
Theory and Practice of Quantitative ATL

Angelo Ferrando1[0000−0002−8711−4670], Giulia Luongo2, Vadim
Malvone3[0000−0001−6138−4229], and Aniello Murano2[0000−0003−4876−3448]

1 University of Modena and Reggio Emilia, Italy
angelo.ferrando@unimore.it

2 University of Naples Federico II, Italy
name.surname@unina.it

3 LTCI, Télécom Paris, Institut Polytechnique de Paris, France
vadim.malvone@telecom-paris.fr

Abstract. In multi-agent system design and reasoning, strategy log-
ics and formal verification play pivotal roles. Numerous logic formalisms
have been introduced alongside the implementation of formal verification
tools. Recently, also spurred by applications in neuro-symbolic AI, there
has been a growing interest in modelling and reasoning about quanti-
tative aspects of multi-agent systems as well. This paper introduces a
quantitative strategic logic called ATL[F], which extends the well known
Alternating-time Temporal Logic with fuzzy functions. We have devel-
oped an algorithm to model check a multi-agent system with respect to
an ATL[F] formula, and implemented it within the VITAMIN tool. The
paper also provides execution examples to show how the tool behaves
and scales in practice.

1 Introduction

Multi-Agent Systems (MAS) represent a fundamental aspect in artificial intel-
ligence, aiming to model complex systems of rational agents. Over the past
two decades, significant efforts have been devoted to synthesis and verification
methods for MAS. In the field of strategic reasoning, various formalisms and
logics have been studied [3,13,42], considering both collaboration and antago-
nism among agents [9]. In this context, the Alternating-time Temporal Logic
(ATL), introduced by Alur, Henzinger, and Kupferman more than two decades
ago [3], is probably the most popular one. ATL formulas allow to express that a
set of agents has a strategy to achieve a desired temporal goal, regardless of the
strategies of the opponent agents. Since the introduction of ATL, the theoretical
study of strategic logics has consistently been complemented by the develop-
ment of tools designed to facilitate the practical application of formal aspects
of strategic reasoning [20,21,32,37,40]. Upon examining these tools, it becomes
evident that most efforts have been directed towards the qualitative aspects,
namely verifying whether a formula is true or false. However, in the realm of
multi-agent strategic reasoning, quantitative aspects play a crucial role. This
is especially pertinent in today’s context, where the integration of logics and

2 A. Ferrando et al.

strategic reasoning in neuro-symbolic AI prominently features rewards as quan-
titative functions [39]. Consequently, it is imperative for logical frameworks to
also encompass these quantitative aspects. Motivated by this perspective, classi-
cal temporal and strategic logics have been extended to incorporate quantitative
aspects. Among these extensions, LTL[F] [2] and SL[F] [14] stand out, where,
for the first time, functions are employed instead of atomic propositions to ex-
press quantitative aspects alongside the well known Linear-time Temporal logic
(LTL) [44] and Strategy Logic (SL) [42], respectively.

Our Contribution. In this work, we introduce a quantitative extension of ATL
with fuzzy functions (ATL[F]), an algorithm for the related verification question,
and its implementation in a tool. Regarding the latter, we have chosen to build
on VITAMIN [28], a very recently released tool for strategic reasoning that is
garnering particular interest in the community. Our contribution is twofold: on
the one hand, we introduce ATL[F] along with its syntax, semantics, and model
checking algorithm, and on the other hand, we implement for the first time a tool
to deal with a quantitative extension of ATL by means of fuzzy functions. It is
worth noting that ATL[F] includes ATL as a special case. Consequently, this work
is also the first one to deal with the implementation of ATL in VITAMIN. Besides
defining the algorithm for model checking ATL[F] and having implemented it,
along the paper we have tested our solution in practice. However, as our tool is
the first one able to deal with quantitative aspects for ATL, we have been unable
to make a proper comparison with other tools.

1.1 Related Work

Algorithms and tools for model checking strategic abilities [3,42] have been de-
veloped for over 20 years [4,19,21,24,30,32,37,40]. Among the others, MCMAS
[40] is recognized as one of the most widely used tools for the strategic verifica-
tion of MAS, primarily due to being one of the earliest tools developed, which
served as a foundational proof-of-concept for researchers. In order to speed up
the verification of some specific goals, the tool STV has been developed [36],
which treats the specification target in a predetermined way. Both MCMAS and
STV, lack modularity and usability and require a strong background in formal
methods, making them challenging for non-expert users to employ them. To
overcome these limitations, the tool VITAMIN [28] has been released very re-
cently. Notably, MCMAS and STV have been extended in various directions,
including imperfect information [20], but never alongside quantitative aspects;
this is the case for the tool VITAMIN as well.

From a theoretical point of view, the quantitative dimension has been ex-
plored in various logics, such as LTL[F] [2] and SL[F] [13]. Other quantitative
extensions of ATL and SL have been explored in the context of model checking.
These include timed [16,31], multi-valued [33,10], weighted [8,17,38,45], resources
[43,18], natural strategies [34,35,11], and probabilistic [12,25,7,22]. Quantitative
extensions of LTL have also been proposed, such as averaging [15] and discount-
ing [1,26,41].

Theory and Practice of Quantitative ATL 3

The concept of quantitativeness, which involves the possibility of having a
value that is not simply 0 or 1, but rather a range between these, corresponds
to aiming for the “best” outcome achievable, and certainly has also connections
with best effort strategies [5,6].

2 Weighted Alternating-time Temporal Logic

In this section, we introduce ATL[F], the quantitative extension of ATL with
fuzzy functions, detailing its syntax and semantics. Before delving into the pre-
sentation of ATL[F], we introduce some notation that will be used throughout
the paper. Given a set U , U denotes its complement. We denote the length of
a tuple v as |v|, its j-th element as vj , and its last element v|v| as last(v). For
j ≤ |v|, let v≥j be the suffix vj , ..., v|v| of v starting from vj and v≤j the prefix
v1, ..., vj of v.

