]〈〈x≥ i〉〉η ⇒ 〈〈x≥ i〉〉[[x<j]]η.
In particular, we extend the Gale-Stewart Theorem [PP04],
by exploiting a deep generalization of the technique used
in [FNP10]. The idea consists of a fixed-point calculation over
the number of winning strategies an agent can select against
all but a fixed number of those of its opponent. Regarding
this approach, we want to remind that the simpler counting
considered in [FNP10] is restricted to existential quantifications.



Construction IV.1 (Grading Function). Consider a two-agent
turn-based game structure G with Ag = {α, α}. Moreover, let
ψ be an LTL formula, where Wψ,W¬ψ ⊆ Hst denotes the
witness sets for ψ and ¬ψ, respectively. It is immediate to see
that, in case sI ∈Wψ (resp., sI ∈W¬ψ), all strategy profiles
are equivalent w.r.t. the temporal property ψ (resp., ¬ψ). If
sI ∈ X , Hst\ (Wψ ∪W¬ψ), instead, we need to introduce a
grading function Gαψ : X→ Γ, where Γ , N→ (N∪{ω}), that
allows to determine how many different strategies the agent
α (resp., α) owns w.r.t. ψ (resp., ¬ψ). Informally, Gαψ(ρ)(j)
represents the number of winning strategies player α can put
up against all but at most j strategies of its adversary α, once
the current play has already reached the history ρ ∈ X.

Before continuing, observe that α sometimes has the pos-
sibility to commit a suicide, i.e., to choose a strategy leading
directly to a history in W¬ψ , with the hope to win the game by
collapsing all strategies of its opponent into a unique class. The
set of histories enabling this possibility is defined as follows:
S , {ρ ∈ X : ∃ρ′ ∈W¬ψ .ρ < ρ′∧∀ρ′′ ∈ Hst.ρ ≤ ρ′′ < ρ′ ⇒
ρ′′ ∈ Hstα}, where Hstα = {∀ρ ∈ Hst : ag(lst(ρ)) = {α}} is
the set of histories ending in a state controlled by α. Intuitively,
this agent can autonomously extend a history ρ ∈ S into one
ρ′ ∈W¬ψ that is surely loosing, independently of the behavior
of α. Note that there may be several suicide strategies, but
all of them are equivalent w.r.t. the property ψ. Also, against
them, all counter strategies of α are equivalent as well.

At this point, to define the function Gαψ, we introduce the
auxiliary functor Fαψ : (X → Γ) → (X → Γ), whose least
fixpoint represents a function returning the maximum number
of different strategies α can use against all but a precise fixed
number of counter strategies of α. Formally, we have that:

Fαψ(f)(ρ)(j) ,
∑
ρ′∈suc(ρ)∩X f(ρ′)(0)+|suc(ρ)∩Wψ|, if ρ∈Hstα and j=0;∑
ρ′∈suc(ρ)∩X f(ρ′)(j), if ρ∈Hstα and j>0;∑
c∈C(ρ)(j)

∏
ρ′∈dom(c) f(ρ

′)(c(ρ′)), otherwise;

where suc(ρ) = {ρ′ ∈ Hst : ∃s ∈ St. ρs = ρ′} and
C(ρ)(i) ⊆ (suc(ρ) ∩ Z) ⇀ N contains all partial functions
c ∈ C(ρ)(i) for which α owns a suicide strategy on the histories
not in their domains, i.e., (suc(ρ) ∩ Z) \ dom(c) ⊆ S, and the
sum of all values assumed by c plus the number of successor
histories that are neither surely winning nor contained in
the domain of c equals to i, i.e., i =

∑
ρ′∈dom(c) c(ρ

′) +
|suc(ρ) \ (X ∪ dom(c))|.

