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Abstract. Security properties are often focused on the technological
side of the system. One implicitly assumes that the users will behave in
the right way to preserve the property at hand. In real life, this cannot
be taken for granted. In particular, security mechanisms that are difficult
and costly to use are often ignored by the users, and do not really defend
the system against possible attacks.
Here, we propose a graded notion of security based on the complexity of
the user’s strategic behavior. More precisely, we suggest that the level
to which a security property ϕ is satisfied can be defined in terms of (a)
the complexity of the strategy that the voter needs to execute to make
ϕ true, and (b) the resources that the user must employ on the way. The
simpler and cheaper to obtain ϕ, the higher the degree of security.
We demonstrate how the idea works in a case study based on an electronic
voting scenario. To this end, we model the vVote implementation of the
Prêt à Voter voting protocol for coercion-resistant and voter-verifiable
elections. Then, we identify “natural” strategies for the voter to obtain
receipt-freeness, and measure the voter’s effort that they require.

Keywords: electronic voting, coercion resistance, natural strategies,
multi-agent models, graded security

1 Introduction

Security analysis often focuses on the technological side of the system. It im-
plicitly assumes that the users will duly follow the sequence of steps that the
designer of the protocol prescribed for them. However, such behavior of human
participants seldom happens in real life. In particular, mechanisms that are dif-
ficult and costly to use are often ignored by the users, even if they are there to
defend those very users from possible attacks.

For example, protocols for electronic voting are usually expected to satisfy
receipt-freeness (the voter should be given no certificate that can be used to
break the anonymity of her vote) and the related property of coercion-resistance
(the voter should be able to deceive the potential coercer and cast her vote in
accordance with her preferences) [8, 35, 30, 18, 31, 19]. More recently, significant
progress has been made in the development of voting systems that would be
coercion-resistant and at the same time voter-verifiable, i.e., would allow the
voter to verify her part of the election outcome [36, 13]. The idea is to partly



2 Wojciech Jamroga, Damian Kurpiewski, and Vadim Malvone

“crowdsource” an audit of the election to the voters, and see if they detect any
irregularities. Examples include the Prêt à Voter protocol [37] and its implemen-
tation vVote [14] that was used in the 2014 election in the Australian state of
Victoria.

However, the fact that a voting system includes a mechanism for voter-
verifiability does not immediately imply that it is more secure and trustworthy.
This crucially depends on how many voters will actually verify their ballots [42],
which in turn depends on how understandable and easy to use the mechanism
is. The same applies to mechanisms for coercion-resistance and receipt-freeness,
and in fact to any optional security mechanism. If the users find the mechanism
complicated and tiresome, and they can avoid it, they will avoid it.

Thus, the right question is often not if but how much security is obtained
by the given mechanism. In this paper, we propose a graded notion of practical
security based on the complexity of the strategic behavior, expected from the
user if a given security property is to be achieved. More precisely, we suggest
that the level to which property ϕ is “practically” satisfied can be defined in
terms of (a) the complexity of the strategy that the user needs to execute to
make ϕ true, and (b) the resources that the user must employ on the way. The
simpler and cheaper to obtain ϕ, the higher the degree of security.

Obviously, the devil is in the detail. It often works best when a general idea
is developed with concrete examples in mind. Here, we do the first step, and
look how the voter-verifiability can be assessed in vVote and Prêt à Voter. To
this end, we come up with a multi-agent model of vVote, inspired by interpreted
systems [20]. We consider three main types of agents participating in the voting
process: the election system, a voter, and a potential coercer. Then, we identify
strategies for the voter to use the voter-verifiability mechanism, and estimate
the voter’s effort that they require. We also look at how difficult it is for the
coercer to compromise the election through a randomization attack [30]. The
strategic reasoning and its complexity is formalized by means of so called natural
strategies, proposed in [28, 29] and consistent with psychological evidence on how
humans use symbolic concepts [9, 21].

To create the models, we use the Uppaal model checker for distributed and
multi-agent systems [5], with its flexible modeling language and intuitive GUI.
This additionally allows to use the Uppaal verification functionality and check
that our natural strategies indeed obtain the goals for which they are proposed.

