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Abstract. In both human society and Multi-Agent Systems (MAS), actions en-
tail costs due to resource limitations such as energy consumption and communi-
cation bandwidth. Consideration of these constraints is crucial during MAS de-
sign and implementation, especially regarding agents’ ability to achieve tempo-
ral objectives. Resource Bounded ATL (RB-ATL) extends ATL to accommodate
resource limitations but struggles to isolate costs to individual actions. Agents’
actions can be influenced by others, affecting cooperation or competition. To
address these complexities, we introduce Resource Action-based Bounded ATL
(RAB-ATL), which considers actions’ costs in relation to other agents’ actions
within the same state. RAB-ATL enhances understanding and introduces strate-
gic considerations at the resource handling level, offering a more comprehensive
approach to agent interaction. Additionally, we analyse the model checking com-
plexity for RAB-ATL and show that it remains consistent with that of RB-ATL.
Finally, we present a resulting implementation of the technique and its application
to an existing case study.

Keywords: Strategic Verification · Resource Bounded ATL · Model Checking

1 Introduction

The proverb “nothing comes free in life” holds true whether we consider human beings
in society or software agents in MAS. Actions incur costs, including the pursuit of per-
sonal goals. An agent, particularly when situated within an environment, may encounter
resource limitations such as the energy required to act on an object, the bandwidth
needed for communication with other agents, or the computational time necessary for
internal processes. Therefore, the notion of an ideal system where agents exist without
cost is merely an illusion and does not align with reality in today’s world.

This intuition must be considered at both the design and implementation stages of
a MAS. Specifically, when verifying whether the agents in the MAS can achieve their
goals, the concept of available resources for the agents to utilise is of paramount im-
portance. In this context, works have been carried out to pursue a resource-bound ver-
ification of MAS, particularly leveraging Alternating-time Temporal Logic (ATL) [5]
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as a formalism to denote the agents’ temporal objectives. This has led to the propo-
sition of Resource Bounded ATL (RB-ATL) [2], an extension of ATL where resource
limitations are taken into consideration. Such logic allows for constraining the actions
performed by the agents in terms of their own costs. However, RB-ATL presents a lim-
itation in terms of how such costs are assigned to the agents’ actions. In RB-ATL, the
cost of an action is deterministically determined by only the agent performing the ac-
tion and the state in which the action has been performed. This limitation restricts the
possible uses of RB-ATL to only scenarios where the cost of actions is considered in
complete isolation (i.e., each action is assumed to not be influenced by other actions
performed concurrently). However, in general, an agent’s action can be influenced by
another agent’s action. For example, consider the action of pulling a lever. To perform
such an action, it is reasonable to assume the agent needs to consume a certain amount
of energy. Nonetheless, if another agent were also pulling the lever along with the agent,
then the energy required to complete the action would not necessarily be the same. In-
deed, with two agents pulling the lever, the energy required by each agent would hy-
pothetically decrease (perhaps by half). Note that this aspect is not limited solely to
agents’ cooperation but also extends to agents’ competition. For example, revisiting the
lever scenario, if an enemy agent were to push the lever while the agent is pulling it,
this action would result in the agent consuming more energy. Such scenarios cannot be
natively supported in RB-ATL.

To overcome this limitation, we present Resource Action-based Bounded ATL (RAB-
ATL), a variant of RB-ATL where the actions’ cost is not associated only with the agent
performing the action and the state where the action is performed, but also with the
other actions performed by other agents in the same state. It is worth noting that the dif-
ference between these logics is not only conceptual but also foundational. This distinc-
tion arises from the fact that RAB-ATL introduces the strategic aspect at the resource
handling level. Unlike RB-ATL, in RAB-ATL, the cost of actions is not considered in
isolation, allowing for the full exploitation of cooperation (and competition) amongst
agents. From this perspective, we consider RAB-ATL as the natural extension of ATL
towards resource handling.

Last, but not least, we emphasise that this is the first work to address both theo-
retical and practical aspects in the formal verification of MAS with resource bounds.
Not only we propose and study RAB-ATL (particularly in comparison with RB-ATL),
but we also present an implementation that tackles the resulting model checking prob-
lem as a component of the VITAMIN framework [17,18]. VITAMIN is an open-source
model checker designed for verifying MAS and supports a variety of specifications,
including Alternating-time Temporal Logic (ATL) [5], Natural ATL (NatATL) [19],
Natural SL [8], ATL with Fuzzy functions (ATLF) [16], Resource-Bounded ATL (RB-
ATL) [21], Capacity ATL (CapATL) [6], Obstruction Logic (OL) [11], and Obstruction
ATL (OATL) [12].

The paper is structured as follows. Section 2 provides the theoretical basis necessary
for understanding the contribution. Section 3 revisits RB-ATL syntax and semantics,
and shows that the memoryful and the memoryless semantics do not coincide for this
logic. Section 4 introduces the new logic RAB-ATL and its model checking problem.
Section 5 outlines the implementation approach and reports on the experimental eval-
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uation. Finally, Section 6 positions the paper with respect to the state of the art, while
Section 7 concludes the paper and highlights future directions.

