
Decidable Verification of
Agent-Based Data-aware Systems

Francesco Belardinelli1,2 and Vadim Malvone2

1 Imperial College London, United Kingdom
2 Laboratoire IBISC, Universite d’Evry, France

Abstract. In recent years the area of knowledge representation and reasoning
(KR&R) has witnessed a growing interest in the modelling and analysis of data-
driven/data-centric systems. These are systems in which the two tenets of data
and processes are given equal importance, differently from traditional approaches
whereby the data content is typically abstracted away in order to make the rea-
soning task easier. However, if data-aware systems (DaS) are to be deployed in
concrete KR&R scenarios, it is key to develop tailored verification techniques,
suitable to account for both data and processes. In this contribution we consider
for the first time to our knowledge the parameterised verification of DaS. In par-
ticular, we prove that – under specific assumptions – this problem is decidable
by computing a suitable cut-off value. We illustrate the proposed approach with
a use case from the literature on businness process modelling.

1 Introduction

The ever increasing reliance of AI technologies on data acquisition, managements, and
processing is having a profound impact on the nature and mission of artificial intel-
ligence itself [28]. In recent years the area of knowledge representation and reason-
ing (KR&R) has witnessed a growing interest in the modelling and analysis of data-
driven/data-centric/data-intensive systems [16,15,3]. This paradigm shift towards data-
aware systems (DaS) has initiated in the area of business process modelling (BPM), in
response to traditional approaches to service-oriented computing that typically abstract
the data content away to reduce the complexity of the system description [30]. How-
ever, this data content is often essential to drive a business process. Hence, according
to the data-aware perspective on BPM, the data content and the processes operating
on it are seen as two equally relevant tenets in modelling systems [20,11]. This data-
aware approach has proved fruitful also in applications to areas in KR&R, including
commitments in negotiation [27], planning [9], and service-oriented computing [14],
where processes are often thought of as agents, endowed with their own goals, plans to
achieve them, as well as information about the external environment [29].

Yet, if agent-based DaS are to be deployed in concrete KR&R scenarios, it is key
to develop verification techniques, suitable to account for the two tenets of data and
processes. Then, a critical issue in tackling this task lies in the infinite state space gen-
erated by the possibly infinite data content of DaS. Recently, several contributions have
addressed this problem [3,7,26,10], also leading to the development of open-source
toolkits for DaS verification [25,19]. Nonetheless, we identify a conceptual difficulty

2 Francesco Belardinelli and Vadim Malvone

with most of the current approaches in the literature: data-aware systems are typically
assumed to contain an actual infinity of data and to be able to reason about such an
actual infinity. For instance, in [7,10] an infinite quantification domain is part of the
system’s description. But real-life scenarios actually deal only with a finite, possibly
unbounded, quantity of data. Hence, the soundness and applicability of those theoreti-
cal results to concrete DaS scenarios cannot be taken for granted.

To provide an answer to the difficulties pertaining to reasoning about an actual in-
finite data domain, in Section 2 we introduce parameterised agent-based DaS (or P-
AbDaS) as abstract systems, which are to be coupled with a (finite) data domain, in
order to generate a concrete agent-based DaS (or C-AbDaS). Hence, differently from
[7,10], the same P-AbDaS can be instantiated in possibly infinitely-many C-AbDaS,
but all of them are finite. Further, to specify the behaviour of P-AbDaS we need both
temporal operators to describe the system’s evolution, and first-order features, including
quantifiers and relation symbols, to account for data. Hence, in Section 3 we consider
a first-order extension of the computation-tree logic CTL as the specification language
for P-AbDaS, and then define the parameterised model checking problem for this set-
ting, which we show to be undecidable in general. Then, in Section 4 we introduce
techniques based on isomorphisms and finite interpretation that allow – under specific
assumptions – for the existence of a cut-off, that is, a bound on the size of the quan-
tification domain above which the truth value of formulas in first-order CTL does not
change. The existence and value of the cut-off allow for a complete model checking
procedure that checks the specification on increasingly larger domains, up to the cut-off
value. We illustrate the formal machinery with a procurement scenario from the liter-
ature on BPM [21]. Finally, we conclude in Section 5 by discussing related work and
pointing to future directions of research.

2 Agent-based Data-aware Systems

In this section we introduce parameterised agent-based data-aware systems (P-AbDaS)
and define the corresponding model checking problem w.r.t. a first-order version of the
temporal logic CTL. We first present the basic terminology on databases that is used
throughout the paper [1].

Definition 1 (Database schema and instance). A database schema is a finite set D =
{P1/q1, . . . , Pn/qn} of relation symbols P with arity q ∈ N.

Given a countable interpretation domain Y , a D-instance over Y is a mapping D
associating each relation symbol P to a finite q-ary relation on Y , i.e., D(P) ⊂

fin
Y q .

By Def. 1 a database instance can be thought of as a finite relational structure, in line
with relational models of databases [1]. We denote the set of all D-instances on domain
Y as D(Y). The active domain adom(D) of a D-instance D is the finite set of all
elements u ∈ Y occurring in some predicate interpretation D(P), that is, adom(D) =⋃
P∈D{u ∈ Y | 〈u1, . . . , u, . . . , uq〉 ∈ D(P)}. Hereafter, we assume w.l.o.g. that the

active domain also includes a finite set C ⊆ Y of constants, i.e., C ⊆ adom(D). To
describe the temporal evolution of agent-based data-aware systems, we introduce the
primed version of a database schema D as the schema D′ = {P ′

1/q1, . . . , P
′
n/qn}.

Decidable Verification of Agent-Based Data-aware Systems 3

Then, the disjoint union D ⊕ D′ of D-instances D and D′ is the (D ∪ D′)-instance
such that (i) (D⊕D′)(Pi) = D(Pi), and (ii) (D⊕D′)(P ′

i) = D′(Pi), where D′ is the
primed version of D. Intuitively, D and D′ represent the current and next state of the
system respectively, represented as database instances.

To specify properties of databases, we now recall the syntax of first-order logic with
equality and no function symbols. Let V be a countable set of individual variables and
let a term be any element t ∈ T = V ∪ C .

Definition 2 (FO-formulas). Given a database schema D, the formulas ϕ of the first-
order language LD are defined by the following BNF:

ϕ ::= P (t1, . . . , tq) | t = t′ | ¬ϕ | ϕ→ ϕ | ∀xϕ

where P ∈ D, t1, . . . , tq is a q-tuple of terms, and t, t′ are terms.

We define the free and bound variables in a formula ϕ as standard, and write ϕ(x)
to denote that the free variables of ϕ are among x1, . . . , xn.

