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Abstract. Multi-Agent Systems (MAS) are notoriously complex and hard to ver-
ify. In fact, it is not trivial to model a MAS, and even when a model is built, it is
not always possible to verify, in a formal way, that it is actually behaving as we
expect. Usually, it is relevant to know whether an agent is capable of fulfilling its
own goals. One possible way to check this is through Model Checking. Specifi-
cally, by verifying Alternating-time Temporal Logic (ATL) properties, where the
notion of strategies for achieving goals can be described. Unfortunately, the re-
sulting model checking problem is not decidable in general. In this paper, we
present a verification procedure based on combining Model Checking and Run-
time Verification, where sub-models of the MAS model belonging to decidable
fragments are verified by a model checker, and runtime monitors are used to ver-
ify the rest. We present our technique and show experimental results.
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1 Introduction

Intelligent systems, such as Multi-Agent Systems (MAS), can be seen as a set of intel-
ligent entities capable of proactively decide how to act to fulfill their own goals. These
entities, called generally agents, are notoriously autonomous, i.e., they do not expect
input from a user to act, and social, i.e., they usually communicate amongst each other
to achieve common goals.

Software systems are not easy to trust in general. Because of this, we need verifica-
tion techniques to verify that such systems behave as expected. More specifically, in the
case of MAS, it is relevant to know whether the agents are capable of achieving their
own goals, by themselves or by collaborating with other agents by forming a coalition.
This is usually referred to as the process of finding a strategy for the agent(s).

A well-known formalism for reasoning about strategic behaviours in MAS is Al-
ternating-time Temporal Logic (ATL) [1]. Before verifying ATL specifications, two
questions need to be answered: (i) does each agent know everything about the system?
(ii) does the property require the agent to have memory of the system? The first question
concerns the model of the MAS. If each agent can distinguish each state of the model,
then we have perfect information; otherwise, we have imperfect information. The sec-
ond question concerns the ATL property. If the property can be verified without the
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need for the agent to remember which states of the model have been visited before,
then we have imperfect recall; otherwise, we have perfect recall.

The model checking problem for ATL giving a generic MAS is known to be unde-
cidable. This is due to the fact that the model checking problem for ATL specifications
under imperfect information and perfect recall has been proved to be undecidable [12].
Nonetheless, decidable fragments exist. Indeed, model checking ATL under perfect
information is PTIME-complete [1], while under imperfect information and imperfect
recall is PSPACE [23]. Unfortunately, MAS usually have imperfect information, and
when memory is needed to achieve the goals, the resulting model checking problem
becomes undecidable. Given the relevance of the imperfect information setting, even
partial solutions to the problem are useful.

Given an ATL formula ϕ and a model of MAS M , our procedure extracts all the
sub-models of M with perfect information that satisfy a sub-formula of ϕ. Then, run-
time monitors are used to check if the remaining part of ϕ can be satisfied at execution
time. If this is the case, we conclude at runtime the satisfaction of ϕ for the correspond-
ing system execution. Note that, this does not imply that the system satisfies ϕ, indeed
future executions may violate ϕ. The formal result over ϕ only concerns the current
execution, and how it has behaved in it. However, we will present preservation results
on the initial model checking problem of ϕ on the model of the system M , as well.

Related Work. Several approaches for the verification of specifications in ATL and
ATL∗ under imperfect information and perfect recall have been recently put forward.
In one line, restrictions are made on how information is shared amongst the agents, so
as to retain decidability [10,11]. In a related line, interactions amongst agents are lim-
ited to public actions only [6,7]. These approaches are markedly different from ours as
they seek to identify classes for which verification is decidable. Instead, we consider
the whole class of iCGS and define a general verification procedure. In this sense, exist-
ing approaches to approximate ATL model checking under imperfect information and
perfect recall have either focused on an approximation to perfect information [5,8] or
developed notions of bounded recall [4].

Differently from these works, we introduce, for the first time, a technique that cou-
ples model checking and runtime verification to provide results. Furthermore, we al-
ways concludes with a result. Note that the problem is undecidable in general, thus the
result might be inconclusive (but it is always returned). When the result is inconclusive
for the whole formula, we present sub-results to give at least the maximum information
about the satisfaction/violation of the formula under exam.