2 Preliminaries

Let us fix some notation and terminology that will be used in the following. If X is a set
and Y ⊆ X, we denote by Y the complementary set X \ Y of Y in X. If π is a sequence,
we denote by |π| its length and, given i ≤ |π|, we let πi denote the i-th element of π,
π≤i the prefix π1, . . . , πi of π and π≥i the suffix of π starting at πi. If π is finite, then
last(π) denote its last element π|π|. If α = ⟨x1, . . . , xn⟩ is a tuple, then α[i] denotes its
i-th component xi.

Definition 1. A Concurrent Game Structure (CGS for short) is a tupleG = ⟨Ap, Ag, S , sI ,
{acti}i∈Ag, P, t, L⟩ such that:

– Ap is a non-empty set of atomic propositions;
– Ag = {1, . . . , n} is a finite set of agents;
– S is a non-empty set of states and sI ∈ S is the initial state;
– for any i ∈ Ag, acti is a set of actions, ACT = Πi∈Agacti is the set of tuples of

actions, and act =
⋃

i∈Ag acti the set of all actions;
– P : Ag × S → (2act \ ∅) is the protocol function that associates to any agent i and

state s a non-empty subset of acti representing the actions that are available for i
at s. We impose that the idle action ⋆ always belong to P(i, s) for any i;

– t : S × ACT → S is the transition function, that is given a state s and a tuple of
actions a (where ∀i, a[i] ∈ P(i, s)) such function outputs a state s′;

– L : S → 2Ap is the labeling function associating to any state s a set of atomic
propositions; such set can be empty and represents the set of proposition that are
true at s.

If C is a coalition and s is a state a C-action available at s is a tuple α whose length
is |Ag| and such that α[i] ∈ P(s, i) for each i ∈ C and for each j ∈ C, α[ j] = # j ,
where # j is a fixed symbol used as placeholder for an arbitrary action of player j. We
denote by Act(C, s) the set of all C-actions at s. If α ∈ Act(C, s) and β ∈ Act(C, s)
then α · β denotes the unique joint action a ∈ Act(Ag, s) such that a[i] = α[i] for each
i ∈ C and a[ j] = β[ j] for each j ∈ C. We denote by Act(C, S ) the set

⋃
s∈S Act(C, s).

If α ∈ Act(C, s) then we denote by α⪯s the set of joint actions extending α at s, that is
α⪯s = {a ∈ Act(Ag, s) | a = α ·β for some β ∈ Act(C, s)}. Given α ∈ Act(C, s), we denote
by Post(s, α) the set of states that the coalition C can reach by playing the action α, that
is: Post(s, α) = {s′ ∈ S | ∃ a ∈ ACT s.t. t(s, a) = s′ and a = α · β for β ∈ Act(C, s)}.

A path ρ is an infinite alternated sequence s1, a1, s2, . . . of states and tuples in ACT
such that for all i ≥ 1, t(si, ai) = si+1. If ρ is a path, we denote by ρS the sub-sequence
of ρ only containing states. If h ∈ S + is a finite sequence of states, we say that h is a
history iff there is a path ρ such that h = ρS

≤i for some i ∈ N. We use H to denote the set
of all histories.
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3 Resource Bounded ATL

In many MAS, agents are resource-bounded, in the sense that they require resources in
order to act. To formalise such notion, in [2] the authors introduced Resource Bounded
ATL (RB-ATL for short). RB-ATL is a variant of ATL in which strategic formulae are
decorated with bound, i.e., natural numbers vectors of finite size. The intended meaning
of a formula ⟨⟨Cb⟩⟩ψ of RB-ATL can be expressed as the coalition of agents C has a
strategy to achieve the objective ψ whose cost does not surpass b. We now recall the
syntax and semantics of RB-ATL.

Definition 2. Formulae of RB-ATL are defined by the following grammar:

φ ::= ⊤ | p | ¬φ | φ ∧ φ | ⟨⟨Cb⟩⟩Xφ | ⟨⟨Cb⟩⟩Gφ | ⟨⟨Cb⟩⟩φUφ

where p ∈ Ap, C ⊆ Ag, and b is any bound. We can derive the boolean connectives ⊤,
⊥, ∨, and→ as usual. We define ⟨⟨Cb⟩⟩ Fφ as ⟨⟨Cb⟩⟩ ⊤Uφ. We will use φ, ψ, θ, etc., to
denote arbitrary formulae.

Formulae of RB-ATL are interpreted over RB-CGSs. These are CGSs in which a
cost (a natural number vector) is associated to any agent action at any state. The formal
definition follows.

Definition 3. A Resource Bounded CGS (RB-CGS for short) is a triple M = ⟨G, r,C⟩
where:

– G is a CGS as in Definition 1;
– r ≥ 1 is a natural number (the number of resources types);
– C : S ×act → Nr is a function associating to any state s and action a, a cost C(s, a),

that is a vector in Nr.

As in [2] we impose that any agent at any state has at its disposal the idle action ⋆
and that the cost of such action is always 0.

Example 1. To better present our contribution, we report a motivating example, ini-
tially introduced in [22]. This example concerns a sensor network depicted in Figure 1
and comprising two agents, labelled as 1 and 2, tasked with monitoring movement.
Should either agent detect movement, they can notify their counterpart sensor. Upon
receiving such a communication, an agent can store it. If an agent accumulates multiple
movement records, it can relay this information to the central base station. Notably, we
assume that agent 2 is situated closer to the base station than agent 1. In this setup, two
vital resources come into play: energy and memory. The act of message transmission
consumes energy, contingent upon the distance to the recipient, while storing commu-
nications requires memory. Specifically, sending messages from 1 to 2 (send12) and
from 2 to 1 (send21) both necessitate 2 units of energy and 0 memory. Saving a record
demands 0 units of energy but incurs a cost of 1 unit of memory. Transmitting data
from 1 to the base station (send1b) requires 3 units of energy, whereas sending from
2 to the base (send2b) demands 1 unit of energy. Alternatively, the option to remain
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Fig. 1. The RB-CGSM for the sensor network example as in [22].

idle is perpetually available at no cost. Initially, each agent holds a record of detecting
movement.