To interpret first-order formulas on database instances, we introduce assignments as
functions σ : T → Y from terms to elements in Y . We denote by σxu the assignment
such that (i) σxu(x) = u; and (ii) σxu(x

′) = σ(x′) for every x′ 6= x. Also, we assume a
Herbrandian interpretation of constants, that is, σ(c) = c for all c ∈ C .

Definition 3 (Satisfaction of FO-formulas). Given a D-instance D, an assignment σ,
and an FO-formula ϕ ∈ LD, we inductively define whether D satisfies ϕ under σ, or
(D,σ) |= ϕ, as follows:

(D,σ) |= P (t1, . . . , tq) iff 〈σ(t1), . . . , σ(tq)〉 ∈ D(P)
(D,σ) |= t = t′ iff σ(t) = σ(t′)
(D,σ) |= ¬ϕ iff (D,σ) 6|= ϕ
(D,σ) |= ϕ→ ϕ′ iff (D,σ) 6|= ϕ or (D,σ) |= ϕ′

(D,σ) |= ∀xϕ iff for all u ∈ adom(D), (D,σxu) |= ϕ

A formula ϕ is true in D, or D |= ϕ, iff (D,σ) |= ϕ for all assignments σ.

Notice that we adopt an active domain semantics, where quantifiers range over the
active domain adom(D) of D. This is a standard assumption in database theory [1].
Hereafter, we often write (D,u) |= ϕ whenever x are all the free variables in ϕ and
σ(x) = u. In particular, the satisfaction of a formula only depends on its free variables.

We now introduce a notion of agent whose local information state is represented as
a relational database. In particular, inspired by the literature in KR&R and BPM on the
specification of agent actions in terms of pre- and post-conditions [2,3,21], we introduce
the notion of action type.

Definition 4 (Action Type). An action type is an expression α(x) ::= g(x) ef (x),
where:

– guard g is an FO-formula with free variables x;
– effect ef is an expression built according to the BNF:

ef ::= add(P,x) | del(P,x) | ef ; ef | ef ∪ ef

4 Francesco Belardinelli and Vadim Malvone

where, intuitively, add(P,x) is the insertion of tuple x in relation P , del(P,x) is
the deletion of x from P , ef ; ef is the sequential composition, and ef ∪ ef is the
non-deterministic choice.

We now introduce a set Ag of agents, operating on databases, each of them defined
as follows:

Definition 5 (Agent). An agent is a tuple i = 〈Di, Acti〉, where

– Di is the local database schema;
– Acti is the finite set of action types α(x), whose guards and effects are built over
Di.

Intuitively, by Def. 5 we assume that at each moment agent i is in some local state
D ∈ Di(Y) that represents all the information she has about the global state of the
system. In this respect we follow the typical approach to agent-based systems [17,31],
but here we require that this information is structured as a database. Further, each agent
has her own database schema Di, but the same relation symbol might appear in several
schemas.

As we are interested in the interactions of agents among themselves and with the
external environment, we introduce their synchronous composition.

Definition 6 (Parameterised AbDaS). A parameterised agent-based data-aware sys-
tem (or P-AbDaS) is a finite set Ag of agents defined as in Def.5.

To endow a P-AbDaS with a data content, thus obtaining a concrete Ab-DaS, we
consider an infinite, countable interpretation domain Y , which intuitively represents
these data.

Definition 7 (Concrete AbDaS). A concrete agent-based data-aware system (or C-
AbDaS) is a tuple P = (Ag, Y), where (i) Ag is a P-AbDaS; and (ii) Y ⊇ C is a
finite subset of Y .

Notice that, differently from [7,10], we do not assume an actual infinity of elements
in our models: each C-AbDaS only contains a finite set Y of elements. However, in
general we can obtain infinitely many C-AbDaS based on the same P-AbDaS, build on
different domains Y ⊂

fin
Y .

We now introduce some technical notions that will be used in the rest of the pa-
per. Given a C-AbDaS P = (Ag, Y), the (global) states of P are tuples s ∈ S =∏
i∈Ag Di(Y), whereas joint actions α(u) ∈ ACT (Y) =

∏
i∈Ag Acti(Y) take val-

ues u from domain Y . Observe that every global state s = 〈D0, . . . , Dn〉 ∈ S can be
thought of as a database instance on the global database schema D =

⋃
i∈Ag Di such

that s(P) =
⋃
i∈Ag Di(P), for every P ∈ D. Then, we set si as the restriction of s to

the relation symbols inDi. That is, we assume that each agent has a truthful, yet partial,
view of the global database D, since in general Di is a subset of D.

Further, the transition relation τ : S × ACT (Y) 7→ 2S is defined such that t =
〈D′

0, . . . , D
′
n〉 ∈ τ(s, α(u)) iff for every i ∈ Ag, (si,u) |= gi, i.e., all guards are

satisfied and the corresponding joint action is enabled, and applying the effects ef i(u).

Decidable Verification of Agent-Based Data-aware Systems 5

Specifically, if ef i = add(P,x) (resp. del(P,x)), then D′
i is obtained from Di by

performing the corresponding insertion (resp. deletion) in P with values u. If ef i =
ef ′i; ef

′′
i , then ti is obtained from si by applying first the effects in ef ′i, and then ef ′′i .

Similarly for ef i = ef ′i ∪ ef ′′i .
Finally, we introduce the successor relation→ on global states such that s → t if

there exists α(u) ∈ ACT (Y) such that s
α(u)−−−→ t, i.e., t ∈ τ(s, α(u)). A run r from

state s is an infinite sequence s0 → s1 → . . ., with s0 = s. For n ∈ N, we define
r(n) = sn. Hereafter we assume that the relation→ is serial. This can be ensured by
using skip actions. Notice that, in what follows we restrict the set of global states as
the set of reachable states only. The disjoint union ⊕ is extended to global states in a
pointwise manner: for s = 〈D0, . . . , Dn〉 and s′ = 〈D′

0, . . . , D
′
n〉, we define s ⊕ s′ as

〈D0 ⊕D′
0, . . . , Dn ⊕D′

n〉.

Example 1. To illustrate the formal machinery introduced thus far, we present a busi-
ness process inspired by a concrete IBM customer use case [21]. The order-to-cash
business process specifies the interactions of three agents in an e-commerce situation
relating to the purchase and delivery of a product: a manufacturer m, a customer c, and
a supplier s. The process begins when c prepares and submits to m a purchase order
(PO), i.e., a list of products c requires (action createPO()). Upon receiving a PO, m
prepares a material order (MO), i.e., a list of components needed to assemble the re-
quested products (action createMO()). Then, m forwards to s the relevant material
order. Upon receiving an MO, s can either accept or reject it (actions acceptMO() and
rejectMO()). In the former case she proceeds to deliver the requested components to
m (action shipMO()). In the latter, she notifies m of her rejection. If an MO is re-
jected, m deletes it and then prepares and submits a new MO (action deleteMO()).
Upon delivery of the components (action receiveMO()), m assembles the product
and, provided the order has been paid for (action payPO()), delivers it to c (action
shipPO()).