Runtime Verification (RV) has never been used before in a strategic context, where
monitors check whether a coalition of agents satisfies a strategic property. This can be
obtained by combining Model Checking on MAS with RV. The combination of Model
Checking with RV is not new [17]; even though focused only on LTL. Instead, in here,
we focus on strategic properties, such as ATL∗. Because of this, our work is closer in
spirit to [17]; in fact, we use RV to support Model Checking in verifying at runtime
what the model checker could not at static time. Finally, in [14], a demonstration paper
presenting the tool deriving by this work may be found. Specifically, in this paper we
present the theoretical foundations and experimental results behind the tool.
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2 Preliminaries

In this section we recall some preliminary notions. Given a set U , U denotes its com-
plement. We denote the length of a tuple v as |v|, and its i-th element as vi. For i ≤ |v|,
let v≥i be the suffix vi, . . . , v|v| of v starting at vi and v≤i the prefix v1, . . . , vi of v. We
denote with v · w the concatenation of the tuples v and w.

2.1 Models for Multi-agent systems

We start by giving a formal model for Multi-agent Systems by means of concurrent
game structures with imperfect information [1,18].

Definition 1. A concurrent game structure with imperfect information (iCGS) is a tuple
M = 〈Ag,AP, S, sI , {Acti}i∈Ag, {∼i}i∈Ag, d, δ, V 〉 such that: Ag = {1, . . . ,m} is
a nonempty finite set of agents (or players); AP is a nonempty finite set of atomic
propositions (atoms); S 6= ∅ is a finite set of states, with initial state sI ∈ S; for
every i ∈ Ag, Acti is a nonempty finite set of actions where Act =

⋃
i∈Ag Acti is

the set of all actions and ACT =
∏
i∈Ag Acti is the set of all joint actions; for every

i ∈ Ag, ∼i is a relation of indistinguishability between states, that is, given states
s, s′ ∈ S, s ∼i s′ iff s and s′ are observationally indistinguishable for agent i; the
protocol function d : Ag × S → (2Act \ ∅) defines the availability of actions so that
for every i ∈ Ag, s ∈ S, (i) d(i, s) ⊆ Acti and (ii) s ∼i s′ implies d(i, s) = d(i, s′);
the (deterministic) transition function δ : S × ACT → S assigns a successor state
s′ = δ(s,~a) to each state s ∈ S, for every joint action ~a ∈ ACT such that ai ∈ d(i, s)
for every i ∈ Ag, that is, ~a is enabled at s; and V : S → 2AP is the labelling function.

By Def. 1 an iCGS describes the interactions of a group Ag of agents, starting from
the initial state sI ∈ S, according to the transition function δ. The latter is constrained
by the availability of actions to agents, as specified by the protocol function d. Fur-
thermore, we assume that every agent i has imperfect information of the exact state of
the system; so in any state s, i considers epistemically possible all states s′ that are
i-indistinguishable from s [13]. When every ∼i is the identity relation, i.e., s ∼i s′ iff
s = s′, we obtain a standard CGS with perfect information [1]. Given a set Γ ⊆ Ag
of agents and a joint action ~a ∈ ACT , let ~aΓ and ~aΓ be two tuples comprising only
of actions for the agents in Γ and Γ , respectively. A history h ∈ S+ is a finite (non-
empty) sequence of states. The indistinguishability relations are extended to histories
in a synchronous, point-wise way, i.e., histories h, h′ ∈ S+ are indistinguishable for
agent i ∈ Ag, or h ∼i h′, iff (i) |h| = |h′| and (ii) for all j ≤ |h|, hj ∼i h′j .

2.2 Syntax

To reason about the strategic abilities of agents in iCGS with imperfect information, we
use Alternating-time Temporal Logic ATL∗ [1].

Definition 2. State (ϕ) and path (ψ) formulas in ATL∗ are defined as follows, where
q ∈ AP and Γ ⊆ Ag:

ϕ ::= q | ¬ϕ | ϕ ∧ ϕ | 〈〈Γ 〉〉ψ
ψ ::= ϕ | ¬ψ | ψ ∧ ψ | Xψ | (ψUψ)
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Formulas in ATL∗ are all and only the state formulas.