Figure 1 depicts the system, with transitions between states annotated with action
tuples, denoting the actions of the agents 1 and 2, respectively. For clarity, we exclude
self-loops in each state, represented by the joint action ⟨⋆,⋆⟩.

Strategies are defined in the standard way as follows.

Definition 4. A memoryful strategy for a coalition of agents C is a function σC : H →
Act(C, S ) mapping a history h to a joint action α ∈ Act(C, last(h)). A strategy for a
coalition C is said to be memoryless whenever σC(h) = σC(h′) if last(h) = last(h′).

A path ρ = s1, a1, s2 . . . is compatible with a joint strategy σC if for every i ≥ 1 and
every k ∈ C it holds that σC(ρS

≤i)[k] = ai[k]. We denote with out(s, σC) the set of all
σC-compatible paths whose first element is s.

Let s be a state and α ∈ Act(C, s). The cost of α at s is given by:

cost(s, α) =
∑
i∈C

C(s, α[i])

Let σC be a strategy for the coalition C, ρ = s1, a1, s2, . . . be a path in out(s, σC),
and b ∈ Nr. We say that ρ is b-consistent when for each natural number n ≥ 1, we have
that:

n∑
k=1

cost(sk, σC(ρS
≤k)) ≤ b

A strategy σC for a coalition C is b-consistent whenever, for every state s, given any
ρ ∈ out(s, σC), ρ is b-consistent.

We now define the semantic interpretation of RB-ATL formulae.

Definition 5. Given a RB-CGS M, a state s of M, and a formula φ, the satisfaction
relationM, s |= φ is inductively defined on the structure of φ as follows:

– M, s |= ⊤ always;
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– M, s |= p iff p ∈ L(s);
– M, s |= ¬ψ iff it is not the case thatM, s |= ψ (denotedM, s ̸|= ψ);
– M, s |= ψ ∧ θ iffM, s |= ψ andM, s |= θ;
– M, s |= ⟨⟨Cb⟩⟩Xψ iff there is a b-consistent strategy σC for the coalition C such that

for every path ρ ∈ out(s, σC) we have thatM, ρS
2 |= ψ;

– M, s |= ⟨⟨Cb⟩⟩Gψ iff there is a b-consistent strategy σC for the coalition C such
that for every path ρ ∈ out(s, σC) and for every i ≥ 1, we have thatM, ρS

i |= ψ;
– M, s |= ⟨⟨Cb⟩⟩ψU θ iff there is a b-consistent strategy σC for the coalition C such

that for every path ρ ∈ out(s, σC) there exists a j ≥ 1 such thatM, ρS
j |= θ and for

every 1 ≤ i < j we have thatM, ρS
i |= ψ.

We writeM |= φ and we say thatM satisfies φ iffM, sI |= φ.
The memoryless satisfaction relation |=r is obtained by substituting, above, every

occurrence of strategy with memoryless strategy.

If M is a RB-CGS and φ is a formula, we denote by [[φ]]M the set of states of M
that satisfies φ, that is [[φ]]M = {s ∈ S | M, s |= φ}. In what follows, we may omit the
superscript M from [[φ]]M when M is contextually given. In [2] the authors claim that
the model-checking problem for RB-ATL can be solved in time that is linear on the size
of the model and exponential in the number r of resource bounds. We report the exact
statement of the Theorem.

Theorem 1 ([2]). Given a finite RB-CGSM and a formula φ, there is an algorithm that
computes [[φ]]M which runs in O(|M| × |φ|2r+1) where |M| is the size of the RB-CGS and
r is the number of resources.

Example 2. Considering the motivating example whose RB-CGS is reported in Fig-
ure 1, both agents collaboratively achieve the desired outcome s6, indicating that the
base station has been informed. This is expressed in RB-ATL as φ= ⟨⟨{1, 2}⟨b1,b2⟩⟩⟩ ⊤U s6,
where b1 and b2 are the chosen bounds for the energy and memory resources, respec-
tively. Note that, we use the atomic proposition s6 by assuming that in each state si the
atomic proposition si holds. This property can be satisfied by assuming a cost of 3 units
of energy and 1 unit of memory, that is b1 = 3 and b2 = 1. For example, through the
sequence of actions: ⟨send12, ⋆⟩ in sI , ⟨⋆, save⟩ in s1, and ⟨⋆, send2b⟩ in s4. Notice that,
the same property but assuming cost of 2 units of energy and 1 unit of memory, that is
b1 = 2 and b2 = 1, is not instead satisfied inM.

3.1 Comparison between memoryless and memoryful semantics for RB-ATL

We here show that, contrarily to what happens in ATL, for RB-ATL the set of formulae
that can be enforced by a coalition C in a given RB-CGS using memoryless strategies
and the set of formulae that can be enforced by C using memoryful strategies do not
coincide. Later on the paper, we will use this result to show that the same property is
enjoyed by our logic RAB-ATL.

