
Runtime Verification with Imperfect Information
through Indistinguishability Relations

Angelo Ferrando1[0000−0002−8711−4670] and Vadim Malvone2[0000−0001−6138−4229]

1 Department of Informatics, Bioengineering, Robotics and Systems Engineering,
University of Genova, Italy

2 LTCI, Telecom Paris, Institut Polytechnique de Paris, France
angelo.ferrando@unige.it

vadim.malvone@telecom-paris.fr

Abstract. Software systems are hard to trust, especially when autono-
mous. To overcome this, formal verification techniques can be deployed
to verify such systems behave as expected. Runtime Verification is one
of the most prominent and lightweight approaches to verify the system
behaviour at execution time. However, standard Runtime Verification
is built on the assumption of perfect information over the system, that
is, the monitor checking the system can perceive everything. Unfortu-
nately, this is not always the case, especially when the system under
analysis contains rational/autonomous components and is deployed in
real-world environments with possibly faulty sensors. In this work, we
present an extension of the standard Runtime Verification of Linear Tem-
poral Logic properties to consider scenarios with imperfect information.
We present the engineering steps necessary to update the verification
pipeline, and we report the corresponding implementation when applied
to a case study involving robotic systems.

Keywords: Runtime Verification · Autonomous Systems · Imperfect
Information

1 Introduction

Developing quality software is a very demanding task [13]. Many are the rea-
sons, but the complexity and presence of autonomous behaviours are definitely
amongst them. Techniques that were developed to approach the development of
monolithic systems may not work as well for distributed and autonomous ones.
This does not only represent a technological issue, but an engineering one as
well. In the past decades, we all have been witnesses of technological advances
in the software engineering research area, especially when focused on the actual
software development. However, the need of re-engineering does not only concern
software development, but its verification as well. As software changes, so the
ways to verify it need to change. Runtime Verification (RV), as other verification
techniques, is not free from such changes.

Runtime Verification [12, 1] is a formal verification technique that allows the
verification of the runtime behaviour of a software/hardware system of interest.

2 A. Ferrando and V. Malvone

Differently from other verification techniques, RV is not exhaustive, since it
focuses on the actual system execution. That is, a violation of the expected
behaviour is concluded only if such violation is observed in the execution trace.
Nevertheless, RV is a lightweight technique, because it does not check all possible
system’s behaviours, and by doing this, it scales better than its static verification
counterparts (which usually suffer from the state space explosion problem).

RV was born after static verification, such as model checking [7], and it in-
herited much from the latter; especially on how to specify the formal properties
to verify. One of the most used formalisms in model checking, and by conse-
quence in RV, is Linear Temporal Logic (LTL) [14]. We will present its syntax
and semantics along the paper, but for now, we only focus on the aspect of
LTL on which this work is mainly focused on, that is its implicit assumption
of perfect information over the system. Indeed, LTL verification is usually per-
formed assuming the system under analysis offers all the information needed for
the verification [5]. This is translated at the verification level into the genera-
tion of atomic propositions that denote what we know about the system, and
are used to verify the properties of interest. However, this is not always the
case. Especially when the system to verify contains autonomous, or distributed,
or even faulty components (like faulty sensors in real-world environments, e.g.
any robotics scenario). In such cases, to assume all the needed information is
available is too optimistic. Naturally, as we will better elaborate in related work
section, other works on handling LTL RV with imperfect information exist [16,
3, 10, 2, 11]. Nevertheless, this is the first work that tackles the problem at its
foundations, and without the need of creating a new verification pipeline (which
in this case consists on how to synthesise the monitor to verify the LTL prop-
erty). Specifically, this is the first attempt of extending the standard monitor’s
synthesis pipeline to explicitly take into consideration imperfect information.

In this paper, we formally define the notion of imperfect information w.r.t. the
monitor’s visibility over the system, and we then re-engineer the LTL monitor’s
synthesis pipeline to recognise such visibility information. We also present the
details on the prototype that has been implemented to support our claims, and
to provide the community an LTL monitoring library that natively supports
imperfect information. Moreover, we show some possible uses of such prototype
in a realistic case study.

The paper’s structure is as follows. Section 2 reports preliminaries notions
that are necessary to fully understand the paper contribution. Section 3 formally
presents the notion of imperfect information, its implication at the monitoring
level and the resulting re-engineering of the standard LTL monitor’s synthesis
pipeline. Section 4 reports the details on the prototype that has been developed
as a result of the re-engineering process, along with some experiments of its use
in a realistic case study. Section 5 positions the paper against the state of the
art. Section 6 concludes the paper and discusses some possible future directions.

Title Suppressed Due to Excessive Length 3

2 Preliminaries

A system S has an alphabet Σ with which it is possible to define the set 2Σ of all
its events. Given an alphabet Σ, a trace σ = ev0ev1 . . ., is a sequence of events
in 2Σ . With σ(i) we denote the i-th element of σ (i.e., evi), σi the suffix of σ
starting from i (i.e., evievi+1 . . .), (2Σ)∗ the set of all possible finite traces over
Σ, and (2Σ)ω the set of all possible infinite traces over Σ.

The standard formalism to specify properties in RV is Linear Temporal Logic
(LTL [14]). The relevant parts of the syntax of LTL are the following:

ϕ := p | ¬ϕ | (ϕ ∨ ϕ) | dϕ | (ϕ U ϕ)

where p ∈ Σ is an atomic proposition, ϕ is a formula, d stands for next-
time, and U stands for until. In the rest of the paper, we also use the standard
derived operators, such as (ϕ → ϕ′) instead of (¬ϕ ∨ ϕ′), ϕ R ϕ′ instead of
¬(¬ϕU¬ϕ′), �ϕ (always ϕ) instead of (false R ϕ), and ♦ϕ (eventually ϕ)
instead of (trueUϕ).

Let σ ∈ (2Σ)ω be an infinite sequence of events over Σ, the semantics of LTL
is as follows:

σ |= p if p ∈ σ(0)

σ |= ¬ϕ if σ 6|= ϕ

σ |= ϕ ∨ ϕ′ if σ |= ϕ or σ |= ϕ′

σ |= dϕ if σ1 |= ϕ

σ |= ϕUϕ′ if ∃i≥0.σi |= ϕ′ and ∀0≤j<i.σj |= ϕ

A trace σ satisfies an atomic proposition p, if p belongs to σ(0); which means,
p holds in the initial event of the trace σ. A trace σ satisfies the negation of the
LTL property ϕ, if σ does not satisfy ϕ. A trace σ satisfies the disjunction of two
LTL properties, if σ satisfies at least one of them. A trace σ satisfies next-time
ϕ, if the suffix of σ starting in the next step (σ1) satisfies ϕ. Finally, a trace σ
satisfies ϕUϕ′, if there exists a suffix of σ s.t. ϕ′ is satisfied, and for all suffixes
before it, ϕ holds. Thus, given an LTL property ϕ, we denote JϕK the language
of the property, i.e., the set of traces which satisfy ϕ; namely JϕK = {σ | σ |= ϕ}.