Intuitively, the first item of the definition simply asserts
that the number of strategies F(f)(ρ)(0) that agent α has on
the α-history ρ, without excluding any counter strategy of its
adversary, is obtainable as the sum of the f(ρ′)(0) strategies
on the successor histories ρ′ ∈ X plus a single strategy for
each successor history that is surely winning. Similarly, the
second item takes into account the case in which we can avoid
exactly j counter strategies. The last item, instead, computes
the number of strategies for α on the α-histories. In particular,
through the set C(ρ)(j), it first determines in how many ways

it is possible to split the number j of counter strategies to
avoid among all successor histories of ρ. Then, for each of
these splittings, it calculates the product of the corresponding
numbers f(ρ′)(c(ρ′)) of strategies for α.

We are finally able to define the grading function Gαψ by
means of the least fixpoint f? = Fαψ(f?) of the functor Fαψ as
follows: Gαψ(ρ)(j),

∑j
h=0 f

?(ρ)(h)+[ρ∈S∧ j≥1]. Intuitively,
Gαψ(ρ)(j) is the sum of the numbers f?(ρ)(h) of winning
strategies the agent α can exploit against all but exactly h
strategies of its adversary α, for each h ∈ [0, j]. Moreover, if
ρ ∈ S, we need to add to this counting the suicide strategy that
α can use once α avoids to apply his unique counter strategy.
This is formalized through the standard notation [ð] [GKP94]
that is evaluated to 1, if the condition ð is true, and to 0,
otherwise.

Thanks to the above construction, one can compute the
maximum number of strategies that a player has at its disposal
against all but a fixed number of strategies of the opponent. Next
lemma, whose statement can be constructively proved by trans-
finite induction on the recursions of the functor Fαψ , precisely
describes this fact. Indeed, we show how the satisfiability of a
GSL[1G, 2AG] sentence 〈〈x ≥ i〉〉[[x ≤ j]](α, x)(α, x)ψ can be
decided via the computation of the associated grading function
Gαψ , where by [[x ≤ j]]ϕ we mean [[x < j + 1]]ϕ.

Lemma IV.1 (Grading Function). Let G be a two-agent turn-
based game structure, where Ag = {α, α}, and ϕ = 〈〈x ≥
i〉〉[[x ≤ j]](α, x)(α, x)ψ a GSL[1G, 2AG] sentence. Moreover,
let Gαψ be the grading function and Wψ,W¬ψ,X ⊆ Hst the
sets of histories obtained in Construction IV.1. Then, G |= ϕ
iff one of the following three conditions hold: (i) i ≤ 1, j ≥ 0,
and sI ∈ Wψ; (ii) i ≤ 1, j ≥ 1, and sI ∈ W¬ψ; (iii)
i ≤ Gαψ(sI)(j) and sI ∈ X.

Again by transfinite induction on its recursive structure, we
can prove a quite natural but fundamental property of the
grading function, i.e., its duality in the form described in the
next lemma. To give an intuition, assume that agent α has at
most j strategies to satisfy the temporal property ¬ψ against
all but at most i strategies of its adversary α. Then, it can be
shown that the latter has more than i strategies to satisfy ψ
against all but at most j strategies of the former.

Lemma IV.2 (Grading Duality). Let Gαψ and Gα¬ψ be the
grading functions and X ⊆ Hst the set of histories obtainable
by Construction IV.1. For all histories ρ ∈ X and indexes
i, j ∈ N, it holds that if Gα¬ψ(ρ)(i) ≤ j then i < Gαψ(ρ)(j).

Summing up the above two results, we can easily prove that,
on turn-based game structures, GSL[1G, 2AG] is determined.
Indeed, suppose that sI ∈ X and G |= [[x ≤ j]]〈〈x ≥ i〉〉[ψ,
where [ = (α, x)(α, x) (the case with sI ∈Wψ immediately
follows from classic Martin’s Determinacy Theorem [Mar75],
[Mar85]). Obviously, G does not satisfy the negation of this
sentence, i.e., G 6|= 〈〈x ≥ j+1〉〉[[x ≤ i−1]][¬ψ. Consequently,
by Lemma IV.1, we have that Gα¬ψ(sI)(i − 1) ≤ j. Hence,
by Lemma IV.2, it follows that i ≤ Gαψ(sI)(j). Finally, again



by Lemma IV.1, we obtain that G |= 〈〈x ≥ i〉〉[[x ≤ j]][ψ, as
required by the definition of determinacy.