We start by introducing Weighted Concurrent Game Structures, which will
be used to interpret ATL[F] formulas and thus to define the model checking
problem for ATL[F].

2.1 Weighted Concurrent Game Structures

A Concurrent Game Structure (CGS) [3] is a mathematical model used to repre-
sent and analyse MAS where agents (or players) can interact with each other and
their environment. Unlike Kripke structures [23], which are used to model closed
systems, CGSs are particularly useful for modeling open systems that involve
interaction between multiple players. In a CGS, the system is represented as a
graph with nodes and edges, where the nodes represent the states of the system
and the edges represent the possible transitions between states. Each state can
have labels that represent the properties of the system in that particular state,
while each transition is associated with a set of actions that can be performed
by the players. These actions are typically non-deterministic, meaning that the
players can choose from a set of possible actions, and the outcome of the game
depends on the choices made by all players.

Since in this work we focus on the quantitative verification of MAS, other
than CGSs, we are interested in analysing their extended version, calledWeighted
Concurrent Game Structures (wCGS) [13]. A wCGS models the concurrent com-
putation where agents simultaneously choose their actions. In a wCGS, atomic
propositions describe features of the game. Therefore, for each state s, and for
each atomic proposition p, a weight to p in s is assigned.

Definition 1. A wCGS is a tuple G = (Ag,Ap, {Acti}i∈Ag, S, sI , ℓ, d, o) where:

– Ag is a nonempty finite set of agents.
– Ap is a nonempty finite set of atomic propositions (atoms).
– For every i ∈ Ag, Acti is a nonempty finite set of actions. Let Act =⋃

i∈Ag Acti be the set of all actions, and ACT =
∏

i∈Ag Acti the set of all
joint actions.

4 A. Ferrando et al.

– S is a finite set of states.

– sI ∈ S is an initial state.

– ℓ : S ×Ap → [0, 1] is a weight function.

– d : Ag×S → 2Act is an availability function that defines a non-empty set of
actions available to agents at each state.

– o is a transition function which assigns the outcome state s′ = o(s, c) to each
state s and tuple of actions c ∈

∏
a∈Ag d(a, s) that can be executed by the

agents in s.

In the rest of the paper, when a joint action c and a coalition of agents A are
given, we denote cA as the projection of c where only the actions of agents in
A are considered; while we denote cAg\A as the projection of c where only the
actions of agents not in A are considered.

Fig. 1: Drone Battle scenario.

Example 1. We present a model inspired by the
Drone Battle scenario in [13]. In this model, there
are two agents within a two-dimensional space: the
carrier (c) and the villain (v). The carrier’s objec-
tive is to deliver an artifact to the rescue point
(represented by the grey area in Figure 1) while
maintaining a certain distance from the villain.
We simplify the model from [13], by restricting
the space to a range between 0 and 1, where both
agents can only move in increments of 0.3. Conse-
quently, coordinates along the x and y axes are 0, 0.3, 0.6, and 1. For the sake
of illustration, we restrict agents to a few actions: the carrier can move up (u),
right (r), and left (l), while the villain can move down (d), right (r), and
left (l). The wCGS in Figure 2 illustrates all agents’ moves. We have a total
of 21 states describing the possible configurations. Transitions between states
occur based on the actions chosen by the two agents. Each state has two atomic
propositions: dist, representing the distance between the carrier and the villain,
and safe, indicating whether the carrier is located at the rescue point. When
the carrier is at the rescue point, the atomic proposition evaluates to 1 and in
the model diagram, it is coloured in grey.

2.2 ATL[F]

We now introduce ATL[F], an extension of ATL with fuzzy functions, which
allows for the representation of weighted atomic propositions. By means of this
extension, it is possible to reason strategically about quantitative aspects of MAS
within the framework of strategic logics.

Syntax. We start by providing the syntax of ATL[F]. We build our logic on
ATL, as it is defined in [3].

Theory and Practice of Quantitative ATL 5

Definition 2. Formulas φ in ATL[F] are defined as follows:

φ ::= p | f [φ, ..., φ] | ⟨⟨Γ ⟩⟩Xφ | ⟨⟨Γ ⟩⟩Gφ | ⟨⟨Γ ⟩⟩φUφ

where p ∈ Ap, Γ ∈ 2Ag, and f ∈ F , where F ⊆ {f : [0, 1]m → [0, 1] | m ∈ N}
represents a set of computable functions.

Fig. 2: Drone Battle model.
Note that, all the states that
have not a successor contains
an implicit loop.

As for ATL, ATL[F] makes use of the strategic
operator ⟨⟨·⟩⟩, which can predicate over a temporal
logic formula having one single temporal operator
at the time. Given a coalition of agents Γ , ⟨⟨Γ ⟩⟩φ
represents the maximum value of φ the agents in Γ
can ensure, regardless of how the other players act.
Furthermore, ATL[F] utilises the standard tempo-
ral operators X, G, and U, representing “next”,
“globally”, and “until”, respectively. Additionally,
the meaning of f [φ1, ..., φ2] depends on the func-
tion f ∈ F .

For the sake of simplicity, in this paper we
focus on a specific set of F functions, which in-
cludes the min{x, y}, max{x, y}, and 1− x func-
tions. These functions serve as the standard quan-
titative equivalents of the ∧, ∨, and ¬ operators,
commonly referred to as the Zadeh operators in
fuzzy logics. Intuitively, the value of the formula
φ1 ∨φ2 is the maximum value of the values of the
two subformulas φ1 and φ2; analogously, φ1 ∧ φ2

takes the minimal value of the values of the two
subformulas φ1 and φ2; finally the value of ¬φ
is 1 minus the value of φ. Thus, the implication
φ1 → φ2 takes the maximum value between that
of φ2 and 1 minus the value of φ1.

Observation. In a Boolean setting, we assume that
the values of the atomic propositions are in {0, 1}
(0 represents ⊥ whereas 1 represents ⊤), and so
are the output values of functions in F . In such a
setting, we can observe that the min, max, and
1−x functions take the exact same meaning of ∧,
∨, and ¬.