We can encode the order-to-cash business process as a P-AbDaS, where the data
model is represented by means of database schemas, whose evolution is determined by
an appropriate set of actions types. Formally the three agents can be defined as follows:

– Ac = 〈Dc, Actc〉, where
• Dc{Products(prod code, budget), PO(id, prod code, offer, status)};
• Actc = {createPO(id, code), payPO(id), deletePO(id)};

– Am = 〈Dm, Actm〉, where
• Dm={PO(id, prod code, offer, status),MO(id, prod code, price, status)};
• Actm={createMO(id, price),receiveMO(id),deleteMO(id),shipPO(id)};

– As = 〈Ds, Acts〉, where
• Ds = {Materials(mat code, cost),MO(id, prod code, price, status)};
• Acts = {acceptMO(id), rejectMO(id), shipMO(id)}.

In Table 1 we provide the detailed action types for all agents in the use case. As
an example, according to action type createPO() (item (1.a)), the customer can create
a purchase order with a designed id only if there exists a product with the same id.
Further, by using createMO() the manufacturer can create a material order with a

6 Francesco Belardinelli and Vadim Malvone

The actions of customer c:

1. createPO(id, code) ::= Products(code, x) ∧ ¬∃zPO(id, code, z, submitted)
add(PO(id, code, x, submitted))

2. payPO(id) ::= (PO(id, x, y, prepared) ∧ PO(id, x, y′, submitted) ∧ y = y′)
del(PO(id, x, y, submitted)); add(PO(id, x, y, paid))

3. deletePO(id) ::= PO(id, x, y, shipped) del(PO(id, x, y, paid))

The actions of manufacturer m:

1. createMO(id, price) ::= (PO(id, x, offer, submitted) ∧ ¬∃zMO(id, z, price,
preparation)) add(MO(id, x, price, preparation))

2. receiveMO(id) ::= MO(id, x, y, shipped) del(MO(id, x, y, preparation));
add(MO(id, x, y, received)); add(PO(id, x, y, prepared))

3. deleteMO(id) ::= MO(id, x, y, rejected) del(MO(id, x, y, preparation))
4. shipPO(id) ::= PO(id, x, y, paid) del(PO(id, x, y, prepared)); add(PO(id, x, y,

shipped))

The actions of supplier s:

1. acceptMO(id) ::= MO(id, code, y, preparation) ∧ ¬∃zMO(id, code, z, accepted) ∧
Materials(code, y) add(MO(id, code, y, accepted))

2. rejectMO(id) ::= MO(id, code, y, preparation) ∧ ¬∃zMO(id, code, z, rejected) ∧
¬Materials(code, y) add(MO(id, code, y, rejected))

3. shipMO(id) ::= MO(id, x, y, accepted) del(MO(id, x, y, accepted));
add(MO(id, x, y, shipped))

Table 1: the list of actions in the order-to-cash scenario.

designed id if MO does not contain a tuple with same id in preparation status (item
(2.a)).

3 The Verification of AbDaS

In this section we introduce the specification language for AbDaS and the correspond-
ing model checking problem. We recall that we consider a set V of individual variables
and a set C of individual constants. The terms t1, t2, . . . in T are either variables in V
or constants in C .

Definition 8 (FO-CTL). The FO-CTL formulas ϕ over a database schema D are de-
fined as follows, where P ∈ D:

ϕ ::= P (t1, . . . , tq) | ¬ϕ | ϕ→ ϕ | ∀xϕ | AXϕ | AϕUϕ | EϕUϕ
The language FO-CTL is a first-order extension of the propositional temporal logic

CTL. The temporal formulasAXϕ andAϕUϕ′ (resp.EϕUϕ′) are read as “for all runs,
at the next step ϕ” and “for all runs (resp. some run), ϕ until ϕ′”. Given a formula ϕ, we
denote the set of free and all variables as fr(ϕ) and var(ϕ) respectively, and introduce
formulas EXϕ, AFϕ, AGϕ, EFϕ, and EGϕ as standard.

We now interpreted FO-CTL on concrete agent-based data-aware systems.

Decidable Verification of Agent-Based Data-aware Systems 7

Definition 9 (Semantics of FO-CTL). We define whether a C-AbDaS P satisfies a
formula ϕ in a state s according to assignment σ, or (P, s, σ) |= ϕ, as follows:

(P, s, σ) |= P (t) iff 〈σ(t1), . . . , σ(tq)〉 ∈ s(P)
(P, s, σ) |= t = t′ iff σ(t) = σ(t′)
(P, s, σ) |= ¬ϕ iff (P, s, σ) 6|= ϕ
(P, s, σ) |= ϕ→ ϕ′ iff (P, s, σ) 6|= ϕ or (P, s, σ) |= ϕ′

(P, s, σ) |= ∀xϕ iff for all u ∈ adom(s), (P, s, σxu) |= ϕ
(P, s, σ) |= AXϕ iff for all r, if r(0) = s then (P, r(1), σ) |= ϕ
(P, s, σ) |= AϕUϕ′ iff for all r, if r(0) = s then there is k ≥ 0 s.t. (P, r(k), σ) |= ϕ′,

and for all j, 0 ≤ j < k implies (P, r(j), σ) |= ϕ
(P, s, σ) |= EϕUϕ′ iff for some r, r(0) = s and there is k ≥ 0 s.t. (P, r(k), σ) |= ϕ′,

and for all j, 0 ≤ j < k implies (P, r(j), σ) |= ϕ

A formula ϕ is true at state s, or (P, s) |= ϕ, if (P, s, σ) |= ϕ for all assignments σ; ϕ
is true in C-AbDaS P , or P |= ϕ, if (P, s) |= ϕ for every s ∈ S. Finally, Ag |= ϕ iff
(Ag, Y) |= ϕ for all Y ⊂

fin
Y .

Again, in Def. 9 we adopt an active domain semantics, whereby quantifiers range
over the active domain adom(s) of s.

Finally, we present the model checking problem for P-AbDaS with respect to the
specification language FO-CTL.

Definition 10 (Parameterised Model Checking). Given a P-AbDaS Ag, an infinite
domain Y , and an FO-CTL formula ϕ, determine whether Ag |= ϕ.

Notice that the parameterised model checking problem requires in principle to check
an infinite number of C-AbDaS built on the same P-AbDaS. Indeed, model checking
P-AbDaS is undecidable in general: we remark without proof that P-AbDaS are expres-
sive enough to encode Turing machines, and reachability of a halting state can then be
expressed in FO-CTL similarly to [15,7]. Hence, it is of interest to investigate semantic
restrictions on P-AbDaS that allow for a decidable model checking problem.