As customary, a formula 〈〈Γ 〉〉Φ is read as “the agents in coalition Γ have a strategy
to achieve Φ”. The meaning of linear-time operators next X and until U is standard
[2]. Operators [[Γ ]], release R, finally F , and globally G can be introduced as usual.
Formulas in the ATL fragment of ATL∗ are obtained from Def. 2 by restricting path
formulas ψ as follows (where ϕ is a state formula and R is the release operator):

ψ ::= Xϕ | (ϕUϕ) | (ϕRϕ)

We will also consider the syntax of ATL∗ in negation normal form (NNF):

ϕ ::= q | ¬q | ϕ ∧ ϕ | ϕ ∨ ϕ | 〈〈Γ 〉〉ψ | [[Γ ]]ψ
ψ ::= ϕ | ψ ∧ ψ | ψ ∨ ψ | Xψ | (ψUψ) | (ψRψ)

where q ∈ AP and Γ ⊆ Ag.

2.3 Semantics

When giving a semantics to ATL∗ formulas we assume agents are endowed with uni-
form strategies [18], i.e., they perform the same action whenever they have the same
information.

Definition 3. A uniform strategy for agent i ∈ Ag is a function σi : S+ → Acti such
that for all histories h, h′ ∈ S+, (i) σi(h) ∈ d(i, last(h)); and (ii) h ∼i h′ implies
σi(h) = σi(h

′).

By Def. 3 any strategy for agent i has to return actions that are enabled for i. Also,
whenever two histories are indistinguishable for i, then the same action is returned.
Notice that, for the case of CGS (perfect information), condition (ii) is satisfied by
any strategy σ. Furthermore, we obtain memoryless (or imperfect recall) strategies by
considering the domain of σi in S, i.e., σi : S → Acti.

Given an iCGS M , a path p ∈ Sω is an infinite sequence s1s2 . . . of states. Given a
joint strategy σΓ = {σi | i ∈ Γ}, comprising of one strategy for each agent in coalition
Γ , a path p is σΓ -compatible iff for every j ≥ 1, pj+1 = δ(pj ,~a) for some joint action
~a such that for every i ∈ Γ , ai = σi(p≤j), and for every i ∈ Γ , ai ∈ d(i, pj). Let
out(s, σΓ ) be the set of all σΓ -compatible paths from s.

Definition 4. The satisfaction relation |= for an iCGS M , state s ∈ S, path p ∈ Sω ,
atom q ∈ AP , and ATL∗ formula φ is defined as follows (clauses for Boolean connec-
tives are immediate and thus omitted):

(M, s) |= q iff q ∈ V (s)
(M, s) |= 〈〈Γ 〉〉ψ iff for some σΓ , for all p∈out(s, σΓ ), (M,p) |=ψ
(M,p) |= ϕ iff (M,p1) |= ϕ
(M,p) |= Xψ iff (M,p≥2) |= ψ
(M,p) |= ψUψ′ iff for some k≥1,(M,p≥k) |=ψ′, and for all 1≤j<k⇒(M,p≥j) |=ψ
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We say that formula φ is true in an iCGS M , or M |= φ, iff (M, sI) |= φ.

Definition 5. Given an iCGS M and a formula φ, the model checking problem con-
cerns determining whether M |= φ.

Since the semantics provided in Def. 4 is the standard interpretation ofATL∗ [1,18],
it is well known that model checking ATL, a fortiori ATL∗, against iCGS with im-
perfect information and perfect recall is undecidable [12]. In the rest of the paper we
develop methods to obtain partial solutions to this by using Runtime Verification (RV).

2.4 Runtime Verification and Monitors

The standard formalism to specify formal properties in RV is Linear Temporal Logic
(LTL) [21]. The syntax and semantics of LTL is the same of ATL∗ (Def. 2-4), with
state formulas ϕ ::= q (i.e., no strategic operators are allowed).

Definition 6 (Monitor). LetM be an iCGS and ψ be an LTL property. Then, a monitor
for ψ is a function MonMψ : S+ → B3, where B3 = {>,⊥, ?}:

MonMψ (h) =


> ∀p∈Sω (M,h · p) |= ψ

⊥ ∀p∈Sω (M,h · p) 6|= ψ

? otherwise.

where the path p is a valid continuation of the history h in M .