In Definition 1, we present a general and formalism-agnostic definition of
a monitor. Informally, a monitor is a function that, given a trace of events in
input, returns a verdict which denotes the satisfaction (resp., violation) of a
formal property over the trace.

Definition 1 (Monitor). Let S be a system with alphabet Σ, σ a finite trace,
and ϕ be an LTL property. Then, a monitor for ϕ is a function Monϕ : (2Σ)∗ →
B3, where B3 = {>,⊥, ?}:

Monϕ(σ) =


> ∀u∈(2Σ)ω .σ • u ∈ JϕK
⊥ ∀u∈(2Σ)ω .σ • u /∈ JϕK
? otherwise

where • is the standard trace concatenation operator.

4 A. Ferrando and V. Malvone

Intuitively, a monitor returns > if all continuations (u) of σ satisfy ϕ; ⊥ if all
possible continuations of σ violate ϕ; ? otherwise. The first two outcomes are
standard representations of satisfaction and violation, while the third is specific
to RV. In more detail, it denotes when the monitor cannot conclude any verdict
yet. This is closely related to the fact that RV is applied while the system is still
running, and future events may still change the verdict. For instance, a property
might be currently satisfied (resp., violated) by the system, but violated (resp.,
satisfied) in the (still unknown) future. The monitor can only safely conclude
any of the two final verdicts (> or ⊥) if it is sure such verdict will never change.
The addition of the third outcome symbol ? helps the monitor to represent its
position of uncertainty w.r.t. the current system execution.

A monitor function is usually implemented as a Finite State Machine (FSM),
specifically a Moore machine (FSM where the output value of a state is only
determined by the state) [4, 5]. A Moore machine can be defined as a tuple
〈Q, q0, Σ,O, δ, γ〉, where Q is a finite set of states, q0 is the initial state, Σ is
the input alphabet, O is the output alphabet, δ : Q × Σ → Q is the transition
function mapping a state and an event to the next state, and γ : Q → O is the
function mapping a state to the output alphabet.

In [5], Bauer et al. present the sequence of steps required to generate from
an LTL formula ϕ the corresponding Moore machine instantiating the Monϕ
function (as summarised in Figure 1).

Input (i)Formula (ii)NBA (iii)Emptiness per state (iv)NFA (v)DFA (vi)FSM

ϕ // Aϕ // Fϕ // Âϕ // Ãϕ
((

ϕ

66

))
Monϕ

¬ϕ // A¬ϕ // F¬ϕ // Â¬ϕ // Ã¬ϕ
66

Fig. 1: Steps required to generate an FSM from an LTL formula ϕ. NBA is Non-
deterministic Büchi Automaton, NFA is Non-deterministic Finite Automaton,
and DFA is Deterministic Finite Automaton.

Given an LTL property ϕ, a series of transformations is performed on ϕ, and
its negation ¬ϕ. Considering ϕ in step (i), first, a corresponding NBA Aϕ is gen-
erated in step (ii). This can be obtained using Gerth et al.’s algorithm [9]. Such
automaton recognises the set of infinite traces that satisfy ϕ (according to LTL
semantics). Then, each state of Aϕ is evaluated; the states that when selected as
initial states in Aϕ do not generate the empty language are then added to the
Fϕ set in step (iii). With such a set, an NFA Âϕ is obtained from Aϕ by simply
substituting the final states of Aϕ with Fϕ in step (iv). Âϕ recognises the finite
traces (prefixes) that have at least one infinite continuation satisfying ϕ (since
the prefix reaches a state in Fϕ). After that, Âϕ is transformed (Rabin–Scott
powerset construction [15]) into its equivalent deterministic version Ãϕ in step
(v); this is possible since deterministic and non-deterministic finite automata
have the same expressive power. The exact same steps are performed on ¬ϕ,
which bring to the generation of the Ã¬ϕ counterpart. The difference between

Title Suppressed Due to Excessive Length 5

Ãϕ and Ã¬ϕ is that the former recognises finite traces which have continuations
satisfying ϕ, while the latter recognises finite traces which have continuations
violating ϕ. Finally, a Moore machine can be generated as a standard automata
product between Ãϕ and Ã¬ϕ in the final step (vi), where the states are denoted
as tuples (q, q′), with q and q′ belonging to Ãϕ and Ã¬ϕ, respectively. The out-
puts are then determined as: > if q′ does not belong to the final states of Ã¬ϕ,
⊥ if q does not belong to the final states of Ãϕ, and ? otherwise. This brings us
to the revised monitor construction as follows.

Definition 2 (Monitor as FSM). Given an LTL formula ϕ and a finite trace
σ, the revised monitor is defined as follows:

Monϕ(σ) =


> σ /∈ L(Ã¬ϕ)

⊥ σ /∈ L(Ãϕ)

? σ ∈ L(Ãϕ) ∧ σ ∈ L(Ã¬ϕ)

where L(A) denotes the language recognised by automaton A.

3 Runtime Verification with Imperfect Information

Up to now, we have focused on standard RV of LTL properties. However, such
standard approach, as presented in Section 2, is based upon a strong assumption:

The absence of an atomic proposition is the same as the negation of the latter.

This might be true when we apply formal verification to systems with perfect
information (i.e., systems where each involved component has a perfect under-
standing and vision of the entire system). Unfortunately, even though this may
be the case for monolithic and traditional systems, it is not the case for au-
tonomous systems, or in general, systems exploiting artificial intelligence. In
such scenarios, it is very common to not have a complete vision over the sys-
tem. Let us just think about robotics scenarios, where a robot can be deployed
in an environment of which it can only access what its sensors provide. Such
information can be incomplete. Moreover, since RV is based upon the notion of
monitoring the system under analysis; if the verified component has no complete
access over the system’s information, by consequence, also the monitor does not.
Thus, we may find ourselves in scenarios where our runtime monitors observe
only partial information of the system. Because of this, the trace of events passed
to the monitor to analyse may not contain some of the atomic propositions, and
this would be erroneously classified as the negation of such atomic propositions.
Instead, we need to give importance to the difference between knowing when
something is not true, w.r.t knowing when something is simply not known.