To this end, a key notion to decide parameterised model checking in general is the
cut-off:

Definition 11 (Cut-off). A natural number n ∈ N is a cut-off for P-AbDaS Ag and
formula φ iff for all finite subsets Y ⊇ C , Y ′ ⊇ C of Y , if |Y | = n and |Y ′| ≥ |Y |,
then (Ag, Y) |= φ iff (Ag, Y ′) |= φ

Note that, in Def.11 we suppose |Y ′| ≥ |Y | without considering that |Y | is a subset
of |Y ′|. This is because we define the set of constants C to be in both |Y | and |Y ′|, and
for this reason the intersection between |Y ′| and |Y | cannot be empty.

The existence of the cut-off allows us to decide verification by checking all C-
AbDaS up to size |n|, of which there exist finitely many instances. We devote the rest
of the paper to finding sufficient condition for the existence of cut-offs.

We conclude this section by elaborating on Example 1.

8 Francesco Belardinelli and Vadim Malvone

Example 2. We can investigate properties of the order-to-cash business process by us-
ing specifications in FO-CTL. For instance, the following formula intuitively specifies
that each material order MO has to match a corresponding purchase order PO:

AG ∀id, pc (∃pr, s MO(id, pc, pr, s)→ ∃o, s′PO(id, pc, o, s′))

The next specification states that given a material order MO, it can be the case that
eventually the corresponding PO will be shipped.

AG ∀id, pc (∃pr, s MO(id, pc, pr, s)→ EF ∃o PO(id, pc, o, shipped))

Hereafter we develop techniques to model check specifications in FO-CTL like the
ones above.

4 Finding Cut-offs

In this section we introduce model-theoretic notions that will be used to tackle the
parameterised model checking problem for P-AbDaS. In particular, we recall some no-
tions in [7].

Definition 12 (Isomorphism). Two database instances D ∈ D(Y ′), D′ ∈ D(Y) are
isomorphic, or D ' D′, iff there exists a bijection ι : adom(D) 7→ adom(D′) s.t.:

(i) ι is the identity on the constants in C ;
(ii) for all P ∈ D, u ∈ Y q , u ∈ D(P) iff ι(u) ∈ D′(P).

When the above is the case, we say that ι is a witness forD ' D′. Moreover, two global
states s = 〈D0, . . . , Dn〉 ∈ S and s′ = 〈D′

0, . . . , D
′
n〉 ∈ S′ are isomorphic, or s ' s′,

iff there exists a bijection ι : adom(s) 7→ adom(s′) such that for every j ∈ Ag, ι is a
witness for Dj ' D′

j .

By Def. 12 isomorphisms preserve the interpretation of constants as well as of pred-
icates up to renaming of terms. Obviously, isomorphisms are equivalence relations.
Given a function f : Y 7→ Y ′ defined on adom(s), f(s) denotes the instance in D(Y ′)
obtained from s by renaming each u ∈ adom(s) as f(u). If f is also injective (thus
invertible) and the identity on C , then f(s) ' s.

While isomorphic states share the same relational structure, two isomorphic states
do not necessarily satisfy the same FO-formulas as satisfaction depends also on the
values assigned to free variables. To account for this, we introduce the following notion.

Definition 13 (Equivalent assignments). Given states s ∈ S and s′ ∈ S′, and a set
V ′ ⊆ V of variables, assignments σ : T 7→ Y and σ′ : T 7→ Y ′ are equivalent for V ′

w.r.t. s and s′ iff there exists a bijection γ : adom(s) ∪ σ(V ′) 7→ adom(s′) ∪ σ′(V ′)
such that:

(i) γ|adom(s) is a witness for s ' s′;

Decidable Verification of Agent-Based Data-aware Systems 9

(ii) σ′|V ′ = γ;σ|V ′ , where ; is function composition.

By Def. 13 equivalent assignments preserve both the (in)equalities of the terms in
s, s′ up to renaming. Clearly, the existence of equivalent assignments implies that s, s′

are isomorphic. We say that two assignments are equivalent for an FO-CTL formula ϕ,
omitting states s and s′ when clear from the context, if these are equivalent for the free
variables fr(ϕ) in ϕ.

We now state the following standard result in first-order (non-modal) logic, i.e., iso-
morphic states satisfy exactly the same FO-formulas, when interpreted with equivalent
assignments [1].

Proposition 1. Given isomorphic states s ∈ S and s′ ∈ S′, an FO-formula ϕ, and
assignments σ and σ′ equivalent for ϕ, we have that

(s, σ) |= ϕ iff (s′, σ′) |= ϕ

An immediate consequence of Prop. 1 is that isomorphic states cannot be distin-
guished by FO-sentences. In the rest of the section we show how isomorphisms can
actually be used to prove the preservation of the whole FO-CTL. Notice that this is
in marked contrast with similar results in the literature [7,3], which need to assume
some notion of (bi)simulation on the underlying transitions systems. Nothing similar is
required here, we show that isomorphisms suffice. More specifically, in [7] the require-
ment of uniformity was put forward as a sufficient condition for bisimilar systems to
satisfy the same formulas in FO-CTL. We now show that C-AbDaS satisfy uniformity
unrestrictedly.

Lemma 1 (Uniformity). All C-AbDaS P , P ′ are uniform, that is, for every s, t ∈
S, s′ ∈ S′, t′ ∈ D(Y), if t ∈ τ(s, α(u)) and s ⊕ t ' s′ ⊕ t′ for some witness ι,
then for every constant-preserving bijection ι′ that extends ι to u, we have that t′ ∈
τ(s′, α(ι′(u))).

Proof. For illustration, we consider the case in which there is only one agent, i.e.,
α(u) = g(u) ef(u). First of all, notice that if s ⊕ t ' s′ ⊕ t′ then for every
bijection ι′ extending ι to u, we have that (s,u) |= g(x) iff (s, ι′(u)) |= g(x) by
Prop. 1. Hence, action α(u) is enabled in s iff α(ι′(u)) is enabled in s′.

Now we prove by induction on the structure of ef(u) that t′ can be obtained by
applying effects ef(ι′(u)) to s′, and therefore t′ ∈ τ(s′, α(ι′(u))). For the base of
induction, consider ef(u) = add(P,u). Then, t differs from s only for tupleu possibly
added to the interpretation of P . Since s ⊕ t ' s′ ⊕ t′, also t′ differs from s′ only for
tuple ι′(u) added to the interpretation of P , and therefore t′ ∈ τ(s′, α(ι′(u))). As
regards the base case for ef(u) = del(P,u), t differs from s only for tuple u possibly
deleted from the interpretation of P . Since s⊕ t ' s′ ⊕ t′, again t′ differs from s′ only
for tuple ι′(u) deleted from the interpretation of P , and therefore t′ ∈ τ(s′, α(ι′(u))).