Intuitively, a monitor returns> if all continuations of h satisfy ψ;⊥ if all continuations
of h violate ψ; ? otherwise. The first two outcomes are standard representations of
satisfaction and violation, while the third is specific to RV. In more detail, it denotes
when the monitor cannot conclude any verdict yet. This is closely related to the fact
that RV is applied while the system is still running, and not all information about it are
available. For instance, a property might be currently satisfied (resp., violated) by the
system, but violated (resp., satisfied) in the (still unknown) future. The monitor can only
safely conclude any of the two final verdicts (> or⊥) if it is sure such verdict will never
change. The addition of the third outcome symbol ? helps the monitor to represent its
uncertainty w.r.t. the current system execution.

2.5 Negative and Positive Sub-models

Now, we recall two definitions of sub-models and some preservation results, defined in
[15], that we will use in our verification procedure.

Definition 7 (Negative and Positive sub-models). Given an iCGSM = 〈Ag,AP, S, sI ,
{Acti}i∈Ag, {∼i}i∈Ag, d, δ, V 〉, we denote with M ′ = 〈Ag,AP, S′, sI , {Acti}i∈Ag,
{∼′i}i∈Ag, d′, δ′, V ′〉 a negative sub-model of M , formally M ′ ⊆ M , such that: S′ =
S? ∪ {st}, where S? ⊆ S and sI ∈ S?; ∼′i is defined as the corresponding ∼i re-
stricted to S?; the protocol function is defined as d′(i, s) = d(i, s), for every s ∈ S?
and d′(i, st) = Acti, for all i ∈ Ag; given a transition δ(s,~a) = s′, if s, s′ ∈
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S? then δ′(s,~a) = δ(s,~a) = s′ else if s′ ∈ S \ S? and s ∈ S′ then δ′(s,~a) =
st; for all s ∈ S?, V ′(s) = V (s) and V ′(st) = ∅. Furthermore, we denote with
M∗ = 〈Ag,AP, S′, sI , {Acti}i∈Ag, {∼′i}i∈Ag, d′, δ′, V ∗〉 a positive sub-model of M ,
formally M∗ ⊆M , such that: V ∗(s) = V (s) and V ∗(st) = AP .

The intuition behind the above sub-models is to remove the imperfect information
by replacing each state involved in ∼ with a sink state st that under (resp., over) ap-
proximates the verification of ATL formulas in negative (resp., positive) sub-models.
We conclude this part by recalling two preservation results presented in [15].

Lemma 1. Given a model M , a negative (resp., positive) sub-model with perfect infor-
mation M ′ (resp., M∗) of M , and a formula ϕ of the form ϕ = 〈〈A〉〉ψ (or [[A]]ψ) for
some A ⊆ Ag. For any s ∈ S′ \ {st}, we have that:

M ′, s |= ϕ⇒M, s |= ϕ M∗, s 6|= ϕ⇒M, s 6|= ϕ

3 Our procedure

In this section, we provide a procedure to handle games with imperfect information and
perfect recall strategies, a problem in general undecidable. The overall model checking
procedure is described in Algorithm 1. It takes in input a model M , a formula ϕ, and a
trace h (denoting an execution of the system) and calls the function Preprocessing() to
generate the NNF of ϕ and to replace all negated atoms with new positive atoms inside
M and ϕ. After that, it calls the function FindSub-models() to generate all the positive
and negative sub-models that represent all the possible sub-models with perfect infor-
mation of M . Then, there is a while loop (lines 4-7) that for each candidate checks the
sub-formulas true on the sub-models via CheckSub-formulas() and returns a result
via RuntimeV erification(). For additional details on Preprocessing(), FindSub-
models(), and CheckSub-formulas() see [15].