3.1 How can we formally represent the imperfect information?

As recognised previously in the paper, the problem of using LTL when the system
has imperfect information is in confusing the absence of an atomic proposition,

6 A. Ferrando and V. Malvone

with its negation. Since in case of imperfect information, the trace may not
contain atomic propositions which are not known (i.e., cannot be observed), we
need a way to characterise such absence of information, explicitly. To do this,
we follow an approach similar to [6], where atomic propositions are duplicated.

One possible way to represent imperfect information is by allowing indistin-
guishability on atomic propositions Σ. To do this we introduce an equivalence
relation ∼ over Σ. Intuitively, given two atomic propositions p, q ∈ Σ, we say
that they are indistinguishable if and only if p ∼ q. The relation ∼ gives us the
information available to the monitor. Moreover, given an equivalence relation ∼
we define a witness for each equivalence class. That is, given an equivalence class
γ, we define the witness of γ with the symbol [γ].

To handle the verification process in the imperfect information context, we
need to do some extensions. First of all, we can not simply use the set of atomic
propositions Σ. In particular, we need to replace Σ with a new set Σ̄ that is
defined as follows: for each p ∈ Σ we have p> ∈ Σ̄ and p⊥ ∈ Σ̄. That is, we
duplicate the set of atomic proposition to make the truth value explicit.

Without losing generality, we only consider LTL formulas in Negation Normal
Form (NNF). An LTL in NNF has only negations at the atom levels (i.e., we only
have ¬p). Given an LTL formula, its NNF can be easily obtained by propagating
all negations to the atoms. For instance, if we had ¬ dp, we would rewrite it asd¬p. The same goes for the other operators.

First, we present how to generate the explicit version of an LTL formula.

Definition 3. Given an LTL formula ϕ in NNF and the set of equivalence
classes Γ , we define the explicit version of ϕ as follows:

ε(p) = [γ]>

ε(¬p) = [γ]⊥

ε(ϕ ∨ ϕ′) = ε(ϕ) ∨ ε(ϕ′)
ε(dϕ) = dε(ϕ)

ε(ϕUϕ′) = ε(ϕ)U ε(ϕ′)

where γ ∈ Γ and p ∈ γ.

We now present how to construct the explicit and visible versions of a trace.

Definition 4. Given a trace σ and a set Σ, we define the explicit version of σ
as σe, for each element σ(i) as follows:

– for all p ∈ σ(i), p> ∈ σe(i);
– for all p ∈ Σ \ σ(i), p⊥ ∈ σe(i).

Definition 5. Given an explicit trace σe and the set of equivalence classes Γ ,
we define the visible version of σe as σv, for each σ(i) and γ ∈ Γ as follows:

– [γ]> ∈ σv(i) if and only if for all p ∈ γ, p> ∈ σe(i);
– [γ]⊥ ∈ σv(i) if and only if for all p ∈ γ, p⊥ ∈ σe(i).

Title Suppressed Due to Excessive Length 7

Given the above elements, we define a three-valued semantics for LTL:
(σ |= p) = > if p> ∈ σ(0)

(σ |= p) = ⊥ if p⊥ ∈ σ(0)

(σ |= ¬ϕ) = > if (σ 6|= ϕ) = >
(σ |= ¬ϕ) = ⊥ if (σ 6|= ϕ) = ⊥
(σ |= ϕ ∨ ϕ′) = > if (σ |= ϕ) = > or (σ |= ϕ′) = >
(σ |= ϕ ∨ ϕ′) = ⊥ if (σ |= ϕ) = ⊥ and (σ |= ϕ′) = ⊥
(σ |= dϕ) = > if (σ1 |= ϕ) = >
(σ |= dϕ) = ⊥ if (σ1 |= ϕ) = ⊥
(σ |= ϕUϕ′) = > if ∃i≥0.(σi |= ϕ′) = > and ∀0≤j<i.(σj |= ϕ) = >
(σ |= ϕUϕ′) = ⊥ if ∀i≥0.(σi |= ϕ′) = ⊥ or ∃0≤j<i.(σj |= ϕ) = ⊥

In all the other cases the truth value is undefined (uu).
To help the reader, we conclude the section with the following example.

Example 1. Consider the set Σ = {p, q, r}, the formula φ = dr, and a trace σ
where σ(1) = {p, q}. Furthermore, assume p ∼ r, this means that the monitor
cannot distinguish between the atomic propositions p and r. In the context of
imperfect information, we have Σ̄ = {p>, q>, r>, p⊥, q⊥, r⊥}. By Definition 3, we
have the explicit LTL version ε(φ) = d[γ>], where γ = {p, r} is the equivalence
class defined over ∼. By Definition 4-5, we generate the explicit trace σe where
σe(1) = {p>, q>, r⊥} and visible trace σv where σv(1) = {q>}. Thus, given the
three-valued LTL semantics, ε(φ) is undefined. Indeed, to satisfy (resp., falsify)
the original formula ϕ, the monitor has to check that both p> and r> (resp., p⊥
and r⊥) are verified since they belong to the same equivalence class γ.

3.2 Re-engineering Monitor with imperfect information

Given an LTL formula and a visible trace for the monitor, we need a way to use
them to perform RV. This can be obtained by extending the standard pipeline
for generating LTL monitors (see Figure 1). Such extension is based on two spe-
cific modifications: (i) we use the explicit version of the LTL formula, following
Definition 3; (ii) we modify the product between Ãϕ and Ã¬ϕ to generate the
Moore machine denoting the monitor. The resulting extension is reported in
Figure 2, where the explicit version of the LTL formula is generated in step (ii).
While the updated product between the automata is obtained in step (vii). The
rest of the steps are left unchanged w.r.t. Figure 1.

The pipeline presented in Figure 2 is identical to the one presented in Fig-
ure 1, but the atomic propositions in the formula are duplicated before using the
formula to generate the corresponding NBA, and an additional automaton has
been added. The former aspect is important, because by duplicating the atomic
propositions, we completely change the semantics of the following steps in the
monitor synthesis pipeline. Specifically, it is not true that for any given visible
trace σv, we have σv /∈ L(Âϕ)⇒ σv ∈ L(Â¬ϕ), nor σv /∈ L(Â¬ϕ)⇒ σv ∈ L(Âϕ).