As for the inductive case for ef(u) = ef1(u1)∪ ef2(u2), then t is obtained from s
by applying either the effects in ef1(u1) or in ef2(u2). Then, by induction hypothesis,
t′ can be obtained from s′ by applying either the effects in ef1(ι′(u1)) or in ef2(ι′(u2)),
which is tantamount to ef(ι′(u)). Finally, for ef(u) = ef1(u1); ef2(u2), t is obtained
from s by applying first the effects in ef1(u1) and then ef2(u2). Then, by induction

10 Francesco Belardinelli and Vadim Malvone

hypothesis, t′ can be obtained from s′ by applying first the effects in ef1(ι′(u1)) and
then ef2(ι′(u2)), which is tantamount to ef(ι′(u)).

Intuitively, the notion of uniformity in Lemma 1 captures the idea that actions take
into account and operate only on the relational structure of states, irrespective of the
actual data they contain. Because of this, uniformity has been compared to the notion of
genericity in database theory, whereby in specific cases the answer to a query depends
only on the structure of the database [1]. Actually, the result in Lemma 1 is stronger
that the notion of uniformity in [7], which is restricted to states belonging to the same
system. We are able to prove a stronger result, as we consider C-AbDaS built on the
same P-AbDaS and therefore sharing the same actions, which is not the case in [7].

We now demonstrate some auxiliary lemmas that will be used in proving the main
preservation result (Theorem 2). The first two guarantee that under appropriate condi-
tions on the cardinality of the interpretation domains, equivalent assignments are pre-
served by the isomorphism relation. Hereafter we setNAg=

∑
i∈Agmaxα(x)∈Acti{|x|},

i.e.,NAg is the sum of the maximum number of parameters contained in the action types
of each agent in Ag; whereas P = (Ag, Y) and P ′ = (Ag, Y ′) are C-AbDaS defined
on the same P-AbDaS Ag.

Lemma 2. Consider C-AbDaSP andP ′ defined on the same P-AbDaSAg, isomorphic
states s ∈ S and s′ ∈ S′, an FO-CTL formula ϕ, and assignments σ and σ′ equivalent
for ϕ w.r.t. s and s′. For every t ∈ S such that s→ t, if |Y ′| ≥ |adom(s)∪σ(fr(ϕ))|+
NAg , then there exists t′ ∈ S′ such that s′ → t′, t ' t′, and σ and σ′ are equivalent for
ϕ w.r.t. t and t′.

Proof. First of all, let γ be a bijection witnessing that σ and σ′ are equivalent for ϕ
w.r.t. s and s′, and suppose that t ∈ τ(s,α(u)) for some joint action α(u). Now define
Dom(j)

.
= adom(s) ∪ σ(fr(ϕ)) ∪ u, and partition it into:

– Dom(γ)
.
= adom(s) ∪ σ(fr(ϕ));

– Dom(ι′)
.
= u \Dom(γ).

Let ι′ : Dom(ι′) 7→ Y ′ \ Im(γ) be an invertible total function. Observe that
|Im(γ)| = |adom(s′) ∪ σ′(fr(ϕ))| = |adom(s) ∪ σ(fr(ϕ))|, thus from the fact that
|Y ′| ≥ |adom(s) ∪ σ(fr(ϕ))|+NAg , we have that |Y ′ \ Im(γ)| ≥ |Dom(ι′)|, which
guarantees the existence of ι′.

Next, define j : Dom(j) 7→ Y ′ as follows:

j(u) =

{
γ(u), if u ∈ Dom(γ)
ι′(u), if u ∈ Dom(ι′)

Clearly, j is invertible. In particular, j is a witness for s⊕ t ' s′ ⊕ t′, for t′ = j(t).
In particular, since t ∈ τ(s,α(u)), by uniformity we obtain that t′ ∈ τ(s′,α(j(u))).
Thus, s′ → t′. Finally, by construction of t′, σ and σ′ are equivalent for ϕ w.r.t. t and
t′.

The proof of Lemma 2 relies crucially on P and P ′ being uniform. Moreover, since
P and P ′ are defined on the same P-AbDaS Ag, we do not need to assume that P and
P ′ are bisimilar, as it is the case in [7, Lemma 3.9] for instance.

Then, Lemma 2 generalises to runs.

Decidable Verification of Agent-Based Data-aware Systems 11

Lemma 3. Consider C-AbDaSP andP ′ defined on the same P-AbDaSAg, isomorphic
states s ∈ S and s′ ∈ S′, an FO-CTL formula ϕ, and two assignments σ and σ′

equivalent for ϕ w.r.t. s and s′. For every run r of P , if r(0) = s and for all i ≥ 0,
|Y ′| ≥ |adom(r(i)) ∪ σ(fr(ϕ))| + NAg , then there exists a run r′ of P ′ such that for
all i ≥ 0:

(i) r′(0) = s′;
(ii) r(i) ' r′(i);

(iii) σ and σ′ are equivalent for ϕ w.r.t. r(i) and r′(i).

Proof. Let r be a run satisfying the lemma’s hypothesis. We inductively build r′ and
show that the conditions (i)-(iii) are satisfied. For i = 0, let r′(0) = s′. By hypothesis,
r is such that |Y ′| ≥ |adom(r(0)) ∪ σ(fr(ϕ))| + NAg . Thus, since r(0) → r(1),
by Lemma 2 there exists t′ ∈ S′ such that r′(0) → t′, r(1) ' t′, and σ and σ′ are
equivalent for ϕ w.r.t. r(1) and t′. Let r′(1) = t′.

The case for i > 0 is similar. Assume that r(i) ' r′(i) and σ and σ′ are equivalent
for ϕ w.r.t. r(i) and r′(i). Since r(i)→ r(i+1) and |Y ′| ≥ |adom(r(i))∪σ(fr(ϕ))|+
NAg , by Lemma 2 there exists t′ ∈ S′ such that r′(i)→ t′, σ and σ′ are equivalent for
ϕ w.r.t. r(i+ 1) and t′, and r(i+ 1) ' t′. Let r′(i+ 1) = t′. It is clear that r′ is a run
in P ′.

Again, Lemma 3 differs from similar results in the literature (e.g., [7, Lemma 3.10])
as we do not need to assume that P and P ′ are bisimilar.

By Lemma 3 we can prove that, for sufficiently large domains, FO-CTL formulas
cannot distinguish isomorphic C-AbDaS built on the same P-AbDaS.