Algorithm 1 ModelCheckingProcedure (M , ϕ, h)
1: Preprocessing(M,ϕ);
2: candidates = FindSub-models(M,ϕ);
3: finalresult = ∅;
4: while candidates is not empty do
5: extract 〈Mn,Mp〉 from candidates;
6: result = CheckSub-formulas(〈Mn,Mp〉, ϕ);
7: finalresult = RuntimeV erification(M,ϕ, h, result) ∪ finalresult;
8: return finalresult;

Now, we focus on the last step, the procedure RuntimeV erification(). It is per-
formed at runtime, directly on the actual system. In previous steps, the sub-models
satisfying (resp., violating) sub-properties ϕ′ of ϕ are generated, and listed into the set
result. In Algorithm 2, we report the procedure performing runtime verification on the
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system. Such algorithm gets in input the model M , an ATL property ϕ to verify, an
execution trace h of events observed by executing the system, and the set result con-
taining the sub-properties of ϕ that have been checked on sub-models of M . First, in
lines 2-3, M and ϕ are updated according to the atoms listed in result. This step is
used to identify in M and ϕ which sub-formulas have already been verified through
CheckSub-formulas(). The two resulting functions are not reported for space con-
straints, but their full description can be found in [15]. Note that, UpdateFormula()
produces two new ATL formulas (ψn, ψp), which correspond to the updated version of
ϕ for the negative and positive sub-models, respectively. Once ψn and ψp have been
generated, they need to be converted into their corresponding LTL representation to
be verified at runtime. This translation is obtained by removing the strategic operators,
while leaving the temporal ones (and the atoms). The resulting two new LTL properties
ϕn and ϕp are so obtained (lines 4-5). Finally, by having these two LTL properties,
the algorithm proceeds generating (using the standard LTL monitor generation algo-
rithm [3]) the corresponding monitors MonM

′

ϕn
and MonM

′

ϕp
. Such monitors are then

used by Algorithm 2 to check ϕn and ϕp over an execution trace h given in input.
The latter consists in a trace observed by executing the system modelled by M ′ (so,
the actual system). Analysing h the monitor can conclude the satisfaction (resp., viola-
tion) of the LTL property under analysis (w.r.t. the model M ′). However, only certain
results can actually be considered valid. Specifically, when MonM

′

ϕn
(h) = >, or when

MonM
′

ϕp
(h) = ⊥. The other cases, which may include the inconclusive verdict (?), are

considered undefined, since nothing can be concluded at runtime. The reason why the
conditions in lines 8-9 are enough to conclude > and ⊥ directly follow from the fol-
lowing lemmas. The rest of the algorithm is only for storing how the sub-formulas have
been verified, whether at runtime (i.e., stored in ϕrv), at static time (i.e., stored in ϕmc),
or not at all (i.e., stored in ϕunchk).

Algorithm 2 RuntimeV erification (M , ϕ, h, result)
1: k = ?;
2: M ′ = UpdateModel(M , result);
3: 〈ψn, ψp〉 = UpdateFormula(ϕ, result);
4: ϕn = FromATLtoLTL(ψn, n);
5: ϕp = FromATLtoLTL(ψp, p);
6: MonM

′
ϕp

= GenerateMonitor(ϕp);

7: MonM
′

ϕn
= GenerateMonitor(ϕn);

8: if MonM
′

ϕn
(h) = > then k = >;

9: if MonM
′

ϕp
(h) = ⊥ then k = ⊥;

10: ϕunchk = ∅;
11: for ϕ′ ∈ ϕrv do
12: MonM

′
ϕ′ = GenerateMonitor(ϕ′);

13: if MonM
′

ϕ′ (h) = ? then ϕrv = ϕrv \ ϕ′; ϕunchk = ϕunchk ∪ ϕ′;

14: return 〈k, ϕmc, ϕrv, ϕunchk〉;
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We present the preservations results to provide the correctness of our algorithm.

Lemma 2. Given a model M and a formula ϕ, for any history h of M starting in sI ,
we have that:

MonϕLTL
(h) = > =⇒ M, sI |= ϕAg

MonϕLTL
(h) = ⊥ =⇒ M, sI 6|= ϕ∅

where ϕLTL is the variant of ϕ where all strategic operators are removed, ϕAg is the
variant of ϕ where all strategic operators are converted into 〈〈Ag〉〉, ϕ∅ is the variant of
ϕ where all strategic operators are converted into 〈〈∅〉〉.