Related work. Formal analysis of security that takes a more human-centered
approach has been done in a number of papers, for example with respect to
insider threats [23]. A more systematic approach, based on the idea of security
ceremonies, was proposed and used in [11, 6, 7, 33], and applied to formal anal-
ysis of voting protocols [32]. Here, we build on a different modeling tradition,
namely on the framework of multi-agent systems. This modeling approach was
only used in [24] where a preliminary verification of the Selene voting protocol
was conducted. Moreover, to our best knowledge, the idea of measuring the se-
curity level by the complexity of strategies needed to preserve a given security
requirement is entirely new.
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Fig. 1. Voter model

Other (somewhat) related works include social-technical modeling of attacks
with timed automata [16] and especially game-theoretic analysis of voting pro-
cedures [10, 15, 3, 26]. Also, strategies for human users to obtain simple security
requirements were investigated in [4]. Finally, specification of coercion-resistance
and receipt-freeness in logics of strategic ability was attempted in [41].

2 Methodology

The main goal of this paper is to propose a framework for analyzing security
and usability of voting protocols, based on how easy it is for the participants to
use the functionality of the protocol and avoid a breach of security. Dually, we
can also look at how difficult it is for the attacker to compromise the system. In
this section we explain the methodology.

2.1 Modeling the Voting Process

The first step is to divide the description of the protocol into loosely coupled
components, called agents. The partition is often straightforward: in our case, it
will include the voter, the election infrastructure, the teller etc.

For each agent we define its local model, which consists of locations (i.e.,
the local states of the agent) and labeled edges between locations (i.e., local
transitions). A transition corresponds to an action performed by the agent. An
example model of the voter can be seen in Figure 1. For instance, when the
voter has scanned her ballot and is in the state scanning she can perform action
enter vote, thus moving to the state voted. This local model, as well as the
others, has been created using the modeling interface of the Uppaal model
checker [5]. The locations in Uppaal are graphically represented as circles, with
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initial locations marked by a double circle. The edges are annotated by colored
labels: guards (green), synchronizations (teal) and updates (blue). The syntax
of expressions is similar to C/C++. Guards enable the transition if and only
if the guard condition evaluates to true. Synchronizations allow processes to
synchronize over a common channel. Update expressions are evaluated when the
transition is taken.

The global model of the whole system consists of a set of concurrent processes,
i.e., local models of the agents. The combination of the local models unfolds into
a global model, where each global state represents a possible configuration of
the local states of the agents.

2.2 Natural Strategic Ability

Many relevant properties of multi-agent systems refer to strategic abilities of
agents and their groups. For example, voter-verifiability can be understood as
the ability of the voter to check if her vote was registered and tallied correctly.
Similarly, receipt-freeness can be understood as the inability of the coercer, typi-
cally with help from the voter, to obtain evidence of how the voter has voted [41].

Logics of strategic reasoning, such as ATL and Strategy Logic, provide neat
languages to express properties of agents’ behavior and its dynamics, driven by
individual and collective goals of the agents [2, 12, 34]. For example, the ATL
formula 〈〈cust〉〉F ticket may be used to express that the customer cust can en-
sure that he will eventually obtain a ticket, regardless of the actions of the other
agents. The specification holds if cust has a strategy whose every execution path
satisfies ticket at some point in the future. Strategies in a multi-agent system
are understood as conditional plans, and play central role in reasoning about
purposeful agents [2, 40]. Formally, strategies are defined as functions from se-
quences of system states (i.e., possible histories of the game) to actions. A simpler
notion of positional strategies, that we will use here, is defined by functions from
states to actions. However, real-life processes often have millions or even billions
of possible states, which allows for terribly complicated strategies – and humans
are notoriously bad at handling combinatorially complex objects.

To better model the way human agents strategize, we proposed in [28, 29]
to use a more human-friendly representation of strategies, based on lists of
condition-action rules. The conditions are given by Boolean formulas for po-
sitional strategies and regular expressions over Boolean formulas in the general
case. Moreover, it was postulated that only those strategies should be consid-
ered whose complexity does not exceed a given bound. This is consistent with
classical approaches to commonsense reasoning [17] and planning [22], as well as
the empirical results on how humans learn and use concepts [9, 21].