Theorem 2. The memoryless |=r and memoryful |= satisfaction relations do not coin-
cide on RB-CGSs: there is a RB-CGSM, a RB-ATL formula φ and a state s ofM such
thatM, s |= φ andM, s ̸|=r φ.
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Proof. Consider the 1-agent RB-CGS depicted below, where C(s1, a) = 1 and the cost
of the idle action is 0 as specified in Definition 6.

{p}
s1 s2

⋆ a

⋆

Consider the formula φ = ⟨⟨a1⟩⟩X p where a is the only agent of the RB-CGS. The
formula φ is satisfied at s1 if a uses memoryful strategies. In fact, consider the strategy
σa choosing a on h if h = s1 and the idle action⋆ otherwise. The only path in out(s1, σa)
is s1 · s2 · sω1 , this path is 1-compatible and s2 satisfies p. On the contrary, it is easy to see
that there is no memoryless strategies that realize the same formula starting at s1 that is
1-compatible.

4 Resource Action-based Bounded ATL

As we have previously said, in many scenarios, agents are resource-bounded: they dis-
pose of a limited amount of resources in order to perform their actions. We saw that to
reason about the strategic objectives of resource bounded agents, one can use RB-ATL.
However, in RB-ATL it is not possible to model, at least naturally, situations where the
cost of an action in a particular state depends on the actions of other agents in the same
state. To clarify this concept, let us propose a very simple example in which we have
three actors Alice, Bob, and Carl. We assume that Carl’s car has broken down, and to
restart it, some of them need to push it for a while. Alice and Bob take charge of pushing
the car. The cost, in terms of physical effort, of this coordinated action for both depends
on both the action of the other and the action taken by Carl: if Carl forgets to release
the handbrake, the pushing action will have a much higher cost.

To reason about these types of scenarios, we introduce a variant of RB-ATL which
we call, for lack of wit, Resource Action-Based Bounded ATL. The syntax of this logic
is exactly the same as that of RB-ATL: strategic formulae are decorated with a bound,
and such formulae have the same intuitive meaning as the strategic formulae of RB-
ATL: ⟨⟨Cb⟩⟩ψ means that the coalition C possesses a strategy to achieve ψ while spend-
ing at most b resources. However, the way the cost of an action for an agent is computed
in RAB-ATL is different. Models of RAB-ATL will be CGS where a cost is associated
with triples ⟨s, a, a⟩where s is a state, a is an action, and a is a collective action of which
a is one of the components. This formalizes the intuition that the cost of an action in a
state depends on what other agents do in the same state. We now formally define models
of RAB-ATL.

Definition 6. A Resource Action-Based Bounded CGS (RAB-CGS) is a tupleA = ⟨G, r, $⟩
where:

– G is a CGS as in Definition 1;
– r ≥ 1 is a natural number (the number of resources types);
– $ : S × act × ACT → Nr is a function mapping a state s, an action a, and a tuple

of actions a = ⟨a1, . . . , an⟩ to a natural number vector of length r. We impose that
a is one of the ai composing a, and impose that $(s, ⋆, a) = 0 for any a.
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Example 3. We can revise the model M of Figure 1 as a RAB-CGS A. In particular,
we can adjust the costs associated with the actions by indicating that in state sI , if both
agents 1 and 2 exchange data by selecting the tuple ⟨send12, send21⟩, the cost of each
action is only 0.5 energy (resulting in a total cost of 1). This adjustment reflects the use
of the TCP protocol, which allows for the addition of an acknowledgement message
along with a standard packet to be sent (a concept known as Piggybacking). In this
scenario, the act of duplicating the sharing of data ensures a more reliable and robust
communication amongst the agents.

In what follows, a bound b will be any element of Nr. Let s be a state, α ∈ Act(C, s)
and a = ⟨a1, . . . , a#(Ag)⟩ ∈ Act(Ag, s) be a tuple of actions extending α. The cost of α at
s with respect to a is given by:

cost(s, α, a) =
∑
i∈C

$(s, α[i], a)

Let σC be a strategy for the coalition C, ρ = s1, a1, s2, . . . be a path in out(s, σC), and
b ∈ Nr. We say that ρ is action b-consistent (action-bound consistent) when for each
natural number n ≥ 1, we have that:

n∑
k=1

cost(sk, σC(ρS
≤k), ak) ≤ b

A strategy σC for a coalition C is action b-consistent whenever, for every state s, given
any ρ ∈ out(s, σC), ρ is b-consistent.

Definition 7. Formulae of RAB-ATL are defined exactly as in Definition 2. Given a
RAB-CGS A, a state s and a formula φ, the satisfaction relation A, s |=A φ is defined
exactly as in Definition 5, the only difference being that strategies must be action-bound
consistent, and likewise for the memoryless satisfaction relation A, s |=A

r φ. n

If A is a RAB-CGS and φ is a formula, we denote by [[φ]]A the set of states of A
that satisfies φ, that is [[φ]]A = {s ∈ S | A, s |=A φ}. In what follows, we may omit the
superscript A from [[φ]]A when A is contextually given.

We now show that RAB-ATL can simulate RB-ATL. More precisely, given a RB-
CGS M = ⟨G, r,C⟩ one can construct a RAB-CGS A = ⟨G, r, $⟩ such that for any
formula φ we have that [[φ]]M = [[φ]]A. The proof of this result is particularly straight-
forward.