8 A. Ferrando and V. Malvone

Which means, it is not true that when a visible trace of events σv is not a good
prefix for ϕ (i.e., a prefix that can be extended to an infinite trace satisfying ϕ),
it has to be then a bad prefix for ϕ (i.e., a prefix that cannot be extended to
an infinite trace satisfying ϕ). This aspect is closely related to the reason why a
third formula (i.e., ⊗ϕ) has been introduced in Figure 2. Since by duplicating
the atomic propositions in the formula we break the duality between ϕ and ¬ϕ,
we need a third automaton (i.e., Ã⊗ϕ) to recognise all the traces that do not
satisfy, nor violate, ϕ. For this reason, we extended the pipeline by adding ⊗ϕ,
which is an abbreviation for ¬ε(ϕ) ∧ ¬ε(¬ϕ). The automaton Ã⊗ϕ, obtained
following the same steps as for the positive Ãε(ϕ) and negative Ãε(¬ϕ) automata,
recognises all prefixes for which no continuation satisfying or violating ϕ exist.

Input (i)Formula (ii)Explicit (iii)NBA (iv)Emptiness per state (v)NFA (vi)DFA (vii)FSM

ϕ // ε(ϕ)

��

// Aε(ϕ) // F ε(ϕ) // Âε(ϕ) // Ãε(ϕ)

&&
ϕ

88

&&

⊗ϕ // A⊗ϕ // F⊗ϕ // Â⊗ϕ // Ã⊗ϕ // Monϕ

¬ϕ // ε(¬ϕ)

OO

// Aε(¬ϕ) // F ε(¬ϕ) // Âε(¬ϕ) // Ãε(¬ϕ)

88

Fig. 2: Extended pipeline to consider imperfect information.

Now, we formalize the above reasoning with the following lemma.

Lemma 1. Given a visible finite trace σv and an LTL formula ϕ, we have:

σv 6∈ L(Âε(ϕ)) 6⇒ σv ∈ L(Âε(¬ϕ))
σv 6∈ L(Âε(¬ϕ)) 6⇒ σv ∈ L(Âε(ϕ))

Proof. Assume we have a visible trace σv and it is not included in the NFA
Âε(ϕ). To prove our result, we just need to show that σv is also not included in
Âε(¬ϕ). To do the latter, suppose Σ = {p, q, r}, ϕ = dp, p ∼ q, and σ where
σ(1) = {p}. Now, given Definition 4-5, we can conclude that σv(1) = {r⊥}. So,
σv does not satisfy ϕ and by consequence it is not included in the NFA Âε(ϕ).
However, it is not included neither in Âε(¬ϕ). This is because p> and p⊥ are not
included in σv(1). This concludes the first relation. For the second one, we can
use a variant of the above reasoning.

By adding the third automaton, the corresponding FSM synthesis needs also
to change. In more detail, the revised version is reported in Definition 6. In such
definition, we can see how the addition of a third automaton in the equation
allows us to synthesise a finer monitor, in the sense of the number of possible
outcomes it returns. Indeed, w.r.t. Definition 2, we have three additional out-
comes. Specifically, given a visible trace σv, the monitor returns > if there is
no continuation of σv which either violates ε(ϕ) or makes it undefined. On the
other hand, it returns ⊥ if there is no continuation which either satisfies ε(ϕ) or
makes it undefined. Since now we have three automata, there is an additional

Title Suppressed Due to Excessive Length 9

final outcome to consider, which is uu. So, the monitor returns uu if there is no
continuation which either satisfies or violates ε(ϕ). These first three outcomes
are all deriving by the three-values semantics for LTL. Then, we may find ? 6⊥,
which is read “unknown, but it will never be violated from the monitor’s point
of view”. Such outcome is returned by the monitor when the visible trace σv
does not have any continuation which will eventually violate ε(ϕ), but there are
continuations that satisfy ε(ϕ) and make it undefined. Symmetrically, we may
find ? 6>, which is read “unknown, but it will never be satisfied from the monitor’s
point a view”. This outcome is the dual of the previous one, where no continua-
tions satisfying ε(ϕ) can be found, but continuations that violate ε(ϕ) and make
it undefined exist. Last but not least, we may find ? denoting the completely
unknown case. As before, this outcome concerns the case where the monitor
cannot conclude anything yet, because there exist continuations satisfying ε(ϕ),
continuations violating ε(ϕ), and continuations that make it undefined.

Definition 6 (Monitor with imperfect information). Given an LTL for-
mula ϕ and a visible trace σv, a monitor with imperfect information is so defined:

Monvϕ(σv) =



> σv ∈ L(Ãε(ϕ)) ∧ σv /∈ L(Ãε(¬ϕ)) ∧ σv /∈ L(Ã⊗ϕ)

⊥ σv /∈ L(Ãε(ϕ)) ∧ σv ∈ L(Ãε(¬ϕ)) ∧ σv /∈ L(Ã⊗ϕ)

uu σv /∈ L(Ãε(ϕ)) ∧ σv /∈ L(Ãε(¬ϕ)) ∧ σv ∈ L(Ã⊗ϕ)

?6⊥ σv ∈ L(Ãε(ϕ)) ∧ σv /∈ L(Ãε(¬ϕ)) ∧ σv ∈ L(Ã⊗ϕ)

?6> σv /∈ L(Ãε(ϕ)) ∧ σv ∈ L(Ãε(¬ϕ)) ∧ σv ∈ L(Ã⊗ϕ)

? σv ∈ L(Ãε(ϕ)) ∧ σv ∈ L(Ãε(¬ϕ)) ∧ σv ∈ L(Ã⊗ϕ)

Note that, in the above definition, not all the possible combination are in-
cluded. In particular, it is not possible to have σv /∈ L(Ãε(ϕ))∧σv /∈ L(Ãε(¬ϕ))∧
σv /∈ L(Ã⊗ϕ) and σv ∈ L(Ãε(ϕ)) ∧ σv ∈ L(Ãε(¬ϕ)) ∧ σv /∈ L(Ã⊗ϕ). In particu-
lar, the former is not possible because there exists at least one automaton that
includes the trace by following the definition of the three-valued semantics for
LTL. The latter follows by the fact that it is unfeasible given the nature of a
visible trace that a formula will be true or false but not undefined in the future.

In what follows, we provide two preservation results from the monitor with
imperfect information to the one with perfect information.