2.3 Natural Strategies and Their Complexity

Natural strategies. Let B(Propa) be the set of Boolean formulas over atomic
propositions Propa observable by agent a. In our case, Propa consists of all
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the references to the local variables of agent a, as well as the global variables
in the model. We represent natural positional strategies of agent a by ordered
lists of guarded actions, i.e., sequences of pairs φi  αi such that: (1) φi ∈
B(Propa), and (2) αi is an action available to agent a in every state where
φi holds. Moreover, we assume that the last pair on the list is >  α for some
action α, i.e., the last rule is guarded by a condition that will always be satisfied.
A collective natural strategy for a group of agents A = {a1, . . . , a|A|} is a tuple
of individual natural strategies sA = (sa1 , . . . , sa|A|). The set of such strategies
is denoted by ΣA.

The “outcome” function out(q, sA) returns the set of all paths (i.e., all max-
imal traces) that occur when coalition A executes strategy sA from state q
onward, and the agents outside A are free to act in an arbitrary way.

Complexity of strategies. We will use the following complexity metric for
strategies: compl (sA) =

∑
(φ,α)∈sA |φ|, with |φ| being the number of symbols in

φ, without parentheses. That is, compl (sA) simply counts the total length of
guards in sA. Intuitively, the complexity of a strategy is understood as its level
of sophistication. It corresponds to the mental effort needed to come up with
the strategy, memorize it, and execute it.

3 Specification and Verification of Voting Properties
Based on Natural Strategies

To reason about natural strategic ability, the logic NatATL was introduced in [25,
28] with the following syntax:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉≤kX ϕ | 〈〈A〉〉≤kF ϕ | 〈〈A〉〉≤kG ϕ | 〈〈A〉〉≤kϕU ϕ.

where A is a group of agents and k ∈ N is a complexity bound. Intuitively,
〈〈A〉〉≤kγ reads as “coalition A has a collective strategy of size less or equal than
k to enforce the property γ.” The formulas of NatATL make use of classical
temporal operators: “X ” (“in the next state”), “G ” (“always from now on”),
“F ” (“now or sometime in the future”), and U (strong “until”). For example, the
formula 〈〈cust〉〉≤10F ticket expresses that the customer can obtain a ticket by a
strategy of complexity at most 10. This seems more appropriate as a functionality
requirement than to require the existence of any function from states to actions.
We note in passing that the path quantifier “for all paths” from temporal logic
can be defined as Aγ ≡ 〈〈∅〉〉≤0γ.

3.1 How to Specify Voter-Verifiability

NatATL can be used to specify interesting properties of the voting system. For
example, voter-verifiability captures the ability of the voter to verify what hap-
pened to her vote. In our case, this is represented by the check4 phase, hence
we can specify voter-verifiability with formula 〈〈voter〉〉≤kF (check4 ok ∨ error).
The intuition is simple: the voter has a strategy of size at most k to successfully
perform check4 or else signal an error.
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A careful reader can spot one problem with the formalization: it holds if the
voter signals an error regardless of the outcome of the check (and it shouldn’t!).
A better specification is given by 〈〈voter〉〉≤kF (check4 ok ∨ check4 fail), saying
that the voter has a strategy of size at most k so that, at some point, she obtains
either the positive or the negative outcome of check4.

3.2 Towards Dispute Resolution

Moreover, we can use formula AG (check4 fail → 〈〈voter〉〉≤kF error) to connect
the negative outcome of the check with the voter’s ability to report the prob-
lem. This property, which can be called “error signalling,” captures one aspect
of dispute resolution. To characterize dispute resolution in full, we would need
to significantly extend our model of the election. For instance, it would have
to include a process that handles submitting the relevant evidence to the right
authority (electoral commission, the judge, etc.), the deliberation and decision-
making steps to be taken by that authority, and finally the way the final decision
is to be executed (e.g., the election being declared void and repeated). We con-
jecture that dispute resolution would require not only more complex models than
voter verifiability, but also higher mental complexity of the voter’s behaviour,
i.e., more complex natural strategies to achieve it.

3.3 Strategic-Epistemic Specifications

The above specification of voter-verifiability is rather technical and relies on
appropriate labeling of model states (in particular, with propositions check4 ok
and check4 fail). On a more abstract level, one would like to say that the voter
has a strategy to eventually know how her vote has been treated. Crucially,
this refers to the knowledge of the voter. To capture the requirement, we would
need to extend NatATL with knowledge operators Ka, where Kaϕ expresses that
agent a knows that ϕ holds. For instance, Kvotervotedi says that the voter knows
that her vote has been registered for the candidate i. Then, voter-verifiability
could be re-formalized as:

〈〈voter〉〉≤kF
∧
i∈Cand(Kvotervotedi ∨Kvoter¬votedi).