Theorem 1. Consider C-AbDaS P and P ′ defined on the same P-AbDaS Ag, isomor-
phic states s ∈ S and s′ ∈ S′, an FO-CTL formula ϕ, and two assignments σ and σ′

equivalent for ϕ w.r.t. s and s′. If

1. for every run r such that r(0) = s, for all k ≥ 0 we have |Y ′| ≥ |adom(r(k)) ∪
σ(fr(ϕ))|+ |var(ϕ) \ fr(ϕ)|+NAg;

2. for every run r′ such that r′(0) = s′, for all k ≥ 0 we have |Y | ≥ |adom(r′(k)) ∪
σ′(fr(ϕ))|+ |var(ϕ) \ fr(ϕ)|+NAg;

then (P, s, σ) |= ϕ iff (P ′, s′, σ′) |= ϕ.

Proof. The proof is by induction on the structure of ϕ. We prove that if (P, s, σ) |= ϕ
then (P ′, s′, σ′) |= ϕ. The other direction can be proved analogously. The base case for
atomic formulas follows by Prop. 1. The inductive cases for propositional connectives
are immediate and thus omitted.

For ϕ ≡ ∀xψ, assume that x ∈ fr(ψ) (otherwise consider ψ, and the corresponding
case), and no variable is quantified more than once (otherwise we can rename variables
w.l.o.g.). Let γ be a bijection witnessing that σ and σ′ are equivalent for ϕ w.r.t. s and
s′. For u ∈ adom(s), consider the assignment σxu. By definition, γ(u) ∈ adom(s′), and
σ′x
γ(u) is well-defined. Note that fr(ψ) = fr(ϕ) ∪ {x}; so σxu and σ′x

γ(u) are equivalent
for ψ w.r.t. s and s′. Moreover, |σxu(fr(ψ))| = |σ(fr(ϕ))|+1. The same considerations
apply to σ′. Further, |var(ψ) \ fr(ψ)| = |var(ϕ) \ fr(ϕ)| − 1, as var(ψ) = var(ϕ),

12 Francesco Belardinelli and Vadim Malvone

fr(ψ) = fr(ϕ) ∪ {x}, and x /∈ fr(ϕ). Thus, both hypotheses (1) and (2) remain sat-
isfied if we replace ϕ with ψ, σ with σxu, and σ′ with σ′x

γ(u). Therefore, by the induction
hypothesis, if (P, s, σxu) |= ψ then (P ′, s′, σ′x

γ(u)) |= ψ. Since u ∈ adom(s) is generic
and γ is a bijection, the result follows.

For ϕ ≡ AXψ, assume by contraposition that (P ′, s′, σ′) 6|= ϕ. Then, there exists
a run r′ such that r′(0) = s′ and (P ′, r′(1), σ′) 6|= ψ. Since |var(ϕ) \ fr(ϕ)| ≥ 0, by
Lemma 3, there exists a run r such that r(0) = s, and for all i ≥ 0, r(i) ' r′(i) and
σ and σ′ are equivalent for ψ w.r.t. r(i) and r′(i). Since r is a run such that r(0) = s,
it satisfies hypothesis (1). Moreover, the same hypothesis is necessarily satisfied by
all the runs r′′ such that for some i ≥ 0, r′′(0) = r(i) (otherwise, the run r(0) →
· · · → r(i)→ r′′(1)→ r′′(2)→ · · · would not satisfy the hypothesis for r); the same
considerations apply w.r.t hypothesis (2) and for all the runs r′′′ such that r′′′(0) = r′(i),
for some i ≥ 0. In particular, these hold for i = 1. Thus, we can inductively apply
the hypothesis, by replacing s with r(1), s′ with r′(1), and ϕ with ψ (observe that
var(ϕ) = var(ψ) and fr(ϕ) = fr(ψ)). But then we obtain (P, r(1), σ) 6|= ψ, thus
(P, r(0), σ) 6|= AXψ.

For ϕ ≡ EψUφ, assume that the only variables common to ψ and φ occur free
in both formulas (otherwise rename quantified variables w.l.o.g.). Let r be a run such
that r(0) = s, and there exists k ≥ 0 such that (P, r(k), σ) |= φ, and (P, r(j), σ) |= ψ
for 0 ≤ j < k. By Lemma 3 there exists a run r′ such that r′(0) = s′ and for all
i ≥ 0, r′(i) ' r(i) and σ and σ′ are equivalent for ϕ w.r.t. r′(i) and r(i). From
each bijection γi witnessing that σ and σ′ are equivalent for ϕ w.r.t. r′(i) and r(i), de-
fine the bijections γi,ψ = γi|adom(r(i))∪σ(fr(ψ)) and γi,φ = γi|adom(r(i))∪σ(fr(φ)). Since
fr(ψ) ⊆ fr(ϕ), fr(φ) ⊆ fr(ϕ), it can be seen that γi,ψ and γi,φ witness that σ and σ′

are equivalent for respectively ψ and φ w.r.t. r′(i) and r(i). By the same argument used
for the AX case above, hypothesis (1) holds for all the runs r′′ such that r′′(0) = r(i),
for some i ≥ 0, and hypothesis (2) holds for all the runs r′′′ such that r′′′(0) = r′(i).
Now observe that |σ(fr(φ))|, |σ(fr(ψ))| ≤ |σ(fr(ϕ))|. Moreover, by the assump-
tion on the common variables of ψ and φ, (var(ϕ) \ fr(ϕ)) = (var(ψ) \ fr(ψ))]
(var(φ) \ fr(φ)), thus |var(ϕ) \ fr(ϕ)| = |(var(ψ) \ fr(ψ)| + |(var(φ) \ fr(φ)|,
hence |(var(ψ) \ fr(ψ)|, |(var(φ) \ fr(φ)| ≤ |var(ϕ) \ fr(ϕ)|. Therefore hypothe-
ses (1) and (2) hold also with ϕ uniformly replaced by either ψ or φ. Then, the induction
hypothesis applies for each i, by replacing s with r(i), s′ with r′(i), and ϕ with either
ψ or φ. Thus, for each i, (P, r(i), σ) |= ψ iff (P ′, r′(i), σ′) |= ψ, and (P, r(i), σ) |= φ
iff (P ′, r′(i), σ′) |= φ. Therefore, r′ is a run such that r′(0) = s′, (P ′, r′(k), σ′) |= φ,
and for every j, 0 ≤ j < k implies (P ′, r′(j), σ′) |= ψ, i.e., (P ′, s′, σ′) |= EψUφ.