Semantics. ATL[F] formulas are interpreted on wCGS, where atomic proposi-
tions can take values in the range of [0, 1].

In order to present ATL[F] semantics, we need to introduce some notions. A
history h ∈ S+ is a finite (non-empty) sequence of states in a wCGS. A perfect
recall strategy is a conditional plan that assigns an action for every history. The
formal definition follows.

6 A. Ferrando et al.

Definition 3. A perfect recall strategy for agent i ∈ Ag is a function σi :S
+→

Acti such that for each history h∈S+, we have that σi(h)∈d(i, last(h)).

According to Definition 3, any strategy for agent i must return actions that
are enabled for i. Note that, memoryless (imperfect recall) strategies can be
obtained by considering S as the domain of σi, i.e., σi : S → Acti.

In a wCGS G, a path π represents an infinite sequence of states. The set of
paths over S is denoted by Sω.

For a joint strategy σΓ , consisting of one strategy for each agent in coalition
Γ , a path π is σΓ -compatible if, for every j ≥ 1, πj+1 = o(πj , c) for some joint
action c such that for every i ∈ Γ , ci = σi(π≤j), and for every i ∈ Γ , ci ∈ d(i, πj).

The set of all σΓ -compatible paths from s is denoted by out(s, σΓ). While
the set of all possible joint strategies for a coalition Γ is denoted by ΣΓ .

Definition 4. For a given ATL[F] formula φ, a wCGS G, and a path π, the
satisfaction value of φ on π in G is denoted JφKG(π) and defined recursively as:

JpKG(π) = ℓ(π1, p)

Jf [φ1, ..., φn]KG(π) = f [Jφ1KG(π), ..., JφnKG(π)]
J⟨⟨Γ ⟩⟩XφKG(π) = max

σΓ∈ΣΓ

(min
π′∈out(π1,σΓ)

(JφKG(π′
≥2)))

J⟨⟨Γ ⟩⟩GφKG(π) = max
σΓ∈ΣΓ

(min
π′∈out(π1,σΓ)

(min
j

(JφKG(π′
≥j))))

J⟨⟨Γ ⟩⟩φ1Uφ2KG(π) = max
σΓ∈ΣΓ

(min
π′∈out(π1,σΓ)

(max
j

(min
j

(Jφ2KG(π′
≥j),min

i<j
(Jφ1KG(π′

≥i))))))

Example 2. Consider again the Drone Battle scenario as reported in Example 1.
Consider now the following ATL[F] formula:

φrescue = ⟨⟨c⟩⟩(dist ≥ 0.5) U safe4

This formula means that there exists a strategy for the carrier such that she
can reach a safe state keeping always the villain at a distance of at least 0.5.

3 ATL[F] Model Checking

We now present the model checking algorithm for ATL[F]. The algorithm is re-
ported in Algorithm 1. This algorithm takes inspiration from the one for ATL [3],
modified opportunely to handle the quantitative semantics of ATL[F]. Specifi-
cally, with respect to the ATL algorithm, two main aspects need to be fully
revisited: the preimage construction and, the generation and handling of states.
In Algorithm 2, the preimage function, called Pre[F], is extended to evaluate
the strategies in a quantitative way. Concerning instead the states, as we see
in the following, Algorithm 1 is built upon set of states where at each state a
quantitative value is associated (denoting the corresponding current quantitative
satisfaction over the ATL[F] formula under analysis).

4 The subformula (dist ≥ 0.5) is syntactic sugar for (≥(dist, 0.5)), where ≥∈ F .

Theory and Practice of Quantitative ATL 7

However, some modifications are required. First of all, a distinct version of the
preimage function, that we call Pre[F], is added as the primary modification of
the standard ATL model checking algorithm. Furthermore, the way of generating
the states satisfying an atomic proposition is also different.

Algorithm 1 ATL[F] model checking

1: for each φ′ in Sub(φ) do
2: case φ′ = p : [φ′] := Reg[F](p)
3: case φ′ = f [θ1, ..., θn] : [φ

′] := f [[θ1], ..., [θn]]
4: case φ′ = ⟨⟨Γ ⟩⟩Xθ : [φ′] := Pre[F](Γ, [θ])
5: case φ′ = ⟨⟨Γ ⟩⟩Gθ :
6: ρ := {⟨s, 1⟩ | s ∈ S}
7: τ := [θ]
8: while ρ ̸⊆ τ do
9: ρ := τ
10: τ := Pre[F](Γ, ρ) ∩ [θ]
11: [φ′] := ρ
12: case φ′ = ⟨⟨Γ ⟩⟩θ1Uθ2 :
13: ρ := {⟨s, 0⟩ | s ∈ S}
14: τ := [θ2]
15: while τ ̸⊆ ρdo
16: ρ := ρ ∪ τ
17: τ := Pre[F](Γ, ρ) ∩ [θ1]
18: [φ′] := ρ
19: end for
20: return [φ]

Before proceeding with the definition of the new Pre[F] algorithm (along
with its auxiliary procedures), we wish to linger on the definition of the Reg[F]
function. Specifically, since ATL[F] formulas are verified on wCGS, the atomic
propositions are quantified in the states of the model, the Reg[F] function re-
turns a set of tuples.

Definition 5. Given an atomic proposition p ∈ Ap, we define Reg[F](p) as the
set {⟨s, v⟩ | s ∈ S ∧ v = ℓ(s, p)}. That is, the set containing tuples, where each
tuple consists of a state s in the wCGS, along with its associated value of p in s.

Note that, because of Reg[F], Algorithm 1 does not work on sets of states,
but on sets of tuples, where at each state is associated a value. Thus, the set
operations in the algorithm need further explanation. Specifically, assuming two
set of tuples S1 and S2 as previously defined, we have that S1 ⊆ S2, if and
only if, for all s ∈ S, s.t. ⟨s, v1⟩ ∈ S1 and ⟨s, v2⟩ ∈ S2, we have that v1 ≤ v2.
Furthermore, for the same reason we extend the notion of intersection, that is,
given two sets of tuples, we have that S1 ∩ S2 = {⟨s, v⟩ | ⟨s, v1⟩ ∈ S1 ∧ ⟨s, v2⟩ ∈
S2 ∧ v = min(v1, v2)}. Note that, the union is obtained in the same way, but
selecting the maximum value amongst v1 and v2 (i.e., v = max(v1, v2)).