3.4 Receipt-Freeness

The conceptual structure of receipt-freeness is similar. In that case, we want to
say that the voter has no way of proving how she has voted, and that the coercer
(or a potential vote-buyer) does not have a strategy that allows him to learn the
value of the vote, even if the voter cooperates [30]:∧

i∈Cand ¬〈〈coerc, voter〉〉≤kG (end→ (Kcoercvotei ∨Kcoerc¬votei)).
That means that the coercer and the voter have no strategy with complexity
at most k to learn, after the election is finished, whether the voter has voted
for i or not. Note that this is only one possible formalization of the require-
ment. For example, one may argue that, to violate receipt-freeness, it suffices
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that the coercer can detect whenever the voter has not obeyed ; he does not
have to learn the exact value of her vote. This can be captured by the follow-
ing formula:

∧
i∈Cand ¬〈〈coerc, voter〉〉≤kG ((end ∧ ¬votei) → Kcoerc¬votei). We

note in passing that the related notion of vote anonymity can be specified as∧
a∈Agents\{voter}

∧
i∈Cand AG (¬Kavotei ∧ ¬Ka¬votei)).

Combining strategic and epistemic aspects poses a number of semantic prob-
lems [27, 1]. To avoid those, we will concentrate on properties that use only
strategic operators, such as the “technical” specification of voter-verifiability.

3.5 Using Verification Tools to Facilitate Analysis

The focus of this work is on modeling and specification; the formal analysis is
done mainly by hand. However, having the models specified in Uppaal suggests
that we can also benefit from its model checking functionality. Unfortunately,
the requirement specification language of Uppaal is very limited, and allows
for neither strategic operators nor knowledge modalities. Still, we can use it to
verify concrete strategies if we carefully modify the input formula and the model.
We will show how to do it in Section 7.

4 Use Case Scenario: vVote

Secure and verifiable voting is becoming more and more important for the democ-
racy to function correctly. In this paper, we analyze the vVote implementation
of Prêt à Voter which was used for remote voting and voting of handicapped
persons in the Victorian elections in November 2014 [14]. The main idea of the
Prêt à Voter protocol focuses on encoding the vote using a randomized candidate
list. In this protocol the ballot consists of two parts: the randomized order of
candidates (left part) and the list of empty checkboxes along with the number
encoding the order of the candidates (right part). The voter casts her vote in the
usual way, by placing a cross in the right hand column against the candidate of
her choice. Then, she tears the ballot in two parts, destroys the left part, casts
the right one, and takes a copy of it as her receipt. After the election her vote
appears on the public Web Bulletin Board (WBB)4 as the pair of the encod-
ing number and the marked box, which can be compared with the receipt for
verification. We look at the whole process, from the voter entering the polling
station, to the verification of her vote on the Web Bulletin Board.

After entering the polling station, the Poll Worker (PW) authenticates the
voter (using the method prescribed by the appropriate regulations), and sends a
print request to the Print On Demand device (POD) specifying the district/re-
gion of the voter. If the authentication is valid (state printing) then the POD
retrieves and prints an appropriate ballot for the voter, including a Serial Num-
ber (SN) and the district, with a signature from the Private Web Bulletin Board
(PWBB). The PWBB is a robust secure database which receives messages, per-
forms basic validity checks, and returns signatures. After that, the voter may

4 The WBB is an authenticated public broadcast channel with memory.
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Fig. 2. Voter refinement: phase check4

choose to check and confirm the ballot. This involves demanding a proof that
the ballot is properly formed, i.e., that the permuted candidate list corresponds
correctly to the cipher-texts on the public WBB for that serial number. If the
ballot has a confirmation check, the voter returns to the printing step for a new
ballot (transition from state check1 to printing).

Having obtained and possibly checked her ballot (state has ballot), the voter
can scan it by showing the ballot bar code to the Electronic Ballot Marker
(EBM). Then, she enters her vote (state scanning) via the EBM interface. The
EBM is a computer that assists the user in filling in a Prêt à Voter ballot. The
EBM prints on a separate sheet the voter’s receipt with the following infor-
mation: (i) the electoral district, (ii) the Serial Number, (iii) the voter’s vote
permuted appropriately to match the Prêt à Voter ballot, and (iv) a QR code
with this data and the PWBB signature.