Lemma 2. Given a finite trace σ, a monitor with its visibility Monvϕ(σ), and a
general monitor Monϕ(σ), we have that:

if Monvϕ(σv) = > then Monϕ(σ) = >
if Monvϕ(σv) = ⊥ then Monϕ(σ) = ⊥

Proof. SupposeMonvϕ(σv) = >. This means that the visible trace σv satisfies the
formula ε(ϕ). We want to prove that the original trace σ satisfies the formula
ϕ. To do this, given σv, by Definition 4-5, we know that for each σv(i), for
all p> ∈ σv(i), p ∈ σ(i) and for all p⊥ ∈ σv(i), p /∈ σ(i). Given the above
reasoning, we need to provide an induction proof over the structure of the formula

10 A. Ferrando and V. Malvone

ε(ϕ). Case: ε(ϕ) = p>. So, ϕ = p. By hypothesis, Monvϕ(σv) = >, by the
semantics of three-valued LTL this means that p> ∈ σv(0) and by Definition
4-5, p ∈ σ(0). By the latter, Monϕ(σ) = >. Case: ε(ϕ) = p⊥. Thus, ϕ = ¬p. By
hypothesis, Monvϕ(σv) = >, by the semantics of three-valued LTL this means
that p⊥ ∈ σv(0) and by Definitions 4-5, p /∈ σ(0). By the latter, Monϕ(σ) = >.
Since in the inductive cases the transformation of Definition 3 does not change
the structure and the elements of the formula, we can conclude the proof.

SupposeMonvϕ(σv) = ⊥. This means that the visible trace σv does not satisfy
the formula ε(ϕ). We want to prove that the original trace σ does the same
for the formula ϕ. As for the previous case, we need to prove the implication
by induction over the structure of the formula ε(ϕ) for the base cases. Case:
ε(ϕ) = p>. So, ϕ = p. By hypothesis, Monvϕ(σv) = ⊥, by the semantics of
three-valued LTL this means that p⊥ ∈ σv(0) and by Definition 4-5, p /∈ σ(0).
By the latter, Monϕ(σ) = ⊥. Case: ε(ϕ) = p⊥. Thus, ϕ = ¬p. By hypothesis,
Monvϕ(σv) = ⊥, by the semantics of three-valued LTL this means that p> ∈
σv(0) and by Definition 4-5, p ∈ σ(0). By the latter, Monϕ(σ) = ⊥.

Given the above results, we can deduce the following corollary.

Corollary 1. Given a visible finite trace σv and an LTL formula ϕ, we have:

σv 6∈ L(Âε(ϕ))⇒ σv ∈ L(Âε(¬ϕ)) ∨ σv ∈ L(Ã⊗ϕ)
σv /∈ L(Âε(¬ϕ))⇒ σv ∈ L(Âε(ϕ)) ∨ σv ∈ L(Ã⊗ϕ)
σv /∈ L(Ã⊗ϕ)⇒ σv ∈ L(Âε(¬ϕ)) ∨ σv ∈ L(Âε(ϕ))

4 Implementation

The prototype implementing the theory presented in this paper is publicly avail-
able as a GitHub repository3. It consists in a Python script which implements
the entire pipeline presented in Figure 2. The reason for choosing Python lies
in the presence of a rich library for automaton manipulation, named Spot4 [8].
In more detail, we used Spot to automatically generate an NBA, given an LTL
formula. This corresponds to step (iii) in Figure 2, which is the most complicated
and computationally expensive step in the pipeline. The rest of the pipeline has
been directly implemented in Python.

Going a bit deeper in the implementation, the prototype consists in a Python
class, named Monitor. To create a Monitor, its constructor requires: (i) an LTL
formula to verify; (ii) a set of atomic propositions; (iii) an equivalence relation
on atomic propositions; (iv) a trace of events to analyse.

With the previous information, a FSM representing the monitor as in Defi-
nition 6 is constructed. Then, such monitor is used to analyse the input trace,
and the corresponding verdict is returned back to the user. The trace is assumed
to be stored inside a file (e.g., a log file). These input parameters can be passed
as command line arguments to the tool. However, since the monitor is denoted
3 https://github.com/AngeloFerrando/RuntimeVerificationWithImperfectInformation
4 https://spot.lrde.epita.fr/

Title Suppressed Due to Excessive Length 11

as a single data structure, it is also possible (and quite natural) to import the
script and use the monitor as preferred. This can be useful for instance if the
monitor is to be used for online verification, rather than offline verification.

4.1 Remote inspection case study

We talked about the theory behind our approach, and we also briefly introduced
the resulting prototype. Let us now focus on the experiments we carried out on
a robotic case study, as a proof of concept.

Our case study is based on a 3D simulation of a Jackal5, a four-wheeled un-
manned ground vehicle (referred to as the ‘rover’ from now on), coupled with
a simulated radiation sensor, that the rover uses to take radiation readings of
points of interest while patrolling around a nuclear facility, and a camera, that
the rover uses to inspect images of the nuclear waste barrels in the area. This sim-
ulation is based on the work presented in [20], which explains how the simulated
sensor works and how radiation was simulated in the environment. In our version
of the simulation the rover is autonomously controlled by a rational/intelligent
agent [19]. Figure 3 reports a screenshot of the case study.

Fig. 3: Simulation in Gazebo of the remote inspection of nuclear plant.

A typical mission in our simulation starts with the rover positioned at the
entrance of a nuclear facility. The goal of this mission is to inspect a number of
points of interest (i.e., waypoints). Inspecting a waypoint serves two purposes:
taking radiation readings to check if the radiation is at an acceptable level, and
using a camera to detect abnormalities such as leakage in barrels and pipes.
After inspecting all of the waypoints, the rover can either return to the entrance
to await for a new mission, or keep patrolling and inspecting the waypoints.

Without losing generality, we assume the image captured by the rover’s cam-
era can be represented as a grid. Each cell in such a grid can contain, or not,
an abnormality (e.g., a cut in the barrel). This information is translated into
propositions, that can be transmitted to the monitor to be analysed at runtime.