Proposition 1. If M is a RB-CGS then there is a RAB-CGS A whose size is equal to
those ofM and such that, for any formula φ we have thatM |= φ iff A |=A φ.

Proof. GivenM = ⟨G, r,C⟩ consider the RAB-CGS AM = ⟨G, r, $C⟩where for any state
s, action a, and joint action a we have that $C(s, a, a) = C(s, a). It is immediate to show
thatM |= φ iff A |=A φ by induction on the structure of φ.

Because of the above proposition and by Theorem 2, we obtain the following.
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Corollary 1. The memoryless |=A
r and memoryful |=A satisfaction relations do not co-

incide on RAB-CGS: there is a RAB-CGS A, a RAB-ATL formula φ and a state s of A
such that A, s |=A φ and A, s ̸|=A

r φ.

Example 4. Given the above relation and the RB-CGS M of Example 1, we can con-
struct an equivalent RAB-CGS AM. In the latter model, as consequence, the formula
φ defined in Example 2 holds for b1 = 3 and b2 = 1 but not for b1 = 2 and b2 = 1.
However, by assuming the RAB-CGS A of the Example 3 the formula φ still holds for
b1 = 3 and b2 = 1 but also for b1 = 2 and b2 = 1.

4.1 Model checking

We now prove that the model-checking problem for RAB-ATL is decidable, and it is in
the same complexity class of RB-ATL.

If C is a coalition, X is a set of states and b is a bound, we denote by Pre(C, X,b)
the set of states from which there is a C-action α such that C can reach, by executing α,
only states in X with cost at most b, that is:

Pre(C, X,b) = {s ∈ S | ∃α ∈ Act(C, s), Post(s, α) ⊆ X,

cost(s, α, c) ≤ b for each c ∈ α⪯s }

We can prove that, given a formula φ, the set of states Pre(C, [[φ]],b) corresponds to the
set of states that satisfies ⟨⟨Cb⟩⟩Xφ, and that Pre(C, X,b) can be computed in quadratic
time.

Proposition 2. IfA is a RAB-CGS and φ is a formula, then [[⟨⟨Cb⟩⟩Xφ]] = Pre(C, [[φ]],b).
Moreover calculating Pre(C, [[φ]],b) takes polynomial time in the size of A.

Proof. We first prove that [[⟨⟨Cb⟩⟩Xφ]] = Pre(C, [[φ]],b). For the left-to-right direction,
suppose that s ∈ [[⟨⟨Cb⟩⟩Xφ]], this means that there is an action b-consistent strategy σC

such that for every path ρ ∈ out(s, σC) we have that ρS
2 ∈ [[φ]]. Let α be σC(s). Since σC

is b-consistent, we must have that cost(s, α, a) ≤ b for any a such that t(s, a) = s′ = ρS
2

for some ρ ∈ out(s, σC). From this, and the fact that ρS
2 ∈ [[φ]] the result follows. For the

other direction, suppose that s ∈ Pre(C, [[φ]],b), thus there is a joint action α ∈ Act(C, s)
such that Post(α, s) ⊆ [[φ]] and cost(s, α, c) ≤ b for any c extending α. Let σC the joint
strategy for C such that σC(s) = α and σC(h) = β for any h , s, where β is the C joint
action such that β[i] = ⋆ for any i ∈ C. By hypothesis, cost(s, σC(s), c) ≤ b for any c
extending α, Post(s, σC(s)) ⊆ [[φ]] and, by Definition 6, cost(πS

i , σC(πS
i ), c) = 0 for any

i ≥ 2 and π ∈ out(s, σC). We thus conclude that σC is b-consistent and, since πS
2 ∈ [[φ]],

we have that A, s |= ⟨⟨Cb⟩⟩φ.
Algorithm 1 gives a procedure to calculate Pre(C, X,b) given a model A. To obtain

the desired complexity result, it is sufficient to remark that the three algorithm loops are
bound by the cardinality of the transition function of A.

Note that one can calculate the Pre function of RB-ATL by omitting the loop at
line 6 of our algorithm and using the cost function of RB-ATL. This implies that, while
staying in the same complexity class, RAB-ATL Pre function takes quadratic time in
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Algorithm 1 Pre(C, X,b)
1: Y = ∅
2: for s ∈ S do
3: for α ∈ Act(C, s) do
4: if Post(α, s) ⊆ X then
5: bool = true
6: for c ∈ Act(Ag, s) do
7: if Cost(s, α, c) > b then
8: bool = false
9: Break
10: if bool = true then
11: Y = Y ∪ {s}
12: Return Y

the cardinality of the transition function, while the one of RB-ATL is linear w.r.t. the
same parameter [1,2,3,4].

We now prove that the set semantics of strategic operators of RAB-ATL is the
fix-point of particular monotone functions over the powerset of the set of states of a
RAB-CGS. The proof will follow the analogous one in [2]. Let A be a RAB-CGS, C a
coalition, b a bound, and 0 the vector in Nr in which each component is 0. Consider the
two monotone functions from 2S to 2S defined as follows:

Gb
C,φ(X) = [[φ]] ∩ ([[⟨⟨Cb⟩⟩X ⟨⟨Cb⟩⟩Gφ]] ∪ Pre(C, X, 0))

Ub
C,φ,ψ(X) = [[ψ]] ∪ (([[⟨⟨Cb⟩⟩X ⟨⟨Cb⟩⟩φUψ]]) ∪ Pre(C, X, 0))

One can show the following.