Further, the voter must check the printed vote against the printed candidate
list. In particular, she checks that the district is correct and the Serial Number
matches the one on the ballot form. If all is well done, she can optionally check
the PWBB signature, which covers only the data visible to the voter. Note
that, if either check2 or check3 fails, the vote is canceled using the cancellation
protocol. If everything is OK, the voter validates the vote, shreds the candidate
list, and leaves the polling station. Finally, the voter can check her vote on the
WBB after the election closes. She only needs to check the SR and the order of
her preference numbers.

5 Models

In this section we present the model of a simplified version of vVote, focusing
on the steps that are important from the voter’s perspective. We use Uppaal
as the modeling tool because of its flexible modeling language and user-friendly
GUI.

5.1 Voter Model

The local model already presented in Figure 1 captures the voter’s actions from
entering the polling station to casting her vote, going back home and verifying
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her receipt on the Web Bulletin Board. As shown in the graph, some actions
(in particular the additional checks) are optional for the voter. Furthermore, to
simulate the human behavior we added some additional actions, not described
in the protocol itself. For example the voter can skip even obligatory steps, like
check2. This is especially important, as check2 may be the most time-consuming
action for the voter and many voters may skip it in the real life. To further
simulate the real-life behavior of the voters, for each state we added a loop
action labeled as wait, to allow the voter to wait in any state as long as she
wants. We omit the loops from the graph for the clarity of presentation. After
every check, the voter can signal an error, thus ending up in the error state.
The state represents communication with the election authority, signaling that
the voter could not cast her vote or a machine malfunction was detected.

5.2 Refinements of the Voter Model

The model shown in Figure 1 is relatively abstract. For example, check4 is shown
as an atomic action, but in fact it requires that the voter compares data from
the receipt and the WBB. In order to properly measure the complexity of the
voter strategies, it is crucial to consider different levels of granularity.

Check4 phase. Recall that this is the last phase in the protocol and it is
optional. Here, the voter can check if the printed receipt matches her intended
vote on the WBB. This includes checking that the serial numbers match (action
check serial), and that the printed preferences order match the one displayed
on the WBB (action check preferences). If both steps succeed, then the voter
reaches state check4 ok. The refined model for this phase is presented in Figure 2.
Other phases, such as check2, can be refined in a similar way.

Serial number phase. In some cases the model shown in Figure 2 may still be
too general. For example, the length of the serial number may have impact on
the level of difficulty faced by the voter. To capture this, we split the step into
atomic actions: check serial1(i) for checking the ith symbol on the WBB, and
check serial2(i) for checking the ith symbol on the receipt. The resulting model
is shown in Figure 3, where n is the length of the serial number.

Preferences order phase. Similarly to comparing the two serial numbers, the
verification of the printed preferences can also be troublesome for the voter. In
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order to make sure that her receipt matches the entry on the WBB, the voter
must check each number showing her preference. Actions check number1(i) and
check number2(i) refer to checking a number on the WBB and on the receipt,
respectively. This is shown in the local model in Figure 4, where m is the number
of candidates in the ballot.

5.3 Voting Infrastructure

The voter is not the only entity taking part in the election procedure. The
election infrastructure and the electronic devices associated with it constitute a
significant part of the procedure. Since there are several components involved in
the voting process, we decided to model each component as a separate agent.
The models of the Public WBB, Private WBB, the cancel station, the print-on-
demand printer, and the EBM are shown in Figures 5–9.

5.4 Coercer Model

To model the coercer, we first need to determine his exact capabilities. Is he
able to interact with the voter, or only with the system? Should he have full
control over the network, like the Dolev-Yao attacker, or do we want the agent
to represent implicit coercion, where the relatives or subordinates are forced to
vote for a specified candidate? In this preliminary study, we assume a simple
1-state model of the coercer, with loops labeled by the following actions:

• coerce(ca): the coercer coerces the voter to vote for candidate ca;
• modify ballot(ca): the coercer modifies the voter’s ballot by setting a vote

for ca;
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• request: the coercer requests the receipt from the voter;
• punish: the coercer punishes the voter;
• infect : the coercer infects the voting machine with malicious code;
• listen: the coercer listens to the voter’s vote on the voting machine;
• replace(ca): the coercer replaces the voter’s ballot with a vote for ca.

Some actions depend on each other. For example, listen and replace should
be executed only after the infect has succeed, as the coercer needs some kind of
access to the voting machine.