Due to the limited space, the proof is omitted. It can be found in [16]. However, it
is important to evaluate in depth the meaning of the lemma presented above.

Remark 1. Lemma 2 shows a preservation result from RV to ATL∗ model checking
that needs to be discussed. If our monitor returns true we have two possibilities: (1)
the procedure found a negative sub-model in which the original formula ϕ is satisfied
then it can conclude the verification procedure by using RV only by checking that the
atom representing ϕ holds in the initial state of the history h given in input; (2) a sub-
formula ϕ′ is satisfied in a negative sub-model and at runtime the formula ϕAg holds on
the history h given in input. While case (1) gives a preservation result for the formula
ϕ given in input, case (2) checks formula ϕAg instead of ϕ. That is, it substitutes Ag
as coalition for all the strategic operators of ϕ but the ones in ϕ′. So, our procedure
approximates the truth value by considering the case in which all the agents in the game
collaborate to achieve the objectives not satisfied in the model checking phase. That is,
while in [5,8] the approximation is given in terms of information, in [4] is given in terms
of memory of strategies, and in [15] the approximation is given by generalizing the
logic, here we give results by approximating the coalitions. So, the main limitation of
our approach concerns this aspect. Furthermore, we recall that our procedure produces
always results, even partial. This aspect is strongly relevant in concrete scenario in
which there is the necessity to have some sort of verification results. For example, in
the context of swarm robots [19], with our procedure we can verify macro properties
such as "the system works properly" since we are able to guarantee fully collaboration
between agents because this property is relevant and desirable for each agent in the
game. The same reasoning described above, can be applied in a complementary way
for the case of positive sub-models and the falsity.

Theorem 1. Algorithm 1 terminates in double-exponential time. Moreover, Algorithm 1
is sound: if the value returned is different from ?, then M |= ϕ iff k = >.

Due to the limited space, the proof is omitted (see [16] for details).

4 Our tool

The algorithms presented previously have been implemented in Java3. The resulting tool
implementing Algorithm 1 allows to extract all sub-models with perfect information

3 The tool can be found at https://github.com/AngeloFerrando/StrategyRV

https://github.com/AngeloFerrando/StrategyRV
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that satisfy a strategic objective from a model given in input. The extracted sub-models,
along with the corresponding sub-formulas, are then used by the tool to generate and
execute the corresponding monitors over a system execution (Algorithm 2). In more
detail, as shown in Figure 1, the tool expects a model in input formatted as a Json file.
This file is then parsed, and an internal representation of the model is generated. After
that, the verification of a sub-model against a sub-formula is achieved by translating
the sub-model into its equivalent ISPL (Interpreted Systems Programming Language)
program, which then is verified by using the model checker MCMAS4[20]. This corre-
sponds to the verification steps performed in CheckSub-formulas() (i.e., where static
verification through MCMAS is used). For each sub-model that satisfies this verification
step, the tool produces a corresponding tuple; which contains the information needed
by Algorithm 2 to complete the verification at runtime. The entire manipulation, from
parsing the model formatted in Json, to translating the latter to its equivalent ISPL pro-
gram, has been performed by extending an existent Java library [9]; the rest of the tool
derives directly from the algorithms presented in this paper. The monitors are obtained
using LamaConv [22], which is a Java library capable of translating expressions in tem-
poral logic into equivalent automata and generating monitors out of these automata. For
generating monitors, LamaConv uses the algorithm presented in [3].

LTL property
ϕ

iCGS
M

Execution
trace

h

Our tool

.json

{〈si, ψi, atomψi〉, . . . , 〈sj , ψj , atomψj 〉}

M ′

internal
representation

〈ψn, ψp〉

〈ϕn, ϕp〉

to LTL

〈Monϕn ,Monϕp〉

parsing

RV

〈k, ϕmc, ϕrv, ϕunchk〉

MC

MCMAS

LamaConv

Fig. 1: Overview of the implemented tool.