Theorem IV.1 (Determinacy). GSL[1G, 2AG] on turn-based
game structures is determined.

B. Model Checking

We finally describe a solution of the model-checking problem
for the above mentioned fragment of GSL[1G, 2AG], which only
admits simple temporal properties, i.e., ϕ1Uϕ2, ϕ1Rϕ2, and
Xϕ, where ϕ1, ϕ2, and ϕ are sentences. This fragment, called
Vanilla GSL[1G, 2AG], is in relation with GSL[1G, 2AG], as CTL
and ATL are for CTL? and ATL?, respectively.

The idea here is to exploit the characterization of the grading
function stated in Lemma IV.1 in order to verify whether a
game structure G satisfies a sentence ϕ = 〈〈x ≥ i〉〉[[x ≤
j]](α, x)(α, x)ψ, while avoiding the naive infinite calculation
of least fixpoints Fαψ .

Fortunately, due to the simplicity of the temporal property
ψ, we have that the four sets Wψ , W¬ψ , X, and S previously
introduced are memoryless, i.e., if a history belongs to them,
every other history ending in the same state is also a member of
these sets. Therefore, we can focus only on states by defining
Wψ , {s ∈ St : G, s |= Aψ}, W¬ψ , {s ∈ St : G, s |= A¬ψ},
X , St\ (Wψ∪W¬ψ), and S , {s ∈ St : G, s |= E(αUA¬ψ)}
via very simple CTL properties. Observe that we use α and α
as labeling of a state to recognize its owner. Intuitively, Wψ and
W¬ψ contain the states from which agents α and α can ensure,
independently from the adversary, the properties ψ and ¬ψ,
respectively. The set X, instead, contains the states on which
we have still to determine the number of strategies at disposal
of the two agents. Finally, S maintains the suicide states, i.e.,
those states from which α can commit suicide by autonomously
reaching W¬ψ. In addition, since at most j strategies of α
can be avoided while reasoning on the sentence ϕ, we need
just to deal with functions in the set Γ , [0, j]→ (N ∪ {ω})
instead of Γ , N → (N ∪ {ω}). Consequently, the functor
Fαψ : (X→ Γ)→ (X→ Γ) can be redefined as follows:

F(f)(s)(h) ,
∑
s′∈suc(s)∩X f(s′)(0)+|suc(s)∩Wψ|, if s∈Stα and h=0;∑
s′∈suc(s)∩X f(s′)(h), if s∈Stα and h>0;∑
c∈C(s)(h)

∏
s′∈dom(c) f(s

′)(c(s′)), otherwise;

where suc(s)={s′∈St : (s, s′)∈Ed} and C(s)(i) ⊆ (suc(s)∩
Z) ⇀ N contains all partial functions c ∈ C(s)(i) for which α
owns a suicide strategy on the states not in their domains, i.e.,
(suc(s)∩ Z) \ dom(c) ⊆ S, and the sum of all values assumed
by c plus the number of successors that are neither surely
winning nor contained in the domain of c equals to i, i.e., i=∑

s′∈dom(c)c(s
′)+|suc(s)\(X∪dom(c))|. Similarly, the grading

function Gαψ : X→Γ becomes Gαψ(s)(h),
∑h
l=0 f

?(s)(l)+[s ∈
S ∧ h ≥ 1], where f? is the least fixpoint of Fαψ .