6 Strategies and Their Complexity

There are many possible objectives for the participants of a voting procedure.
A voter’s goal could be to just cast her vote, another one could be to make sure
that her vote was correctly counted, and yet another one to verify the election
results. The same goes for the coercer: he may just want to make his family vote
in the “correct” way, or to change the outcome of the election. In order to define
different objectives, we can use formulas of NatATL and look for appropriate
natural strategies, as described in Sections 2 and 3. More precisely, we can fix
a subset of the participants and their objective with a formula of NatATL, find
the smallest strategy that achieves the objective, and compute its size. The size
of the strategy will be an indication of how hard it is to make sure that the
objective is achieved.

An example goal that the voter may want to pursue is the verifiability of her
vote. Given the model in Figure 1, we can use the formula ϕ1 =〈〈v〉〉≤kF(check4 ok
∨ check4 fail), as discussed in Section 3.

Note that it is essential to fix the granularity level of the modeling right.
When shifting the level of abstraction, we obtain significantly different “mea-
surements” of strategic complexity. This is why we proposed several variants of
the voter model in Section 5. In this section, we will show how it affects the
outcome of the analysis.

In the following we take another look at the previously defined models and
try to list possible strategies for the participants.

6.1 Strategies for the Voter

In this section we focus on natural strategies for voter-verifiability.

Natural Strategy 1 A strategy for the voter is:

1. has ballot scan ballot
2. scanning enter vote
3. voted check2
4. check2 ok ∨ check2 fail ∨ check request move next
5. vote ok shred ballot
6. shred leave
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7. check4 check4
8. > ?

Recall that the above is an ordered sequence of guarded commands. The first
condition (guard) that evaluates to true determines the action of the voter. Thus,
if the voter has the ballot and she has not scanned it (proposition has ballot),
she scans the ballot. If has ballot is false and scanning is true then she enters her
vote, and so on. If all the preconditions except > are false, then she executes
an arbitrary available action (represented by the wildcard ?). For example, the
voter will do print ballot at the state printing, where the voter needs to wait
while the Poll Worker identifies her and generates a new ballot.

In Natural Strategy 1, we have 8 guarded commands in which the command
(4) costs 5 since in its condition there are five symbols (three atoms plus two
disjunctions), while the other guarded commands cost 1, so the total complexity
is 1 · 7 + 5 · 1 = 12. So, the formula ϕ1 is true with any k of 12 or more.

Next, we show a natural strategy with the additional guarded commands
in case the voter wants to do the optional phases check1 and check3, i.e., we
want to satisfy the formula ϕ2 = 〈〈v〉〉≤kF(checked1 ∧ checked3 ∧ (check4 ok ∨
check4 fail)). In particular, ϕ2 checks whether there exist a natural strategy for
the voter such that sooner or later she does check1, check3, and verifies her vote.
Note that, apart from the standard propositions like check1, we also add their
persistent versions like checked1 designed in such a way that once check1 gets
true, checked1 also becomes true and remains true forever.

Natural Strategy 2 A strategy for the voter that considers the optional phases
check1 and check3 is:

1. has ballot ∧ counter == 0 check ballot
2. has ballot scan ballot
3. scanning enter vote
4. voted check2
5. check2 ok ∨ check2 fail check3
6. check1 ∨ check3 ∨ check request move next
7. vote ok shred ballot
8. shred leave
9. check4 check4

10. > ?

In Natural Strategy 2, we introduce the verification of check1 and check3.
To do this we add two new guarded commands (5) and (6), and update clause
(1) by adding a control on a counter to determine if check1 is done or not. This
gives the total complexity of 1 · 7 + 3 · 2 + 5 · 1 = 18. Thus, the formula ϕ2 is true
for any k ≥ 18.

An important aspect to evaluate in this subject concerns the detailed analysis
of check4. Some interesting questions on this analysis could be: how does the
voter perform check4? How does she compare the printed preferences with the
information on the public WWB? These questions open up several scenarios both
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from a strategic point of view and for the model to be used. From the strategic
point of view, we can consider a refinement of Natural Strategy 1, in which the
action check4 is evaluated as something of atomic. If we consider that the check4
includes: comparing preferences with the information in the public WWB and
checking the serial number, we can already divide the single action into two
different actions for each of the checks to be performed. So, given the model in
Figure 2, to verify that the voter does each step of check4, we need to provide a
formula that verifies atoms check4 ok, check4.1 ok, and check4.2 ok. To do this
in NatATL, we use the formula ϕ3 = 〈〈v〉〉≤kF((checked4 ok ∧ checked4.1 ok ∧
checked4.2 ok) ∨ check4 fail ∨ check4.1 fail ∨ check4.2 fail). To achieve this, we
refine the previous natural strategy for the voter, as follows.