Lemma 1. For every modelM, coalition C, bound b, and pair of formulae φ and ψ:

1. [[⟨⟨Cb⟩⟩Gφ]] is the least fix-point of the function Gb
C,φ;

2. [[⟨⟨Cb⟩⟩φUψ]] is the greatest fix-point of the function Ub
C,φ,ψ.

Proof. We give a detailed proof of 1. The proof follows the one presented in [2]. We
first show that Y ⊆ Gb

C,φ(Y) when Y = [[⟨⟨Cb⟩⟩Gφ]]. Let s ∈ Y , by the definition of
satisfaction, there is an action b-consistent strategy σC such that πS

i ∈ [[φ]] for any path
π ∈ out(s, σC). In particular, this means that s ∈ [[φ]]. Let b′ = max{cost(s, σC(s), c) |
c ∈ σC(s)⪯s }. We define a b−b′ strategy σ′C as follows: σ′C(h) = σC(s ·h) for any history
h that is a prefix of some path π≥2 such that π ∈ out(s, σC), and σ′C(h) = σC(h) for
any history h that does not have the above-mentioned characteristics. Clearly, for any
path ρ ∈ out(π2, σ

′
C) we have that ρS

i ∈ [[φ]]. Moreover, any of those paths is action
b − b′-consistent. It follows that for any π ∈ out(s, σC) ,M, π2 |=

A ⟨⟨Cb−b′⟩⟩Gφ. Thus,
if b′ , 0, we obtain that s ∈ [[⟨⟨Cb⟩⟩X ⟨⟨Cb⟩⟩Gφ]], otherwise s ∈ Pre(C, [[⟨⟨Cb⟩⟩φ]], 0) as
desired.

For the other direction, let Z be a post-fixed point of Gb
C,φ(X); we show that Z ⊆ Y .

The proof proceeds by induction on the bound b.
Base case b = 0. We have that Gb

C,φ(X) = [[φ]] ∩ Pre(C, X, 0). Assume that s ∈ Z, thus
s ∈ Gb

C,φ(Z) as Z is a post-fixed point of Gb
C,φ(X). We define a strategy σC that is action

0-consistent and in which each element of each path belongs to Z. Formally, for any
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n ∈ N, and for any history h ∈ Hn of length n, we choose a joint action α that can be
played at last(h). By choosing the appropriate α, we make sure that each successor of
last(h) selected according to α is in Z and thus in Gb

C,φ(Z).

1. if n = 1, then by hypothesis Hn
s = {s} and s ∈ [[φ]]. Since s ∈ Z, there is a joint

action α such that cost(s, α, c) = 0 for any c extending α, and s′ ∈ Z for any
s′ ∈ Post(α, s) ⊆ Z ⊆ Gb

C,φ(Z).
2. For n > 1, we have that for any member of h ∈ Hn, and for any i ≤ n, hi ∈ Z.

Since Z is a fixed-point of Gb
C,φ, we can choose an appropriate joint action as in the

previous case and obtain the wanted result.

Induction step b > 0. We have that Gb
C,φ(Z) = [[φ]]∩([[⟨⟨Cb⟩⟩X ⟨⟨Cb⟩⟩Gφ]]∪Pre(C,Z, 0)).

Assume that s ∈ Z. Then s ∈ [[φ]] and either s ∈ [[⟨⟨Cb⟩⟩X ⟨⟨Cb⟩⟩Gφ]] or s ∈ Pre(C,Z, 0).
We proceed as in the base case in defining a strategy. Assume that the strategy is defined
for any history h ∈ Hn and any b′ ≤ b.

1. If for any h ∈ Hn and any i ≤ n we have that hi ∈ [[⟨⟨Cb2⟩⟩Gφ]] then the strategy
σC has already been defined and b2 < b. Let Hn+1 = {h · q | q ∈ out(hn, σC)}. Let
b′ = max{cost(q, σC(last(h · q)), c)}. Since b2 < b we have that each of the q are in
[[⟨⟨C⟩⟩ b2−b′Gφ]] as wanted.

2. if last(h) ∈ Z ⊆ Gb
C,φ(Z), then hn ∈ [[φ]] and either (a) hn ∈ [[⟨⟨Cb⟩⟩X ⟨⟨Cb⟩⟩Gφ]] or

(b) hn ∈ pre(C, [[φ]], 0). We only detail the second case. A proof of the former one
can be retrieved from the one in [2]. Suppose that hn ∈ pre(C, [[φ]], 0), this means
that there is a move for the coalition C that has cost zero w.r.t. any possible Ag
move. Let α be this move, we have that Post(hn, α) ⊆ Z. Define σC to be exactly α
when the history h is given as input.

From the definition of σC we have that any path that is compatible with this strategy is
action b-consistent and satisfy φ. We thus obtain the wanted result.

Theorem 3. The model-checking problem for RAB-ATL is decidable: given a finite
RAB-CGS A and a formula φ, we can compute [[φ]]. Moreover, the model-checking
problem for RAB-ATL is in the same complexity class as the one of RB-ATL and can be
computed in O(|A| × |A| × |φ|2r+1).