Unfortunately, these redefinitions are not enough by their on
to ensure that the fixpoint calculation can be done in a finite,
possibly small, number of iterations of the functor. This is due

to two facts: the functions in Γ have an infinite codomain and
the game structure G has cycles inside. In order to solve such
a problem, we make use of the following observation. Suppose
that agent α has at least one strategy on one of its states s ∈ Stα
that is also part of a cycle in which no state of its opponent α
is adjacent to the set W¬ψ . Then, α can use this cycle from s
to construct an infinite number of nonequivalent strategies, by
simply pumping-up the number of times he decides to traverse
it before following the previously found strategy. Therefore, in
this case, we avoid to compute the infinite number of iterations
required to reach the fixpoint, by directly assuming ω as value.
Formally, we introduce the functor I : (X → Γ) → (X → Γ)
defined as follows, where L ⊆ Stα denotes the set of α-states
belonging to a cycle of the above kind: I(f)(s)(h) = ω, if s ∈ L
and f(s)(h) > 0, and I(f)(s)(h) = f(s)(h), otherwise, for all
s ∈ St and h ∈ [0, j]. By induction on the ordering and topology
of the strong connected components of the underlying game
structure, we can prove that f? = (I ◦ Fαψ)(f?) iff f? = Fαψ(f?),
i.e., the functor obtained by composing I and Fαψ have exactly
the same fixpoint of Fαψ. Moreover, f? = (I ◦ Fαψ)n(f) where
j · |G| ≤ n and f is the zero function, i.e., f(s)(h) = 0, for
all s ∈ St and h ∈ [0, j]. Hence, we can compute f? in a
number of iterations of I◦Fαψ that is linear in both the degree j
and the size of G. Finally, observe that the computation of the
set L can be done in quadratic time by using a classic Büchi
procedure.
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Figure 2. A two-player turn-based game structure.

As an example of an application of the model-checking
procedure, consider the two-agent turn-based game structure G
depicted in Figure 2, with the circle states ruled by α, the square
ones by its opponent α, and where s and s are labeled by the
atomic proposition p. Also, consider the vanilla GSL[1G, 2AG]

sentence ϕ = 〈〈x ≥ i〉〉[[x ≤ j]](α, x)(α, x)Fp. First, we need



to compute the five preliminary sets of states WFp = {s, s}
(the light-gray area), W¬Fp = {s, s} (the dark-gray area),
X = {s, s, s, s, s} (the white area partitioned into strong-
connected components), S = {s, s}, and L = {s}. Now,
we can evaluate the fixpoint f? of the functor I◦Fαψ that can be
obtained, due to the topology of G, after seven iterations, i.e.,
f? = (I ◦ Fαψ)7(f). Indeed, at the first one, the values on the
states s and s are stabilized to f?(s)(0) = 1, f?(s)(0) = ω,
and f?(s)(h) = f?(s)(h) = 0, for all h ∈ [1, j]. After six
iterations, we obtain f?(s)(0) = 0, f?(s)(h) = ω, for all
h ∈ [1, j], and f?(s)(h) = ω, for all h ∈ [0, j]. By computing
the last iteration, we derive f?(s)(0) = 1 and f?(s)(h) = ω,
for all h ∈ [1, j]. Note that 7 is exactly the sum 1 + 5 + 1 of
iterations that the components of the longest chain {s} <
{s, s} < {s} need in order to stabilize the values on their
states. Finally, we can verify whether G |= ϕ, by computing the
grading function GαFp at s, whose values are GαFp(s)(0) = 1
and GαFp(s)(h) = ω, for all h ∈ [1, j]. Thus, G |= ϕ iff i = 1
or j > 0.

s s

s

s

s

s

s

s

s

s

α 7→0

α 7→1

α 7→2

α 7→0 α 7→#

α 7→0

α 7→#

α 7→1

α 7→2

α 7→0

Figure 3. Degree transformation.

In order to obtain a PTIME procedure, we have also to
ensure that each evaluation of the composed functor I ◦Fαψ can
be computed in PTIME w.r.t. the above mentioned parameters.
Actually, the whole I and the first two items of Fαψ can easily be
calculated in linear time. The third item, instead, may require
a sum of an exponential number of elements. Indeed, due to
all possible ways a degree j can split among the successors
of a state s, the corresponding set C(s)(j) may contain an
exponential number of functions. To avoid this, by exploiting a
technique similar to the one proposed in [BMM10], [BMM12],
we linearly transform a game structure into an equivalent one
where all states ruled by α have degree at most 2. In this
way, the cardinality of C(s)(j) is bounded by j. For example,
consider the left part of Figure 3 representing the substructure
of the previous game structure G induced by the state s
together with its three successors. It is not hard to see that we
can replace it, in G, by the binary graph at its right, without
changing the number of strategies that the two agents have at
their disposal.