5 https://clearpathrobotics.com/jackal-small-unmanned-ground-vehicle

12 A. Ferrando and V. Malvone

Let us assume that, because of the rover’s limited resources, the latter is not
always capable of sending all the information to the monitor. Because of this,
some times the monitor is not able to distinguish a cut from a rust stain. In such
cases, from the viewpoint of the monitor analysing the scene, there is imperfect
information over the atomic propositions. We assume the presence of a cut on
a barrel b with c and the presence of a rust stain with s. So, the set of atomic
propositions is Σ = {b, c, s}. Then, we have imperfect information over c and s,
which is formalised as c ∼ s (i.e., there is an equivalence class γcs between c and
s). Let us now say that the property we want to verify at runtime is whether
the rover will not find a cut in the barrel. This information could be used by
the software agent controlling the rover to react properly (e.g., by informing a
human operator about a possible leakage). Such property can be formulated as
the following LTL formula: ϕ = ♦(b ∧ d¬c). Nevertheless, this formula would
make sense in a case of perfect information over the system, but in this case,
where c and s cannot be distinguished (in general), a standard LTL monitor
should not be used. To understand this, let us just assume that the trace of
events σ observed by the rover is σ(0) = {}, σ(1) = {b}, and σ(2) = {c}. In such
trace, the first event means that the rover has not observed anything relevant,
the second event means that the rover observed the barrel b, and the third
event denotes the presence of a cut on the barrel b. But, since the monitor has
imperfect information, the truth value of c cannot be observed. Consequently,
if the monitor considered ¬c without caring about the imperfect information,
it could report that there are no problems, i.e. the general monitor in this case
returns true. But the latter is not correct. Thus, to tackle this aspect in its
foundations, we can apply our extended semantics and its resulting monitor.

Since in this scenario we have an equivalence relation between c and s
(i.e., c ∼ s), first we need to explicit the atomic propositions inside the for-
mula, obtaining: ε(ϕ) = ♦(b> ∧ d[γcs]⊥). By using the newly updated LTL
formula, we can generate the three automata as shown in Figure 2. After that,
we can update the trace of events as well, first by generating its explicit ver-
sion σe (see Definition 4), where σe(0) = {b⊥, c⊥, s⊥}, σe(1) = {b>, c⊥, s⊥}, and
σe(2) = {b⊥, c>, s⊥}. Then by defining its visible version according to the given
equivalence class γcs (see Definition 5), we obtain σv, where σv(0) = {b⊥, [γcs]⊥},
σv(1) = {b>, [γcs]⊥}, and σv(2) = {b⊥}. Note that, as expected, the last event
in σv does not contain information about the atomic proposition c. This is de-
termined by the fact that the atomic propositions c> and s⊥ hold in the last
event of σv, and according to Definition 5, since c ∼ s, we can have [γcs]> (resp.,
[γcs]⊥) if and only if both c> and s> hold (resp., c⊥ and s⊥). Thus, having a
mismatch between the two atomic propositions (i.e., one is true while the other
is false), we cannot safely add any witness for the equivalence class γcs. Instead,
in the first two events of σv, since we have both c⊥ and s⊥, we can safely add the
witness [γcs]⊥ to the trace. Thanks to our three-value semantics and the presence
of explicit atomic propositions, the trace σ which was erroneously classified as
satisfying ϕ from the standard LTL monitor before, now is classified as ? 6⊥. The
semantics of the two verdicts is fundamentally different, as well as the reaction

Title Suppressed Due to Excessive Length 13

that the system should have. In the first case, by using a standard LTL monitor,
the verdict returned by the monitor was >. Thus, the agent controlling the rover
could have used such information to continue the inspection with another barrel
and not detecting a danger. In the second case, by using the extended LTL mon-
itor that we presented in this work, the verdict returned by the monitor was ? 6⊥.
Thus, the agent controlling the rover could use this information to, for instance,
ask the rover to check again, maybe taking another picture. Even though this is
a simple example, it allows us to show how our extension tackles the foundations
of the imperfect information issue.

4.2 Experimental results

Other than verifying the property previously presented for the remote inspection
scenario, we carried out more general experiments to study the execution time of
our prototype. In more detail, we focused on two fundamental aspects, the gen-
eration and verification time. The former concerns the execution time required
to synthesise a monitor given an LTL formula (according to Definition 6). While
the latter concerns the execution time required to analyse a given trace of events
with the so synthesised monitor. It is important to separate the two experimen-
tal evaluations since the monitor’s generation is not usually performed online,
but ahead of the system execution. Thus, the most critical aspect to consider
when evaluating runtime verification techniques is the verification time, since it
is the only one which is performed online. Consequently, it is the only part that
influences the execution; this is also referred to as the monitor’s overhead.

We carried out experiments for both aspects. Specifically, for the monitor’s
synthesis, we did experiments varying the size of the LTL formula; where the
size of the formula consists in the number of operators inside the formula. We
picked the size of the formula as target of our experiments because it is the
input driving the generation of the monitor6. Instead, for the verification part,
we carried out experiments varying the length of the trace of events to analyse.
Also in this case, we picked the length of the trace because it is the only input
which influences the monitor’s verification time. This can be easily understood
by considering the fact that once the FSM has been generated, it will not change.
Thus, its size is fixed and is determined by the size of the formula. So, at runtime,
the only aspect that changes is the length of the trace, which is populated by
events generated through the system execution.

Figure 4 reports the results obtained with our experiments, where both LTL
formulas and traces are randomly generated. Specifically, Figure 4a reports the
execution time to synthesise a monitor given an LTL formula, while Figure 4b
reports the execution time to analyse a given trace of events with the so syn-
thesised monitor. In Figure 4a, we may find the size of the LTL formula on the
x-axis, and the execution time on the y-axis (in milliseconds). Note that, as ex-
pected, the execution time for the monitor synthesis grows exponentially w.r.t.
the size of the formula. In Figure 4b we may find the length of the trace of the
6 Let us remember that steps (iii) and (vi) in Figure 2 are very expensive and require
exponential time w.r.t. the size of the formula.

14 A. Ferrando and V. Malvone

0 2 4 6 8 10
Size of the formula

0

10

20

30

40

50

60

70

80

Ti
m

e
[m

s]

Monitor Synthesis Time

(a) Time to synthesise a monitor.

200 400 600 800 1000
Length of the trace

50

100

150

200

250

Ti
m

e
[m

s]

Monitor Verification Time

(b) Time to verify a trace.

Fig. 4: Experimental results.

events on the x-axis, and the execution time on the y-axis (in milliseconds). Note
that, the execution time is linear w.r.t. the length of the trace; this is crucial for
using the monitor at runtime, while the system is running. Since the execution
time is linear w.r.t. the length of the trace, the time required for the monitor to
analyse a single event in the trace is constant. Thus, the monitor can be used to
incrementally analyse events generated at runtime by the system7.

5 Related Work

The closest work to our contribution is [18], where Past-Time LTL is verified
at runtime in case of uncertainty over the observed events. In such work, the
verification is carried out on abstract traces of events. An abstract trace corre-
sponds to a trace where not all concrete events are present, but only samples
taken with a certain time step. The uncertainty comes from unknown event in-
terleaving, while in our case comes from indistinguishability relations amongst
events. Differently from [18], we do not sample the events, and the uncertainty is
determined by the monitor’s visibility. Thus, the abstraction is not on the order
amongst the events in a trace, but on the kind of events the trace contains.