Observation. Differently from the standard ATL model checking algorithm, in
the ATL[F] algorithm, all states are taken into account at all times. That is,
⟨s, v⟩ ∈ Pre[F] if and only if s ∈ S.

Let us now provide a detailed explanation of the algorithms that extend the
standard model checking of ATL to achieve the model checking of ATL[F].

8 A. Ferrando et al.

In Algorithm 2, the Pre[F] function is reported. Such a function – as in
the standard Pre function in ATL model checking – expects a set of agents Γ
and a set of tuples (state-value) ρ in input. Algorithm 2 first initialises a set

Algorithm 2 Pre[F](Γ, ρ)

1: res = {⟨s, 0⟩ | s ∈ S}
2: for each s ∈ S do
3: maxStrategyV alue = evaluateMaxStrategy(Γ, s, ρ)
4: res = res ∪ {⟨s,maxStrategyV alue⟩}
5: end for
6: return res

containing the final result of Pre[F] to a set of tuples where to each state in S is
assigned value 0 (line 1). After that, the algorithm iterates on all the states s in
S (lines 2–5), where for each s ∈ S, the maximum value for the strategy for the
agents in Γ is computed (line 3). This computation is performed in Algorithm 3,
discussed in the following paragraphs. However, at high level, the value returned
by Algorithm 3 corresponds to the maximum value the coalition Γ of agents can
obtain, amongst the minimum values the opponent agents Ag \ Γ can enforce.
This follows the semantics of ATL[F], given in Section 2.2. Such value, along with
state s, is then added to the result set res (line 4), exploiting our redefined union
operator (see before). This preserves the fact that Algorithm 1 manipulates sets
of tuples rather than sets of states. The algorithm then terminates by returning
the res set (line 6).

Moving on, Algorithm 3 is tasked with the goal of evaluating all possible
outcome trees. To better understand, let us first define what an outcome tree is.

Definition 6. Given a state s ∈ S, a coalition of agents Γ ⊆ Ag, and a projected
joint action cΓ , we have that a tree ts for cΓ is an outcome tree, if and only if,
cΓ is the root of ts and for all c′ ∈

∏
a∈Ag d(a, s) s.t. c′Γ = cΓ , we have a leaf

node in ts that is children of the root node cΓ and contains the tuple ⟨c′Ag\Γ , s
′⟩,

with s′ ∈ S and s′ ∈ o(s, c′).

Algorithm 3 evaluateMaxStrategy(Γ, s, ρ)

1: minV aluesTree = ∅
2: trees = createNextMoveTrees(Γ, s)
3: for each node(cΓ) ∈ trees do
4: children = getChildren(node(cΓ))
5: valuesTree = ∅
6: for each ⟨⟨cAg\Γ , s′⟩ ∈ children do

7: get ⟨s′, value⟩ from ρ
8: valuesTree = valuesTree ∪ value
9: end for
10: minimum = min(valuesTree)
11: minV aluesTree = minV aluesTree ∪ minimum
12: end for
13: return max(minV aluesTree)

Algorithm 3 expects in input the set of agents in coalition, the state that has
been currently evaluated, and the set of tuples of states – along with their current

Theory and Practice of Quantitative ATL 9

maximum value associated – resulting from previous recursive calls of the Pre[F]
function.

Algorithm 3 begins by initialising an empty set, which will serve as a collector
of values associated with the found outcome trees (line 1). Then, Algorithm 4
is invoked (line 2), and its result is stored in trees. This set contains all the
possible trees, according to Definition 6, where the root is a joint action selected
by the coalition Γ , and the children are all the possible joint actions that can be
selected by the opposing agents (that is, Ag \ Γ). Note that, as it is presented
in Algorithm 4, each opponents’ action is attached to a state s′; such a state
denotes the next state to be visited in case the opponents’ action is selected.

After extracting these trees, Algorithm 3 iterates over each of the obtained
trees (lines 3–12). For each tree, all the child nodes are extracted (line 4) and
evaluated (lines 6–9). These are tuples comprising the joint action that can be
selected by the opposing agents, along with the associated landing state (i.e.,
the next state to visit if such action is selected). In this step, the algorithm
updates a set of values by adding, for each child of the selected tree, the value
associated with the state in ρ. That is, it retrieves the current maximum value
associated with s′ in ρ. Afterwards, the minimum value amongst the evaluated
values is determined (line 10) and added to the other values resulting from the
alternative trees (line 11). The algorithm concludes by selecting the maximum
value amongst the minimum values (line 13), representing the fact that when
the coalition of agents Γ can choose amongst different options, they will opt for
the one that produces the highest outcome.

Finally, the last auxiliary algorithm to define is Algorithm 4, where the action
trees are produced to be used in Algorithm 3. Algorithm 4 expects in input the
set of agents belonging to the coalition and the state of the wCGS currently
evaluated. It starts by initialising the set of found trees to the empty set (line 1).
Then, it loops over all the possible joint actions that can be performed in s. This
can be extracted through the d(a, s) function of the wCGS that denotes which
actions an agent a can perform in a state s (lines 2–11). After that, for each
joint action so selected (c), the algorithm creates a node n (line 3) containing
the opposing joint action (cAg\Γ) along with the state that can be reached by
performing the whole joint action (o(s, c)). Then, the algorithm checks whether
this is the first time a tree for the coalition action cΓ is encountered. If that
is the case (lines 4–7), then a tree is initialised with cΓ as root (line 5), n is
added as unique child of cΓ (line 6), and the resulting tree is added along all
the other trees found in the execution of Algorithm 4 (line 7). Otherwise (lines
8–10), since the tree is already present in the set of trees, n is simply added as
a new child of cΓ (line 9). Once all the possible joint actions in s are evaluated,
the algorithm concludes by returning the generated set of trees (line 12).