For ϕ ≡ AψUφ, assume by contraposition that (P ′, s′, σ′) 6|= ϕ. Then, there exists
a run r′ such that r′(0) = s′ and for every k ≥ 0, either (P ′, r′(k), σ′) 6|= φ or there
exists j such that 0 ≤ j < k and (P ′, r′(j), σ′) 6|= ψ. By Lemma 3 there exists a
run r such that r(0) = s, and for all i ≥ 0, r(i) ' r′(i) and σ and σ′ are equivalent
for ϕ w.r.t. r(i) and r′(i). Similarly to the case of EψUφ, it can be shown that σ and
σ′ are equivalent for ψ and φ w.r.t. r(i) and r′(i), for all i ≥ 0. Further, assuming
w.l.o.g. that all variables common to ψ and φ occur free in both formulas, it can be
shown, as in the case of EψUφ, that the induction hypothesis holds on every pair of
runs obtained as suffixes of r and r′, starting from their i-th state, for every i ≥ 0. Thus,

Decidable Verification of Agent-Based Data-aware Systems 13

(P, r(i), σ) |= ψ iff (P ′, r′(i), σ′) |= ψ, and (P, r(i), σ) |= φ iff (P ′, r′(i), σ′) |= φ.
But then r is such that r(0) = s and for every k ≥ 0, either (P, r(k), σ) 6|= φ or there
exists j such that 0 ≤ j < k and (P, r(j), σ) 6|= ψ, that is, (P, s, σ) 6|= AψUφ.

We can now immediately extend Theorem 1 to the model checking problem for
C-AbDaS.

Theorem 2. Consider C-AbDaS P and P ′ defined on the same P-AbDaS Ag, and an
FO-CTL formula ϕ. If

1. |Y ′| ≥ maxs∈S |adom(s)|+ |var(ϕ)|+NAg;
2. |Y | ≥ maxs′∈S′ |adom(s′)|+ |var(ϕ)|+NAg;

then P |= ϕ iff P ′ |= ϕ.

Proof. Equivalently, we prove that if (P, s0, σ) 6|= ϕ for some σ, then there exists a
σ′ s.t. (P ′, s′0, σ

′) 6|= ϕ, and viceversa. To this end, observe that hypotheses (1) and
(2) imply, respectively, hypotheses (1) and (2) of Theorem 1. Further, notice that, by
cardinality considerations, given the assignment σ : T 7→ Y , there exists an assignment
σ′ : T 7→ Y ′ such that σ and σ′ are equivalent for ϕ w.r.t. s0 and s′0. Thus, by applying
Theorem 1 we have that if there exists an assignment σ such that (P, s0, σ) 6|= ϕ, then
there exists an assignment σ′ such that (P ′, s′0, σ

′) 6|= ϕ. The converse can be proved
analogously, as the hypotheses are symmetric.

Theorem 2 shows that P-AbDaS Ag can in principle be verified by assuming an
interpretation domain of suitable size. Notice again that, since P and P ′ are defined on
the same P-AbDaS Ag, differently from [7] we do not require any notion of bisimula-
tion. Moreover, if we are able to bound the quantity maxs∈S |adom(s)| across Ag, then
we obtain a cut-off value. These considerations motivate the following definition.

Definition 14 (Bounded P-AbDaS). A P-AbDaS Ag is b-bounded, for b ∈ N, if for all
C-AbDaS P based on Ag, for all reachable states s ∈ S, |adom(s)| ≤ b.

Boundedness can be justified in terms of the underlying implementation of a P-
AbDaS. Indeed, in the order-to-cash scenarios it is likely that there is a maximum
number of purchase orders that the manufacturer can deal with at any single time. By
assuming boundedness, next result follows from Theorem 2.

Theorem 3. Consider a b-bounded P-AbDaSAg over an infinite interpretation domain
Y . Then, n = b+ k +NAg is a cut-off for all formulas with at most k variables.

By Theorem 3 to decide whether a specification ϕ is true in a bounded P-AbDaS
Ag, we can check the corresponding C-AbDaS P based on increasingly bigger domains
Y ⊂

inf
Y , until we hit |Y | = b+ var(ϕ) +NAg . If formula ϕ is true in all iteration, we

can then conclude that ϕ is true in Ag.
Discussion. The assumption of boundedness to obtain decidability may appear re-

strictive. However, notice that in most implementation of data-aware systems, the bound
is set by the system’s specification in terms of memory. That is, we can safely assume
that our system will never contain more than a certain amount of data, however large it

14 Francesco Belardinelli and Vadim Malvone

can be, and use this bound to verify properties of interest. Unfortunately, the problem
of deciding whether a system is b-bounded, for some b ∈ N, is undecidable in general.
Some restrictions on the specification of actions to obtain bounded systems have been
explored in [3].

We conclude this section by elaborating on our running example.

Example 3. Consider again the order-to-cash scenario and suppose that the customer
can request at most 5 products for each purchase order and the manufacturer can request
at most 10 materials to the supplier. Note that, in principle the number of products could
be infinite. Further, the total number of products and the total number of materials are
both 20. So, we can fix a bound b = 5 · 4+10 · 4+20 · 2+20 · 2 = 140, and notice that
the FO-CTL specifications in Example 2 contain at most 6 variables. Then, the value
for the cut-off is n = 146 + NAg . Since the maximum number of parameters for the
customer and the manufacturer is 2 and for the supplier is 1, then n = 146 + 5 = 151
is the total cut-off. As a result, to verify the FO-CTL specifications in Example 2 it is
sufficient to model check them on C-AbDaS of domain size |Y | = 151.

5 Related Work and Conclusions

Amongst the first contributions to consider the verification of data-aware systems we
mention [8,18]. This direction was then developed in [15,12], which apply syntactic
restrictions on the system description and the specification language in order to obtain
decidability. Closely related to the present contribution are [3,7,10], where sufficient
conditions for decidable model checking of data-centric dynamic systems are given.
Results on the verification of DaS have also appeared in [13,5,6], and then applied to
the monitoring of commitments [27] and plan synthesis [9]. While we acknowledge
the contribution of these works, there are two important differences in our approach
w.r.t. the state of the art. Firstly, we here considered the parameterised model checking
problem, where each system is parametric w.r.t. a finite, possibly different, interpre-
tation domain; whereas in the references above each system carries its own infinite
interpretation domain. Secondly, because of this technical shift, instead of introducing
notions of bisimilarity to obtain finite abstractions [7], we rather explore the existence
of cut-offs defined on the same agents as the parameterised AbDaS, but with a finite
interpretation domain. We believe that this last problem is more interesting for practi-
cal applications because, rather than dealing with an actual infinity of data, data-aware
systems usually encompass an unbounded number of elements, which is more naturally
modelled as a parameterised model checking problem.