In a completely different line of research, we may find [16, 3, 10, 2, 11], where
the uncertainty in the verification is caused by the absence of information. In such
works, the trace of events may contain gaps, which means at certain point of the
system execution, the monitor is not capable of observing the system behaviour.
This problem has been tackled in different ways, but in general, the solution
consists in filling the gaps with events. Naturally, since there is uncertainty on
what was exactly the event in the gap, these approaches depend on probabilities
to guess which events to use to fill the gap. These works are different from ours
in principle, because we do not assume to miss information, indeed we do not
7 Where with incrementally, we mean the monitor analyses the events one by one (not
as in offline RV where the monitor expects the entire trace all at once).

Title Suppressed Due to Excessive Length 15

have gaps in our traces. Our uncertainty is not based on the monitor missing
events, but on the monitor not being capable of recognising (discerning) some
events from other events (according to a indistinguishability relation).

A recent work on RV with uncertainty can be found in [17]. There, the
concept of uncertainty is abstracted by considering multi-traces, instead of uni-
traces (standard traces). A multi-trace allows multiple evaluations for the same
atomic proposition inside the trace. The authors present a monitor to handle
such multi-traces and prove its soundness. Like for [16, 3, 10, 2, 11], also [17] is
focused on missing events, even though partially missing ones are considered too.

Differently from our contribution, all the works previously mentioned explic-
itly represent the notion of uncertainty (e.g. through a gap). When the trace
contains concrete events, the semantics is the standard one. Our approach is less
invasive, since it is constructed on top of the standard RV pipeline for the ver-
ification of LTL properties. We do not require the addition of gaps. We mainly
focus on how to update the standard RV technique for LTL when the monitor
can have imperfect information over the system. From an engineering perspec-
tive, our approach aims at extending the standard LTL approach to be used in
case of imperfect information over the system, while the other works in literature
are more focused on proposing completely new techniques to handle the absence
of information (usually caused by noise or technical issues).

6 Conclusions and Future Work

In this paper, we presented an extension of the standard LTL runtime verifica-
tion approach. We introduce the problem of imperfect information at the monitor
level, and how such lack of information can bring a standard LTL monitor to
conclude a wrong verdict. We present theoretically the notion of imperfect in-
formation (through equivalence classes) and how it influences the LTL property
verification. In particular, we propose how to extend the standard LTL monitor
synthesis [5], we show the resulting Python prototype, and we report its use on
a relevant case study along with additional experiments to stress test it.

As future work, we are planning to further extend our approach by consid-
ering a post-processing function to add additional information to the monitor’s
verdict. Such function would depend on the trace of events, the LTL property
and the monitor’s verdict to establish a level of confidence on the final outcome.
Up to now, we mainly focused on how to tackle the problem of imperfect infor-
mation at the foundations of LTL runtime verification, however, once we obtain
the final outcome from the monitor, we can still refine it more. In more detail,
when the outcome concluded by the monitor is uu, we could elaborate it further
and assign a probability value. For instance, instead of saying uu, we could say
that the property is undefined w.r.t. the trace, but according to some probabil-
ity distribution over the involved equivalence classes, we can claim the property
would be satisfied (resp., violated) with a certain probability threshold.

16 A. Ferrando and V. Malvone

References

1. Bartocci, E., Falcone, Y., Francalanza, A., Reger, G.: Introduction to runtime
verification. In: Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime Verification -
Introductory and Advanced Topics, Lecture Notes in Computer Science, vol. 10457,
pp. 1–33. Springer (2018). https://doi.org/10.1007/978-3-319-75632-5_1

2. Bartocci, E., Grosu, R.: Monitoring with uncertainty. In: Bortolussi, L., Bujo-
rianu, M., Pola, G. (eds.) Proceedings Third International Workshop on Hy-
brid Autonomous Systems, HAS 2013, Rome, Italy, 17th March 2013. EPTCS,
vol. 124, pp. 1–4 (2013). https://doi.org/10.4204/EPTCS.124.1, https://doi.
org/10.4204/EPTCS.124.1

3. Bartocci, E., Grosu, R., Karmarkar, A., Smolka, S.A., Stoller, S.D., Zadok, E.,
Seyster, J.: Adaptive runtime verification. In: Qadeer, S., Tasiran, S. (eds.) Runtime
Verification, Third International Conference, RV 2012, Istanbul, Turkey, Septem-
ber 25-28, 2012, Revised Selected Papers. Lecture Notes in Computer Science,
vol. 7687, pp. 168–182. Springer (2012). https://doi.org/10.1007/978-3-642-35632-
2_18, https://doi.org/10.1007/978-3-642-35632-2_18

4. Bauer, A., Leucker, M., Schallhart, C.: Monitoring of real-time properties. In:
Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006: Foundations of Software Technol-
ogy and Theoretical Computer Science, 26th International Conference, Kolkata,
India, December 13-15, 2006, Proceedings. Lecture Notes in Computer Science,
vol. 4337, pp. 260–272. Springer (2006). https://doi.org/10.1007/11944836_25

5. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for ltl
and tltl. ACM Trans. Softw. Eng. Methodol. 20(4) (Sep 2011).
https://doi.org/10.1145/2000799.2000800

6. Belardinelli, F., Lomuscio, A., Malvone, V., Yu, E.: Approximating perfect recall
when model checking strategic abilities: Theory and applications. J. Artif. Intell.
Res. 73, 897–932 (2022). https://doi.org/10.1613/jair.1.12539, https://doi.org/
10.1613/jair.1.12539

7. Clarke, E.M.: Model checking. In: International Conference on Foundations of Soft-
ware Technology and Theoretical Computer Science. pp. 54–56. Springer (1997)

8. Duret-Lutz, A., Poitrenaud, D.: SPOT: an extensible model checking library
using transition-based generalized büchi automata. In: DeGroot, D., Harrison,
P.G., Wijshoff, H.A.G., Segall, Z. (eds.) 12th International Workshop on Mod-
eling, Analysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS 2004), 4-8 October 2004, Vollendam, The Netherlands. pp. 76–83.
IEEE Computer Society (2004). https://doi.org/10.1109/MASCOT.2004.1348184,
https://doi.org/10.1109/MASCOT.2004.1348184