We conclude this section by providing the complexity result of our procedure.

Theorem 1. Given an ATL[F] formula φ and a wCGS G, Algorithm 1 termi-
nates in polynomial time with respect to the size of G and the length of φ.

Proof. To prove the termination of Algorithm 1 we first prove the termination
of the auxiliary algorithms it uses. Algorithm 2 loops over the states of G and for

10 A. Ferrando et al.

Algorithm 4 createNextMoveTrees(Γ, s)

1: trees = ∅
2: for each c ∈

∏
a∈Ag d(a, s) do

3: n = node(⟨cAg\Γ , o(s, c)⟩)
4: if root(cΓ) ̸∈ trees then
5: tree = root(cΓ)
6: add n as child of tree
7: trees = trees ∪ tree
8: else
9: add n as child of root(cΓ)
10: end if
11: end for
12: return trees

each state it calls Algorithm 3, which then calls Algorithm 4 to synthesise the
action trees needed for the evaluation. The latter trivially terminates in poly-
nomial time with respect to the number of joint actions available in the current
state. Consequently, this makes Algorithm 3 also polynomial with respect to the
number of joint actions available in the state under analysis (since it iterates
over the resulting trees). Thus, going back to Algorithm 2, we can conclude it
terminates in polynomial time with respect to the size of G (since for each state it
analyses all transitions available in that state). Now that we have concluded the
analysis of all auxiliary algorithms, we can resume the analysis of Algorithm 1;
specifically, it loops over the subformulas φ′ of φ, thus, to prove Algorithm 1 is
polynomial, each case of Algorithm 1 has to be at most polynomial.

– Case φ′ = p: Algorithm 1 calls Reg[F] and the latter is trivially polynomial
on the size of G.

– Case φ′ = f [θ1, ..., θn]: Since each [θi] for 1 ≤ i ≤ n was computed in a
previous iteration and we assume f to be at most polynomial5, then the
complexity of this case follows.

– Case φ′ = ⟨⟨Γ ⟩⟩Xθ: The preimage function (Algorithm 2) is called. We proved
the latter is polynomial with respect to the size of G, so we may conclude.

– Case φ′ = ⟨⟨Γ ⟩⟩Gθ: Similarly to the previous case also here the algorithm
exploits the preimage function; however, differently from before, the latter
is called a polynomial number of times with respect to the number of states
in G. Thus, this case may conclude in polynomial time w.r.t. the size of G.

– Case φ′ = ⟨⟨Γ ⟩⟩θ1Uθ2: The algorithm concludes in polynomial time as in the
previous case.

4 Implementation

In this section, we present the implementation (source code available at https:
//anonymous.4open.science/r/ATLF-B4CC) of the model checking algorithm
and its integration with the VITAMIN tool [27,28,29] as a verification component
to handle the verification of ATL[F] formulas.

5 Without this assumption the time complexity of the algorithm may change.

https://anonymous.4open.science/r/ATLF-B4CC
https://anonymous.4open.science/r/ATLF-B4CC

Theory and Practice of Quantitative ATL 11

The VITAMIN tool operates on Streamlit6, an open-source framework used
for creating web applications. The tool takes as input a file representing the
model, a formula, and applies the corresponding model checking algorithm for
the chosen temporal logic. wCGSs are represented as graphs and implemented
via adjacency matrices, as specified in the input file.

Model Parsing: Extracting Information from the Input File. Before applying the
model checking algorithm, we need to obtain the model to which it will be applied
to. A function for reading the input file has been implemented in VITAMIN.

The input file contains all the information regarding the model. It must follow
a specific structure:

– Transitionmatrix: Represents the wCGS. Each row corresponds to a source
state, and each column corresponds to a destination state. Transitions are
represented by the matrix content: 0 indicates no transition, while other
values indicate the associated tuple of actions.

– Name State: Represents the states of the model. Their order matches the
order in the adjacency matrix.

– Initial State: Represents the initial state of the model.
– Atomic Propositions: Represents atoms with truth values in each state.

Only names and order are indicated here, crucial for interpreting values in
the corresponding matrix.

– Labelling matrix: Represents the labelling function, indicating the value of
each atomic proposition for each state. Values range between 0 and 1. States
are in rows, atomic propositions in columns.

– Number of Agents: Crucial for understanding the wCGS configuration and
the total number of moves required for any transition.

Formula Parsing. The formula parser is developed in Python using the ply
package7. The output generated by the parser is an Abstract Syntax Tree (AST).
The parser file includes all the logical operators used in ATL[F], along with
the correct syntax for their usage. This enables the parser to identify formulas
with incorrect syntax and divide correct formulas into smaller sub-formulas. The
actual model checking algorithm is then applied on the so extracted sub-formulas
as presented in Algorithm 1.

5 Experiments

We tested our tool on the drones example presented in Example 1 on a ma-
chine with the following specifications: Intel(R) Core(TM) i7-7700HQ CPU @
2.80GHz, 4 cores 8 threads, 16 GB RAM DDR4. Specifically, we verified that
the ATL[F] formula ⟨⟨c⟩⟩(dist ≥ 0.5) U safe is satisfied in the wCGS of Figure 2.
The tool completed the verification within 0.005 seconds. We remind the reader

6 https://streamlit.io/
7 https://github.com/dabeaz/ply

https://streamlit.io/
https://github.com/dabeaz/ply

12 A. Ferrando et al.

that the implementation of the ATL[F] model checking algorithm in VITAMIN
only supports min{x, y}, max{x, y}, and 1−x functions in F . Consequently, we
cannot represent the ≥ 0.5 comparison directly inside the formula. Nonetheless,
considering the semantics of the U operator, it is enough to rewrite the formula
as ⟨⟨c⟩⟩dist U safe and then to check whether the resulting value associated to
the initial state is, or not, equal to or greater than 0.5. Note that, the rewritten
formula is still an ATL[F] formula and requires to be verified through the ATL[F]
model checking algorithm presented in this paper. The only difference with the
original formula is that the comparison is not natively supported in the ATL[F]
implementation, but it is performed on the value resulting from the verification.