Natural Strategy 3 A strategy for the voter that works in the refined model
of phase check4 is:

1. has ballot scan ballot
2. scanning enter vote
3. voted check2
4. check2 ok ∨ check2 fail ∨ check request move next
5. vote ok shred ballot
6. shred leave
7. check4 check serial
8. check4 ok ok
9. check4.1 check preferences

10. check4.1 ok ok
11. check4.2 check4
12. > ?

In Natural Strategy 3, we have 12 guarded commands in which all the con-
ditions are defined with a single atom but (4) in which there is a disjunction of
three atoms. So, the total complexity is 1 · 11 + 5 · 1 = 16. So, ϕ3 is true for any
k ≥ 16; one can use Natural Strategy 3 to demonstrate that.

6.2 Counting Other Kinds of Resources

So far, we have measured the effort of the voter by how complex strategies she
must execute. This helps to estimate the mental difficulty related, e.g., to voter-
verifiability. However, this is not the only source of effort that the voter has to
invest. Verifying one’s vote might require money (for example, if the voter needs
to buy special software or a dedicated device), computational power, and, most
of all, time. Here, we briefly concentrate on the latter factor.

For a voter’s task expressed by the NatATL formula 〈〈v〉〉≤kF ϕ and a natural
strategy sv for the voter, we can estimate the time spent on the task by the
number of transitions necessary to reach ϕ. That is, we take all the paths in
out(q, sv), where q is the initial state of the procedure. On each path, ϕ must
occur at some point. We look for the path where the first occurrence of ϕ happens
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latest, and count the number of steps to ϕ on that path. We will demonstrate
how it works on the goals and strategies presented in Section 6.1.

For example, for Natural Strategy 3, starting from the initial state, the
voter needs of 10 + 5 = 15 steps to achieve (checked4 ok ∧ checked4.1 ok ∧
checked4.2 ok)∨ check4 fail∨ check4.1 fail∨ check4.2 fail in the worst case. More
precisely, 10 steps are needed to achieve check4 in the local model shown in
Figure 1, and 5 more steps to reach check4.2 ok∨ check4.2 fail in the refinement
of the final section of the procedure (see Figure 2).

Similarly, the voter executing Natural Strategy 1 needs 11 steps to achieve
the state check4 fail or the state check4 ok. Finally, Natural Strategy 2 requires
15 steps to conclude the verification of the voter’s vote.

6.3 Natural Strategies for Coalitions

Some properties, such as receipt-freeness, refer to the joint abilities of the voter
and the coercer (see Section 3). Unfortunately, receipt-freeness is underpinned by
strategic-epistemic reasoning – something that we want to avoid here. Instead,
we consider a simpler property stating that “the coercer can obtain the receipt
of the voter’s vote if the voter cooperates with him.” This can be formalized as:

ϕ4 = 〈〈c, v〉〉≤kF has receipt.
The natural strategies for the coalition are presented below.

Natural Strategy 4 (Coalitional strategy, the voter’s part)

1. has ballot scan ballot
2. scanning enter vote
3. voted check2
4. check2 ok ∨ check2 fail move next
5. vote ok shred ballot
6. shred leave
7. check request share
8. > ?

Natural Strategy 5 (Coalitional strategy, the coercer’s part)

1. > request

In Natural Strategy 4, we have 8 guarded commands in which all the con-
ditions are defined with a single atom but (4) in which there is disjunction of
two atoms. Thus, the total complexity is 1 · 7 + 3 · 1 = 10. Moreover, Natural
Strategy 5 for the coercer has complexity 1 since it has one guarded command
with a single symbol. So, ϕ4 is true for any k ≥ 11.

7 Automated Verification of Strategies

In this section we explain how the model checking functionality of Uppaal can
be used for an automated verification of the strategies presented in Section 6.
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To verify selected formulas and the corresponding natural strategies, we need
to modify several things, namely: (i) the formula, (ii) the natural strategy, and
finally (iii) the model. We explain the modifications step by step.