9. Gerth, R., Peled, D.A., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic ver-
ification of linear temporal logic. In: Dembinski, P., Sredniawa, M. (eds.) Proto-
col Specification, Testing and Verification XV, Proceedings of the Fifteenth IFIP
WG6.1 International Symposium on Protocol Specification, Testing and Verifica-
tion, Warsaw, Poland, June 1995. IFIP Conference Proceedings, vol. 38, pp. 3–18.
Chapman & Hall (1995). https://doi.org/10.1007/978-0-387-34892-6_1

10. Kalajdzic, K., Bartocci, E., Smolka, S.A., Stoller, S.D., Grosu, R.: Runtime ver-
ification with particle filtering. In: Legay, A., Bensalem, S. (eds.) Runtime Ver-
ification - 4th International Conference, RV 2013, Rennes, France, September
24-27, 2013. Proceedings. Lecture Notes in Computer Science, vol. 8174, pp.
149–166. Springer (2013). https://doi.org/10.1007/978-3-642-40787-1_9, https:
//doi.org/10.1007/978-3-642-40787-1_9

Title Suppressed Due to Excessive Length 17

11. Leucker, M., Sánchez, C., Scheffel, T., Schmitz, M., Thoma, D.: Runtime verifica-
tion for timed event streams with partial information. In: Finkbeiner, B., Mariani,
L. (eds.) Runtime Verification - 19th International Conference, RV 2019, Porto,
Portugal, October 8-11, 2019, Proceedings. Lecture Notes in Computer Science,
vol. 11757, pp. 273–291. Springer (2019). https://doi.org/10.1007/978-3-030-32079-
9_16, https://doi.org/10.1007/978-3-030-32079-9_16

12. Leucker, M., Schallhart, C.: A brief account of runtime verifica-
tion. J. Log. Algebraic Methods Program. 78(5), 293–303 (2009).
https://doi.org/10.1016/j.jlap.2008.08.004

13. Miguel, J.P., Mauricio, D., Rodriguez, G.: A review of software quality models
for the evaluation of software products. CoRR abs/1412.2977 (2014), http://
arxiv.org/abs/1412.2977

14. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium
on Foundations of Computer Science, Providence, Rhode Island, USA, 31
October - 1 November 1977. pp. 46–57. IEEE Computer Society (1977).
https://doi.org/10.1109/SFCS.1977.32

15. Rabin, M.O., Scott, D.S.: Finite automata and their decision problems. IBM J.
Res. Dev. 3(2), 114–125 (1959). https://doi.org/10.1147/rd.32.0114

16. Stoller, S.D., Bartocci, E., Seyster, J., Grosu, R., Havelund, K., Smolka,
S.A., Zadok, E.: Runtime verification with state estimation. In: Khurshid,
S., Sen, K. (eds.) Runtime Verification - Second International Conference,
RV 2011, San Francisco, CA, USA, September 27-30, 2011, Revised Se-
lected Papers. Lecture Notes in Computer Science, vol. 7186, pp. 193–207.
Springer (2011). https://doi.org/10.1007/978-3-642-29860-8_15, https://doi.
org/10.1007/978-3-642-29860-8_15

17. Taleb, R., Khoury, R., Hallé, S.: Runtime verification under access restric-
tions. In: Bliudze, S., Gnesi, S., Plat, N., Semini, L. (eds.) 9th IEEE/ACM
International Conference on Formal Methods in Software Engineering, For-
maliSE@ICSE 2021, Madrid, Spain, May 17-21, 2021. pp. 31–41. IEEE (2021).
https://doi.org/10.1109/FormaliSE52586.2021.00010, https://doi.org/10.1109/
FormaliSE52586.2021.00010

18. Wang, S., Ayoub, A., Sokolsky, O., Lee, I.: Runtime verification of traces un-
der recording uncertainty. In: Khurshid, S., Sen, K. (eds.) Runtime Verification
- Second International Conference, RV 2011, San Francisco, CA, USA, Septem-
ber 27-30, 2011, Revised Selected Papers. Lecture Notes in Computer Science,
vol. 7186, pp. 442–456. Springer (2011). https://doi.org/10.1007/978-3-642-29860-
8_35, https://doi.org/10.1007/978-3-642-29860-8_35

19. Wooldridge, M., Rao, A. (eds.): Foundations of Rational Agency. Applied Logic
Series, Kluwer Academic Publishers (1999)

20. Wright, T., West, A., Licata, M., Hawes, N., Lennox, B.: Simulating ionising ra-
diation in gazebo for robotic nuclear inspection challenges. Robotics 10(3) (2021).
https://doi.org/10.3390/robotics10030086

18 A. Ferrando and V. Malvone

7 Explanation of how we dealt with reviewer’s comments

Reviewer 1

– We fixed the title as suggested by another reviewer as well.
– The property generation is completely random. The size of the property is,

indeed, the number of temporal operators of the formula. We experimented
thousands of properties. We did not count the nested operators, but the
number of operators inside each formula. The number of nested operators
might be an interesting feature to consider in future extensions of the work.

– The suggested comparison with other works is interesting. Of course, we do
not have space here to carry it out, but we will definitely consider it for
future versions.

Reviewer 2

– To give you the intuition about the indistinguishability, consider the follow-
ing example. Suppose that the rover can send a sequence of 3 bits to the
monitor and that 101 is decoded as a cut and 001 is a rust. If the monitor
receives 01, it cannot determine if there is a cut or a rust. This is because the
missing bit determines the event. A bit can be missed due to a connection
problem or to a signal band limited (in our case limited to two bits).

– The reviewer was right about the property, we actually meant ∧ instead of
→. In such a way the property matches our description and is also more
relevant as an example.

– Since the standard notion of monitorability does not change w.r.t. to stan-
dard RV there is no point in discussing it in this paper. A monitorable (resp.,
non monitorable) property, remains monitorable (resp., non monitorable) in
our setting. When imperfect information is considered, it is not that the
property is not monitorable, but the result is biased by assuming wrong
information. This is what our work is used for.

– Thanks to the reviewer, we improved and fixed a bug in the implementation.
Already publicly available.

Reviewer 3

– We updated the title as suggested. Now is more precise w.r.t. the paper’s
topic.

– The property analysed in the case study is satisfied w.r.t. a standard monitor
simply because we observe b and then we do not observe c in the following
event of the trace. A monitor should not return ? because the property is
a liveness property, and the requirement to its satisfaction has been met (a
monitor should guarantee anticipation).

– We fixed the sentences in the case study section that were pointed out. This
is to better state that the indistinguishability relations is a possible way to
formalise imperfect information (naturally, not the only one).

– All typos have been fixed as suggested by the reviewer.