Synthetic models. To further experiment on our tool, we carried out additional
tests on randomly generated wCGS models. Figure 3 presents the experimental
results obtained by varying the system model, while keeping fixed an ATL[F] for-
mula8. In these synthetic experiments, the models differ from the ones presented
in the Drone Battle scenario; in fact, they are automatically generated. Each
model has a specific size, determined by the sum of the states and transitions
within it. The distribution of the atomic propositions among the states is ran-
domly generated for each model. As observed in Figure 3, the results exhibit the
expected polynomial behaviour relative to the size of the model under analysis.
It is important to note that, for each reported model size, over 10,000 models
have been randomly generated and verified against the strategic formula. The
plot depicts the average execution time. We also want to emphasise that the
size of the models used in these experiments is not negligible. In fact, the largest
models subjected to verification contain more than 1,000 states and over 100,000
transitions. Nonetheless, despite their size, our algorithm manages to complete
the verification process in less than 40 seconds.

20,000 40,000 60,000 80,000 1 · 105
0

10

20

30

40

Size of the model

E
x
ec
u
ti
o
n
ti
m
e
(s
ec
o
n
d
s)

ATLF

Fig. 3: Experimental results obtained on randomly generated wCGS.

8 Such a formula corresponds to a liveness property where we check whether a specific
atom in the model can be reached and with which value.

Theory and Practice of Quantitative ATL 13

6 Conclusions and Future Work

In this work, we have presented ATL[F] and its instantiation in the VITAMIN
framework, thus creating the first tool for quantitative strategic reasoning. We
addressed ATL[F] at both theoretical and practical levels by first presenting its
syntax, semantics, and model checking algorithm, and finally, by demonstrat-
ing its implementation as a VITAMIN component. We thoroughly analysed the
resulting algorithms for model checking ATL[F] formulas on wCGS models and
conducted experiments to evaluate our approach.

This work opens up a new research direction that we expect to have a signif-
icant impact on the MAS formal verification community. Furthermore, the tool
is highly dynamic and can be easily extended to a wide range of examples.

Acknowledgements

This research has been supported by the PNRR MUR project PE0000013-FAIR
and the PRIN 2020 project RIPER.

References

1. Almagor, S., Boker, U., Kupferman, O.: Discounting in LTL. In: TACAS. Lecture
Notes in Computer Science, vol. 8413, pp. 424–439. Springer (2014)

2. Almagor, S., Boker, U., Kupferman, O.: Formally reasoning about quality. Journal
of the ACM (JACM) 63(3), 1–56 (2016)

3. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. Jour-
nal of the ACM (JACM) 49(5), 672–713 (2002)

4. Alur, R., Henzinger, T.A., Mang, F.Y.C., Qadeer, S., Rajamani, S.K., Tasiran, S.:
MOCHA: modularity in model checking. In: Hu, A.J., Vardi, M.Y. (eds.) Com-
puter Aided Verification, 10th International Conference, CAV ’98, Vancouver, BC,
Canada, June 28 - July 2, 1998, Proceedings. Lecture Notes in Computer Science,
vol. 1427, pp. 521–525. Springer (1998)

5. Aminof, B., Giacomo, G.D., Lomuscio, A., Murano, A., Rubin, S.: Synthesizing
best-effort strategies under multiple environment specifications. In: Bienvenu, M.,
Lakemeyer, G., Erdem, E. (eds.) Proceedings of the 18th International Conference
on Principles of Knowledge Representation and Reasoning, KR 2021, Online event,
November 3-12, 2021. pp. 42–51 (2021)

6. Aminof, B., Giacomo, G.D., Rubin, S.: Best-effort synthesis: Doing your best is not
harder than giving up. In: Zhou, Z. (ed.) Proceedings of the Thirtieth International
Joint Conference on Artificial Intelligence, IJCAI 2021, Virtual Event / Montreal,
Canada, 19-27 August 2021. pp. 1766–1772. ijcai.org (2021)

7. Aminof, B., Kwiatkowska, M., Maubert, B., Murano, A., Rubin, S.: Probabilistic
strategy logic. In: Kraus, S. (ed.) Proceedings of the Twenty-Eighth International
Joint Conference on Artificial Intelligence, IJCAI 2019, Macao, China, August 10-
16, 2019. pp. 32–38. ijcai.org (2019)

8. Aminof, B., Malvone, V., Murano, A., Rubin, S.: Graded strategy logic: Reasoning
about uniqueness of nash equilibria. In: Jonker, C.M., Marsella, S., Thangara-
jah, J., Tuyls, K. (eds.) Proceedings of the 2016 International Conference on Au-
tonomous Agents & Multiagent Systems, Singapore, May 9-13, 2016. pp. 698–706.
ACM (2016)

14 A. Ferrando et al.

9. Baier, C., Katoen, J.P.: Principles of model checking. MIT press (2008)
10. Belardinelli, F., Ferrando, A., Malvone, V.: An abstraction-refinement framework

for verifying strategic properties in multi-agent systems with imperfect informa-
tion. Artif. Intell. 316, 103847 (2023)

11. Belardinelli, F., Jamroga, W., Malvone, V., Mittelmann, M., Murano, A., Perrus-
sel, L.: Reasoning about human-friendly strategies in repeated keyword auctions.
In: Faliszewski, P., Mascardi, V., Pelachaud, C., Taylor, M.E. (eds.) 21st Interna-
tional Conference on Autonomous Agents and Multiagent Systems, AAMAS 2022,
Auckland, New Zealand, May 9-13, 2022. pp. 62–71. International Foundation for
Autonomous Agents and Multiagent Systems (IFAAMAS) (2022)