Proof. Algorithm 2 computes, given a formula φ and a RAB-CGS A, the set of states
satisfying φ. Soundness and completeness of the Algorithm follows by Proposition 2
and Lemma 1. The complexity result follows from the fact that Algorithm 2 is exactly
the same as the one provided for model checking RB-ATL in [2] the only difference
being how the function Pre(C, X,b) is computed. We have already established that this
function is quadratic in the cardinality of the transition function of A (Proposition 2).

5 Implementation

Both RB-ATL and RAB-ATL model checking algorithms have been implemented4 in
Python as a component of the VITAMIN framework [18]. Furthermore, the RB-CGS
and RAB-CGS models have been added in VITAMIN as well to allow the definition of
resources in the CGSs.

4 https://anonymous.4open.science/r/RABATL-43F4

https://anonymous.4open.science/r/RABATL-43F4
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Algorithm 2 ModelChecking (M, φ)
1: for all φ ∈ S ub(φ) do
2: switch φ do
3: case φ = ⊤
4: [[φ]]← S
5: case φ = p
6: [[φ]]← {s ∈ S : p ∈ L(s)}
7: case φ = ¬φ1
8: [[φ]]← S \ [[φ1]]
9: case φ = φ1 ∧ φ2
10: [[φ]]← [[φ1]] ∩ [[φ2]]
11: case φ = ⟨⟨Cb⟩⟩Xφ1
12: [[φ]]← Pre(C, [[φ1]],b)
13: case φ = ⟨⟨C0⟩⟩Gφ1
14: X ← [[⊤]]; Y ← [[φ1]]
15: while Y , X do
16: X ← Y
17: Y ← [[φ1]] ∩ Pre(C, [[φ1]], 0)
18: [[φ]]← Y
19: case φ = ⟨⟨Cb⟩⟩Gφ1 for b > 0
20: X ← ∅; Y ← ∅
21: for all b′ < b do
22: Y ← Pre(C, [[⟨⟨Cb′φ1⟩⟩ ]],b − b′) ∩ [[φ1]]
23: while X , Y do
24: X ← X ∪ Y; Y ← Pre(C,Y, 0) ∩ [[φ1]]
25: [[φ]]← X
26: case φ = ⟨⟨C0⟩⟩φ1 Uφ2
27: X ← ∅; Y ← [[φ2]]
28: while X , Y do
29: X ← X ∪ Y; Y ← Pre(C,Y, 0) ∩ [[φ1]]
30: [[φ]]← X
31: case φ = ⟨⟨Cb⟩⟩φ1 Uφ2 for b > 0
32: X ← ∅; Y ← ∅
33: for all b′ < b do
34: Y ← Pre(C, [[⟨⟨Cb′ ⟩⟩φ1 Uφ2]],b − b′) ∩ [[φ1]]
35: while X , Y do
36: X ← X ∪ Y; Y ← Pre(C, X, 0) ∩ [[φ1]]
37: [[φ]]← X

5.1 Experiments

We tested our implementation on a machine with the following specifications: Intel(R)
Core(TM) i7-7700HQ CPU @ 2.80GHz, 4 cores 8 threads, 16 GB RAM DDR4.

We experimented our implementation on the motivating example presented along
the paper. Specifically, considering the RB-CGS M presented in Example 1 and the
RB-ATL formula φ = ⟨⟨{1, 2}⟨b1,b2⟩⟩⟩ ⊤U s6 reported in Example 2, we carried out ex-
periments to validate our approach. First, we considered the case when b1 = 3 and
b2 = 1, where, as expected, the tool confirmed the satisfaction of φ onM within 0.005
seconds. After that, we considered the case when b1 = 2 and b2 = 1 confirming the
violation of φ onM within 0.019 seconds.

Subsequently, we experimented our implementation on the RAB-CGS AM equiva-
lent to M, which can be obtained as reported in Example 4. As expected, our imple-
mentation confirmed the satisfaction of φ on AM when b1 = 3 and b2 = 1 within 0.011
seconds, as well as the violation of φ on AM when b1 = 2 and b2 = 1 within 0.026
seconds.
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We then conducted additional experiments onA, the revised version of theAM RAB-
CGS, reported in Example 3, where in state sI , if both agents 1 and 2 exchange data by
selecting ⟨send12, send21⟩, the cost of each action is only 0.5 energy (resulting in a to-
tal cost of 1). As expected, φ with b1 = 3 and b2 = 1 was still considered satisfied
in A within 0.015 seconds. However, φ with b1 = 2 and b2 = 1, that was violated in
AM, was considered satisfied in A within 0.008 seconds. Indeed, because RAB-ATL en-
ables consideration of an agent’s action costs relative to the actions performed by other
agents, the verification process was able to determine the satisfaction of the property as
the resulting strategy traversed through state s3.

To better evaluate the implementations’ performance, we carried out additional ex-
periments. Figure 2 presents the results of our instantiation when applied to the model
depicted in Figure 1, while varying the number of resources. In this plot, on the x-
axis, we report the number of resources used in the model. With respect to Figure 1,
we replicate the number of energy and memory resources to simulate more complex
variations of the running example. For instance, in the x-axis with value 2, we have
2 memory and 2 energy resources to consider, with value 4, we have 4 memory and 4
energy resources, and so on. The times taken for the verification are reported in logarith-
mic scale to improve visualisation. As anticipated, the behaviour exhibits exponential
growth concerning the number of resources. This empirically confirms our theoretical
results on RAB-ATL and the theoretical results on RB-ATL presented in [2] as well.
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Fig. 2. Time taken by RB-ATL and RAB-ATL for different number of resources when applied to
model of Figure 1. The times are reported in logarithmic scale.