On the subject of parameterised model checking of agent-based systems, recently
several methodologies and tools have been proposed [23,22]. These contributions are
orthogonal, as while they do not model data-aware systems, they are capable of dealing
with an arbitrary number of agents. As regards DaS, a method for the verification of pa-
rameterised agent-based systems, each encoded via infinite-state models, was presented
in [24]. However, this approach only supports a non-quantified specification language
and does not deal with (semi-)structured data as we do here. Finally, [4] reports on
some preliminaries results on the verification of data-aware multi-agent systems. But

Decidable Verification of Agent-Based Data-aware Systems 15

decidability results are available only for a rather limited fragment of the specification
language considered therein. The present contribution differs from the works above as,
to the best of our knowledge, we introduce for the first time the problem of param-
eterised model checking for data-aware systems. As we motivated, this is a relevant
question for verification, as we aim at guaranteeing the correct behaviour of data-aware
systems no matter what the underlying data content is. To this end, we proved theoret-
ical results on the preservation of specifications written in FO-CTL under cardinality
constraints. Finally, we showed that such results guarantee the existence of a cut-off
for the class of bounded P-AbDaS. We illustrate the relevance of the formal machinery
through an application to an IBM use-case, the order-to-cash scenario.

We plan to extend the present work in several directions, including more expres-
sive specification languages, possibly with some form of arithmetic, which is essential
for real-life applications. Also of interest are the results in [23,22] that allow for the
verification of systems with an arbitrary number of agents. We plan to explore such an
extension of our present setting.

Acknowledgements. F. Belardinelli acknowledges the support of ANR JCJC Project
SVeDaS (ANR-16-CE40-0021).

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley (1995).
2. Alur, R., Henzinger, T.: Reactive modules. Formal Methods in System Design 15(1), 7–48

(1999).
3. Bagheri, B., Calvanese, D., Montali, M., Giacomo, G., Deutsch, A.: Verification of relational

data-centric dynamic systems with external services. In: PODS13. pp. 163–174. ACM (2013)
4. Belardinelli, F., Kouvaros, P., Lomuscio, A.: Parameterised verification of data-aware multi-

agent systems. In: Proceedings of IJCAI (2017)
5. Belardinelli, F., Lomuscio, A., Patrizi, F.: An abstraction technique for the verification of

artifact-centric systems. In: KR12. pp. 319–328 (2012)
6. Belardinelli, F., Lomuscio, A., Patrizi, F.: Verification of GSM-based artifact-centric systems

through finite abstraction. In: ICSOC’12. pp. 17–31 (2012)
7. Belardinelli, F., Lomuscio, A., Patrizi, F.: Verification of agent-based artifact systems. J.

Artif. Intell. Res. 51, 333–376 (2014).
8. Bhattacharya, K., Gerede, C.E., Hull, R., Liu, R., Su, J.: Towards Formal Analysis of

Artifact-Centric Business Process Models. In: Proc. of BPM (2007)
9. Calvanese, D., Montali, M., Patrizi, F., Stawowy, M.: Plan synthesis for knowledge and ac-

tion bases. In: IJCAI16. pp. 1022–1029 (2016)
10. Calvanese, D., De Giacomo, G., Montali, M., Patrizi, F.: First-order mu-calculus over generic

transition systems and applications to the situation calculus. Information and Computation
259(3), 328–347 (2018).

11. Cohn, D., Hull, R.: Business Artifacts: A Data-Centric Approach to Modeling Business Op-
erations and Processes. IEEE Data Eng. Bull. 32(3), 3–9 (2009)

12. Damaggio, E., Deutsch, A., Vianu, V.: Artifact Systems with Data Dependencies and Arith-
metic. ACM TDS 37(3), 22:1–22:36 (2012)

13. De Giacomo, G., Lespérance, Y., Patrizi, F.: Bounded Situation Calculus Action Theories
and Decidable Verification. In: KR’12. pp. 467–477 (2012)

14. De Masellis, R., Lembo, D., Montali, M., Solomakhin, D.: Semantic enrichment of gsm-
based artifact-centric models. J. Data Semantics 4(1), 3–27 (2015).

16 Francesco Belardinelli and Vadim Malvone

15. Deutsch, A., Hull, R., Patrizi, F., Vianu, V.: Automatic verification of data-centric business
processes. In: ICDT09. pp. 252–267. ACM (2009)

16. Deutsch, A., Sui, L., Vianu, V.: Specification and Verification of Data-Driven Web Applica-
tions. J. Comput. Syst. Sci. 73(3), 442–474 (2007)

17. Fagin, R., Halpern, J., Moses, Y., Vardi, M.: Reasoning About Knowledge. The MIT Press
(1995)

18. Gerede, C.E., Su, J.: Specification and Verification of Artifact Behaviors in Business Process
Models. In: ICSOC’07. pp. 181–192 (2007)

19. Gonzalez, P., Griesmayer, A., Lomuscio, A.: Verification of GSM-based artifact-centric sys-
tems by predicate abstraction. In: ICSOC15. LNCS, vol. 9435, pp. 253–268. Springer (2015)

20. Hull, R.: Artifact-centric business process models: Brief survey of research results and chal-
lenges. In: OTM Conferences (2). pp. 1152–1163 (2008)

21. Hull, R., Damaggio, E., De Masellis, R., Fournier, F., Gupta, M., Heath, III, F.T., Hobson, S.,
Linehan, M., Maradugu, S., Nigam, A., Sukaviriya, P.N., Vaculin, R.: Business artifacts with
guard-stage-milestone lifecycles: managing artifact interactions with conditions and events.
In: Proceedings of DEBS. pp. 51–62, ACM (2011).

22. Kouvaros, P., Lomuscio, A.: Verifying emergent properties of swarms. In: Proceedings of
IJCAI15. pp. 1083–1089. AAAI Press (2015)

23. Kouvaros, P., Lomuscio, A.: Parameterised verification for multi-agent systems. Artificial
Intelligence 234, 152–189 (2016)

24. Kouvaros, P., Lomuscio, A.: Parameterised verification of infinite state multi-agent systems
via predicate abstraction. In: Proceedings of AAAI17. pp. 3013–3020. AAAI Press (2017)

25. Lomuscio, A., Michaliszyn, J.: Model checking unbounded artifact-centric systems. In:
KR14. pp. 488–497 (2014)

26. Montali, M., Calvanese, D.: Soundness of data-aware, case-centric processes. STTT 18(5),
535–558 (2016).

27. Montali, M., Calvanese, D., De Giacomo, G.: Verification of data-aware commitment-based
multiagent system. In: AAMAS14. pp. 157–164. IFAAMAS (2014)

28. O’Leary, D.E.: Artificial intelligence and big data. IEEE Intelligent Systems 28, 96–99 (03
2013).

29. Shoham, Y., Leyton-Brown, K.: Multiagent Systems: Algorithmic, Game-Theoretic, and
Logical Foundations. Cambridge University Press (2008)

30. Singh, M.P., Huhns, M.N.: Service-Oriented Computing: Semantics, Processes, Agents. Wi-
ley (2005)

31. Wooldridge, M.: Computationally Grounded Theories of Agency. In: Proc. of ICMAS, pp.
13–22. IEEE Press (2000)

	Decidable Verification of Agent-Based Data-aware Systems