12. Belardinelli, F., Jamroga, W., Mittelmann, M., Murano, A.: Verification of stochas-
tic multi-agent systems with forgetful strategies. In: Dastani, M., Sichman, J.S.,
Alechina, N., Dignum, V. (eds.) Proceedings of the 23rd International Conference
on Autonomous Agents and Multiagent Systems, AAMAS 2024, Auckland, New
Zealand, May 6-10, 2024. pp. 160–169. International Foundation for Autonomous
Agents and Multiagent Systems / ACM (2024)

13. Bouyer, P., Kupferman, O., Markey, N., Maubert, B., Murano, A., Perelli, G.:
Reasoning about quality and fuzziness of strategic behaviors. ACM Transactions
on Computational Logic 24(3), 1–38 (2023)

14. Bouyer, P., Kupferman, O., Markey, N., Maubert, B., Murano, A., Perelli, G.:
Reasoning about quality and fuzziness of strategic behaviors. ACM Trans. Comput.
Log. 24(3), 21:1–21:38 (2023)

15. Bouyer, P., Markey, N., Matteplackel, R.M.: Averaging in LTL. In: Baldan, P.,
Gorla, D. (eds.) CONCUR 2014 - Concurrency Theory - 25th International Con-
ference, CONCUR 2014, Rome, Italy, September 2-5, 2014. Proceedings. Lecture
Notes in Computer Science, vol. 8704, pp. 266–280. Springer (2014)

16. Brihaye, T., Laroussinie, F., Markey, N., Oreiby, G.: Timed concurrent game struc-
tures. In: Proc. of the 18th International Conference on Concurrency Theory, CON-
CUR 2007. Lecture Notes in Computer Science, vol. 4703, pp. 445–459. Springer
(2007)

17. Bulling, N., Goranko, V.: Combining quantitative and qualitative reasoning in
concurrent multi-player games. Auton. Agents Multi Agent Syst. 36(1), 2 (2022)

18. Catta, D., Ferrando, A., Malvone, V.: Resource action-based bounded atl: a new
logic for mas to express a cost over the actions. In: Arisaka, R., Anguix, V.S., Stein,
S., Aydogan, R., van der Torre, L., Ito, T. (eds.) PRIMA 2024: Principles and
Practice of Multi-Agent Systems - 25th International Conference, Kyoto, Japan,
November 18-24, 2024, Proceedings. Lecture Notes in Computer Science, vol. to
appear. Springer (2024)

19. Cermák, P., Lomuscio, A., Mogavero, F., Murano, A.: MCMAS-SLK: A model
checker for the verification of strategy logic specifications. In: Biere, A., Bloem,
R. (eds.) Computer Aided Verification - 26th International Conference, CAV 2014,
Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 18-
22, 2014. Proceedings. Lecture Notes in Computer Science, vol. 8559, pp. 525–532.
Springer (2014)

20. Cermák, P., Lomuscio, A., Mogavero, F., Murano, A.: Practical verification of
multi-agent systems against SLK specifications. Inf. Comput. 261, 588–614 (2018)

21. Cermák, P., Lomuscio, A., Murano, A.: Verifying and synthesising multi-agent
systems against one-goal strategy logic specifications. In: Bonet, B., Koenig, S.
(eds.) Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence,
January 25-30, 2015, Austin, Texas, USA. pp. 2038–2044. AAAI Press (2015)

Theory and Practice of Quantitative ATL 15

22. Chatterjee, K., de Alfaro, L., Faella, M., Legay, A.: Qualitative logics and equiva-
lences for probabilistic systems. Log. Methods Comput. Sci. 5(2) (2009)

23. Chellas, B.F.: Modal Logic - An Introduction. Cambridge University Press (1980)

24. Chen, T., Forejt, V., Kwiatkowska, M.Z., Parker, D., Simaitis, A.: Prism-games:
A model checker for stochastic multi-player games. In: Piterman, N., Smolka, S.A.
(eds.) Tools and Algorithms for the Construction and Analysis of Systems - 19th
International Conference, TACAS 2013, Held as Part of the European Joint Con-
ferences on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March
16-24, 2013. Proceedings. Lecture Notes in Computer Science, vol. 7795, pp. 185–
191. Springer (2013)

25. Chen, T., Lu, J.: Probabilistic alternating-time temporal logic and model checking
algorithm. In: Lei, J. (ed.) Fourth International Conference on Fuzzy Systems and
Knowledge Discovery, FSKD 2007, 24-27 August 2007, Haikou, Hainan, China,
Proceedings, Volume 2. pp. 35–39. IEEE Computer Society (2007)

26. De Alfaro, L., Faella, M., Henzinger, T.A., Majumdar, R., Stoelinga, M.: Model
checking discounted temporal properties. Theoretical Computer Science 345(1),
139–170 (2005)

27. Ferrando, A., Malvone, V.: Hands-on VITAMIN: A compositional tool for model
checking of multi-agent systems. In: Alderighi, M., Baldoni, M., Baroglio, C., Mi-
calizio, R., Tedeschi, S. (eds.) Proceedings of the 25th Workshop ”From Objects
to Agents”, Bard (Aosta), Italy, July 8-10, 2024. CEUR Workshop Proceedings,
vol. 3735, pp. 148–160. CEUR-WS.org (2024)

28. Ferrando, A., Malvone, V.: VITAMIN: A compositional framework for model check-
ing of multi-agent systems. CoRR abs/2403.02170 (2024)

29. Ferrando, A., Malvone, V.: Vitamin: A tool for model checking of mas. In: Collier,
R., Ricci, A., Nallur, V. (eds.) Multi-Agent Systems - 21st European Conference,
EUMAS 2024, Dublin, Ireland, August 26-28, 2024, Proceedings. Lecture Notes in
Computer Science, vol. to appear. Springer (2024)

30. Gutierrez, J., Najib, M., Perelli, G., Wooldridge, M.J.: EVE: A tool for tempo-
ral equilibrium analysis. In: Lahiri, S.K., Wang, C. (eds.) Automated Technology
for Verification and Analysis - 16th International Symposium, ATVA 2018, Los
Angeles, CA, USA, October 7-10, 2018, Proceedings. Lecture Notes in Computer
Science, vol. 11138, pp. 551–557. Springer (2018)