Formula. To specify the required properties for the protocol, we have used a
variant of strategic logic. Unfortunately, Uppaal supports neither NatATL nor
ATL, but only a fragment of the branching-time temporal logic CTL. Thus, we
cannot use Uppaal to model-check the formulas of Section 6. What we can do,
however, is to verify if a given natural strategy achieves a given goal. To this end,
we replace the strategic operator 〈〈A〉〉≤k in the formula with the universal path
quantifier A. For example, instead of formula ϕ1 ≡ 〈〈v〉〉F (check4 ok∨check4 fail)
we use ϕ′1 = AF (check4 ok ∨ check4 fail). Furthermore, we “prune” the model
according to the given strategy, see below for the details.

Natural Strategy. In order to efficiently merge the natural strategy with the
model, the strategy should be modified so that all the guard conditions are
mutually exclusive. To this end, we go through the preconditions from top to
bottom, and refine them by adding the negated preconditions from all the pre-
vious guardeds. For example, Natural Strategy 1 becomes:

1. has ballot scan ballot
2. ¬has ballot ∧ scanning enter vote
3. ¬has ballot ∧ ¬scanning ∧ voted check2
4. ¬has ballot∧¬scanning∧¬voted∧ (check2 ok∨check2 fail∨check request) 
move next

5. ¬has ballot∧¬scanning∧¬voted∧¬(check2 ok∨check2 fail∨check request)∧
vote ok shred ballot

6. ¬has ballot∧¬scanning∧¬voted∧¬(check2 ok∨check2 fail∨check request)∧
¬vote ok ∧ shred leave

7. ¬has ballot∧¬scanning∧¬voted∧¬(check2 ok∨check2 fail∨check request)∧
¬vote ok ∧ ¬shred ∧ check4 check4

8. > ?

Model. To verify the selected strategy of the voter, we merge it with the voter
model by adding the guard conditions from the strategy to the preconditions
of the corresponding local transitions in the model. Thus, we effectively remove
all transitions that are not in accordance with the strategy. In this way, only
the paths that are consistent with the strategy will be considered by the model-
checker.

Levels of granularity. As we showed in Section 5, it is often important to
have variants of the model for different levels of abstraction. To handle those
in Uppaal, we have used synchronizations edges. For example, to have a more
detailed version of the phase check4, we added synchronization edges in the voter
model (Figure 1) and in the check4 model (Figure 2). Then, when going through
the check4 phase in the voter model, Uppaal will proceed to the more detailed
submodel, and come back after getting to its final state.

Running the verification. We have modified the models, formulas, and strate-
gies from Sections 5 and 6 following the above steps. Then, we used Uppaal to
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verify that Natural Strategies 1–5 indeed enforce the prescribed properties. The
tool reported that each formula holds in the corresponding model. The execution
time was always at most a few seconds.

8 Conclusions

In the analysis of a voting protocols it is important to make sure that the voter
has a strategy to use the functionality of the protocol. That is, she has a strategy
to fill in and cast her ballot, verify her vote on the bulletin board, etc. However,
this is not enough: it is also essential to see how hard that strategy is. In this
paper, we propose a methodology that can be used to this end. One can assume
a natural representation of the voter’s strategy, and measure its complexity as
the size of the representation.

We mainly focus on one aspect of the voter’s effort, namely the mental effort
needed to produce, memorize, and execute the required actions. We also indicate
that there are other important factors, such as the time needed to execute the
strategy or the financial cost of the strategy. This may lead to trade-offs where
optimizing the costs with respect to one resource leads to higher costs in terms of
another resource. Moreover, resources can vary in their importance for different
agents. For example, time may be more important for the voter, while money is
probably more relevant when we analyze the strategy of the coercer. We leave a
closer study of such trade-offs for future work.

An interesting extension would be to further analyze the parts of the protocol
where the voter compares two numbers, tables, etc. As the voter is a human
being, it is natural for her to make a mistake. Furthermore, the probability of
making a mistake at each step can be added to the model to analyze the overall
probability of successfully comparing two data sets by the voter.

Finally, we point out that the methodology proposed in this paper can be
applied outside of the e-voting domain. For example, one can use it to study the
usability of policies for social distancing in the current epidemic situation, and
whether they are likely to obtain the expected results.
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