Theorem IV.2 (Model Checking). The model-checking problem
for Vanilla GSL[1G] is PTIME in both the size of the game
structure and the sentence. Moreover it is PTIME-HARD w.r.t.

both the data and combined complexity.

Observe that the PTIME hardness w.r.t. the size of game
is simply derived from the fact that classic reachability
games [Imm81] are subsumed. Instead, the hardness w.r.t. the
combined complexity is immediately obtained from the fact
that GSL[1G] subsumes CTL [Sch02].

V. DISCUSSION

In multi-agent systems general questions to be investigated
are: “is there a winning strategy?” or “is the game surely
winning?” (i.e., no matter which strategy the agent can play).
In the years, several logics suitable for the strategic reasoning
have been introduced and, by means of existential and universal
modalities, this kind of questions has been addressed [AHK02].
However, these logics are not able to address quantitative
aspects such as “what is the number of winning strategies an
agent can play?” or, in general, to determine the success
rate of a game [MMS15]. These questions are critical in
dealing with solution concepts [Mye91] and in open-system
verification [FMP08].

In this paper, we have introduced and studied GSL, an
extension of Strategy Logic with graded modalities. The use
of a powerful formalism such as Strategy Logic ensures the
ability of dealing with very intricate game scenarios [MMV10].
The obvious drawback of this is a considerable amount of
work on solving any related question [MMPV12]. One of the
main difficulties we have faced in GSL has been the definition
of the right methodology to count strategies. To this aim, we
have introduced a suitable equivalence relation over strategy
profiles based on the strategic behavior they induce and studied
its robustness. Also, we have provided arguments and some
examples along the paper to give evidence of the usefulness
of GSL and the suitability of the proposed counting.

In order to provide results of practical use, we have
investigated basic questions over a restricted fragment of GSL.
Precisely we have considered the case in which the graded
modalities are applied to the vanilla restriction of the one-goal
fragment of SL [MMPV12]. The resulting logic, named Vanilla
SL[1G], has been investigated in the turn-based setting. We
have obtained positive results about determinacy and showed
that the related model-checking problem is PTIME-COMPLETE.

The framework and the results presented in this paper open
for several future work questions. First, it would be worth
investigating the extension of existing formal verification tools
such as MCMAS [LR06] with our results. We recall that
MCMAS, originally developed for the verification for multi-
agent models with respect to specification given in ATL [LR06],
has been recently extended to handle Strategy Logic specifica-
tions [ČLMM14], [ČLM15]. Under our formalism it is possible
to check, in a single evaluation process, that more than one
strategy gives a fault and possibly correct all these errors. This
in a way similar as the verification tool NuSMV has been
extended to deal with graded-CTLverification [FNP10].

Another research direction regards investigating the graded
extension of other formalism for the strategic reasoning such



as ATL with context [BLLM09], [LLM10], as well as, for
the sake of completeness, to determine the complexity of the
model checking problem with respect to other fragments of
Strategy Logic [MMS13], [MMS14a].

Finally, it would be really interesting to address the satisfia-
bility for GSL[1G] too, by generalizing the solution procedure
developed for SL[1G] [MMPV12]. However, we want to
observe that, the technical tools described in this article are
not powerful enough to solve this problem, since this also
needs a bounded-width tree model property. So, further work
is still required. Moreover, the procedure exploited for graded
CTL [BMM09], [BMM10], [BMM12] cannot easily be applied
to GSL[1G], due to the fact that the binary-tree unraveling
used there would modify the way the strategies are valuated
as equivalent.
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