Figure 3 presents the experimental results obtained by varying the system model. In
these synthetic experiments, the models differ from the one presented in Example 1 and
shown in Figure 1; they are automatically generated. Each model has a specific size,
determined by the sum of the states and transitions within it, and consists of two agents
and two resources. Note that, for each RB-CGS so randomly generated, a correspond-
ing equivalent RAB-CGS is obtained as well to perform both RB-ATL and RAB-ATL
model checking. Figure 3 displays the execution time required for model checking each
of these models against a fixed strategic formula with two resources, bound set to 5 for
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each, and a temporal objective. The distribution of the atomic propositions among the
states is randomly generated for each model. As observed in Figure 3, the results exhibit
the expected polynomial behaviour relative to the size of the model under analysis.

It is important to note that, for each reported model size, over 10,000 models have
been randomly generated and verified against the strategic formula. The plot depicts the
average execution time.

Furthermore, it is important to observe that both RB-ATL and RAB-ATL model
checking exhibit polynomial behaviour relative to the size of the model, although RAB-
ATL shows a steeper slope. This difference is attributed to the more complex evaluation
of costs, which, instead of being statically defined for each action in every state, depend
on all the other actions performed by all the other agents in each state, necessitating
consequent evaluation.

We also want to emphasise that the size of the models used in these experiments
is not negligible. In fact, the largest models subjected to verification contain more than
100 states and over 10,000 transitions. Nonetheless, despite their size, both algorithms
manage to complete the verification process in less than 25 seconds (even in 5 seconds
in the case of RB-ATL).
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Fig. 3. Time taken by RB-ATL and RAB-ATL for different numbers of states (with 2 resources,
bound set to 5 for each, and 2 agents).

6 Related Work

Formal models of resource-bounded agents have garnered increasing attention in re-
cent years [1,2,3,7,9,20,22]. In this line of research, the focus lies on understanding
the behaviour of agents operating under fixed resource constraints. In this area, the
work presented in [2] is the most closely related to ours. It introduces RB-ATL along
with its syntax, semantics, and resulting model checking problem. The distinctions
from RAB-ATL have been discussed along the paper. In summary, RAB-ATL is de-
signed to acknowledge that agents can influence each other, particularly concerning the
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costs associated with the actions they execute. Another relevant work is [15], which
diverges from our approach by emphasising the internal mental processes of individ-
ual agents within a group, rather than designing a logic to reason about coalitions and
strategies. In this sense, this work is complementary rather than competitive. The Price
Resource-Bounded ATL (PRB-ATL) logic, introduced in [20], addresses resource en-
dowment within the system when evaluating formulae pertaining to agent coalitions. In
this model, resources are convertible to money and are bounded. The model-checking
problem for PRB-ATL is decidable, with complexity similar to RB-ATL. Unlike our
approach, PRB-ATL considers bounds for both agents inside and outside the coalition
under analysis. However, similar to RB-ATL, the cost of actions is determined solely
by the state, not influenced by actions performed by other agents. Hence, PRB-ATL
stands as orthogonal to our work. Nonetheless, it is conceivable to imagine an extension
of [20], referred to as PRAB-ATL, to integrate a revised pricing mechanism for actions,
aligning with our approach in this paper (this exploration is out of the scope of this
contribution). Comparing [10] to our approach reveals a close technical and conceptual
relationship. However, unlike our approach, which focus on resource-bound verifica-
tion, the framework in [10] considers a wider range of consequences from collective
actions, including gains, incentives, and rewards. Such a distinction leads to differences
in the model checking problem, as well as in the logical languages to be used and their
formal semantics. Other works on the synthesis of resource-aware controllers in MAS
can be found in [13,14].

Note that, at the time of submission of this work and to the best of our knowledge,
except for [4], whose implementation could not be located by the authors of this work,
there is no existing implementation of resource-bound model checking for ATL. Nat-
urally, this pertains to standard RB-ATL model checking. As RAB-ATL is introduced
for the first time in this work, its implementation is entirely novel.

7 Conclusions and Future Work

We have introduced a novel variant of RB-ATL, called Resource Action-based Bounded
ATL (RAB-ATL), to address its limitations. Our investigation revealed the founda-
tional differences between RB-ATL and RAB-ATL, particularly in their treatment of
actions’ costs and their implications for agent interaction within MAS. The introduc-
tion of RAB-ATL provided a richer approach to resource handling, allowing for a better
exploitation of cooperation and competition amongst agents. For example, considering
the well-known prisoner’s dilemma, the same action taken by one prisoner has a differ-
ent cost (or reward) depending on the action taken by the other prisoner. Furthermore,
our implementation approach and experimental evaluation demonstrated the feasibility
and effectiveness of RAB-ATL.

We anticipate that the insights gained from this study will pave the way for future
research directions in the field of MAS and formal verification when resource limita-
tions are considered. For instance, our logic might be ideal for specifying properties
in the context of distributed systems where agents can share data, but sharing has an
impact on agents’ resources.
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In summary, the introduction of RAB-ATL represents a significant advancement in
the domain of resource-bound verification in MAS, offering a more holistic approach
to modeling and analysing agents’ behaviour.
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