31. Henzinger, T.A., Prabhu, V.S.: Timed alternating-time temporal logic. In: Proc.
of the 4th International Conference on Formal Modeling and Analysis of Timed
Systems, FORMATS 2006. Lecture Notes in Computer Science, vol. 4202, pp. 1–17.
Springer (2006)

32. Huang, X., van der Meyden, R.: Symbolic model checking epistemic strategy logic.
In: Brodley, C.E., Stone, P. (eds.) Proceedings of the Twenty-Eighth AAAI Con-
ference on Artificial Intelligence, July 27 -31, 2014, Québec City, Québec, Canada.
pp. 1426–1432. AAAI Press (2014)

33. Jamroga, W., Konikowska, B., Kurpiewski, D., Penczek, W.: Multi-valued verifi-
cation of strategic ability. Fundam. Informaticae 175(1-4), 207–251 (2020)

34. Jamroga, W., Malvone, V., Murano, A.: Natural strategic ability. Artif. Intell.
277 (2019). https://doi.org/10.1016/J.ARTINT.2019.103170, https://doi.org/
10.1016/j.artint.2019.103170

35. Jamroga, W., Malvone, V., Murano, A.: Natural strategic ability under imperfect
information. In: Elkind, E., Veloso, M., Agmon, N., Taylor, M.E. (eds.) Proceed-
ings of the 18th International Conference on Autonomous Agents and MultiAgent

https://doi.org/10.1016/J.ARTINT.2019.103170
https://doi.org/10.1016/j.artint.2019.103170
https://doi.org/10.1016/j.artint.2019.103170

16 A. Ferrando et al.

Systems, AAMAS ’19, Montreal, QC, Canada, May 13-17, 2019. pp. 962–970. In-
ternational Foundation for Autonomous Agents and Multiagent Systems (2019),
http://dl.acm.org/citation.cfm?id=3331791

36. Kurpiewski, D., Jamroga, W., Knapik, M.: STV: model checking for strategies
under imperfect information. In: Elkind, E., Veloso, M., Agmon, N., Taylor, M.E.
(eds.) Proceedings of the 18th International Conference on Autonomous Agents
and MultiAgent Systems, AAMAS ’19, Montreal, QC, Canada, May 13-17, 2019.
pp. 2372–2374. International Foundation for Autonomous Agents and Multiagent
Systems (2019)

37. Kurpiewski, D., Pazderski, W., Jamroga, W., Kim, Y.: Stv+reductions: Towards
practical verification of strategic ability using model reductions. In: Dignum, F.,
Lomuscio, A., Endriss, U., Nowé, A. (eds.) AAMAS ’21: 20th International Con-
ference on Autonomous Agents and Multiagent Systems, Virtual Event, United
Kingdom, May 3-7, 2021. pp. 1770–1772. ACM (2021)

38. Laroussinie, F., Markey, N., Oreiby, G.: Model-checking timed. In: Proc. of the
4th International Conference on Formal Modeling and Analysis of Timed Systems,
FORMATS 2006. Lecture Notes in Computer Science, vol. 4202, pp. 245–259.
Springer (2006). https://doi.org/10.1007/11867340 18

39. Li, X., Vasile, C.I., Belta, C.: Reinforcement learning with temporal logic rewards.
In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems,
IROS 2017, Vancouver, BC, Canada, September 24-28, 2017. pp. 3834–3839. IEEE
(2017). https://doi.org/10.1109/IROS.2017.8206234, https://doi.org/10.1109/
IROS.2017.8206234

40. Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: an open-source model checker for
the verification of multi-agent systems. Int. J. Softw. Tools Technol. Transf. 19(1),
9–30 (2017). https://doi.org/10.1007/S10009-015-0378-X, https://doi.org/10.

1007/s10009-015-0378-x

41. Mittelmann, M., Murano, A., Perrussel, L.: Discounting in strategy logic. In: Pro-
ceedings of the Thirty-Second International Joint Conference on Artificial Intel-
ligence, IJCAI 2023, 19th-25th August 2023, Macao, SAR, China. pp. 225–233.
ijcai.org (2023)

42. Mogavero, F., Murano, A., Perelli, G., Vardi, M.Y.: Reasoning about strategies: On
the model-checking problem. ACM Trans. Comput. Log. 15(4), 34:1–34:47 (2014)

43. Nguyen, H.N., Alechina, N., Logan, B., Rakib, A.: Alternating-time tem-
poral logic with resource bounds. J. Log. Comput. 28(4), 631–663 (2018).
https://doi.org/10.1093/LOGCOM/EXV034, https://doi.org/10.1093/

logcom/exv034

44. Pnueli, A.: The temporal logic of programs. In: Proc. 18th Annual Symposium
on Foundations of Computer Science (FOCS). pp. 46–57. IEEE Computer Society
(1977). https://doi.org/10.1109/SFCS.1977.32

45. Vester, S.: On the complexity of model-checking branching and alternating-time
temporal logics in one-counter systemss. In: Finkbeiner, B., Pu, G., Zhang, L.
(eds.) Automated Technology for Verification and Analysis. pp. 361–377. Springer
International Publishing, Cham (2015)

http://dl.acm.org/citation.cfm?id=3331791
https://doi.org/10.1007/11867340_18
https://doi.org/10.1109/IROS.2017.8206234
https://doi.org/10.1109/IROS.2017.8206234
https://doi.org/10.1109/IROS.2017.8206234
https://doi.org/10.1007/S10009-015-0378-X
https://doi.org/10.1007/s10009-015-0378-x
https://doi.org/10.1007/s10009-015-0378-x
https://doi.org/10.1093/LOGCOM/EXV034
https://doi.org/10.1093/logcom/exv034
https://doi.org/10.1093/logcom/exv034
https://doi.org/10.1109/SFCS.1977.32

	Theory and Practice of Quantitative ATL