4.1 Experiments

We tested our tool on a large set of automatically and randomly generated iCGSs. The
objective of these experiments was to show how many times our algorithm returned a
conclusive verdict. For each model, we ran our procedure and counted the number of
times a solution was returned. Note that, our approach concludes in any case, but since
the general problem is undecidable, the result might be inconclusive (i.e., ?). In Fig-
ure 2, we report our results by varying the percentage of imperfect information (x axis)
inside the iCGSs, from 0% (perfect information, i.e., all states are distinguishable for

4 https://vas.doc.ic.ac.uk/software/mcmas/

https://vas.doc.ic.ac.uk/software/mcmas/
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all agents), to 100% (no information, i.e., no state is distinguishable for any agent). For
each percentage selected, we generated 10000 random iCGSs and counted the number
of times our algorithm returned with a conclusive result (i.e.,> or⊥). As it can be seen
in Figure 2, our tool concludes with a conclusive result more than 80% of times. We
do not observe any relevant difference amongst the different percentage of information
used in the experiments. This is due to the random nature of the iCGSs used. Moreover,
the results we obtained depend on the topology of the iCGSs, so it is very hard to pre-
cisely quantify the success rate. However, the results obtained by our experiments using
our procedure are encouraging. Unfortunately, no benchmark of existing iCGSs exists,
thus these results may vary on more realistic scenarios. Nonetheless, considering the
large set of iCGSs we experimented on, we do not expect substantial differences.

Fig. 2: Success rate of our tool when applied to a set of randomly generated iCGSs.

Other than testing our tool w.r.t. the success rate over a random set of iCGSs, we
evaluated the execution time as well. Specifically, we were much interested in analysing
how such execution time is divided between CheckSub-formulas() and Algorithm 2.
I.e., how much time is spent on verifying the models statically (through model check-
ing), and how much is spent on verifying the temporal properties (through runtime veri-
fication). Figure 3 reports the results we obtained on the same set of randomly generated
ICGSs used in Figure 2. The results we obtained are intriguing, indeed we can note a
variation in the percentage of time spent on the two phases (y-axis) moving from low
percentages to high percentages of imperfect information in the iCGSs (x-axis). When
the iCGS is close to have perfect information (low percentages on x-axis), we may ob-
serve that most of the execution time is spent on performing static verification (∼70%),
which corresponds to CheckSub-formulas(). On the other hand, when imperfect in-
formation grows inside the iCGS (high percentage on x-axis), we may observe that most
of the execution time is spent on performing runtime verification (∼90% in occurrence
of absence of information). This behaviour is determined by the number of candidates
extracted by the FindSub-models() function. When the iCGS has perfect information,
such function only extracts a single candidate (i.e., the entire model), since FindSub-
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models() generates only one tuple. Such single candidate can be of non-negligible size,
and the resulting static verification, time consuming; while the subsequent runtime ver-
ification is only performed once on the remaining temporal parts of the property to ver-
ify. On the other hand, when the iCGS has imperfect information, FindSub-models()
returns a set of candidates that can grow exponentially w.r.t. the number of states of the
iCGS. Nonetheless, such candidates are small in size, since FindSub-models() splits
the iCGS into multiple smaller iCGSs with perfect information. Thus, the static verifi-
cation step is applied on small iCGSs and require less execution time; while the runtime
verification step is called for each candidate (so an exponential number of times) and is
only influenced by the size of the temporal property to verify.

Fig. 3: How the execution time of our tool when applied to randomly generated iCGSs is divided.

In conclusion, it is important to emphasise that, even though the monitor synthesis
is computationally hard (i.e., 2EXPTIME), the resulting runtime verification process
is polynomial in the size of the history analysed. Naturally, the actual running complex-
ity of a monitor depends on the formalism used to describe the formal property. In this
work, monitors are synthesised from LTL properties. Since LTL properties are trans-
lated into Moore machines [3], the time complexity w.r.t. the length of the analysed
trace is linear. This can be understood intuitively by noticing that the Moore machine
so generated has finite size, and it does not change at runtime.

5 Conclusions and Future work

The work presented in this paper follows a standard combined approach of formal ver-
ification techniques, where the objective is to get the best of both. We considered the
model checking problem of MAS using strategic properties that is undecidable in gen-
eral, and showed how runtime verification can help by verifying part of the properties
at execution time. The resulting procedure has been presented both on a theoretical
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(theorems and algorithms) and a practical level (prototype implementation). Note that
this is the first attempt of combining model checking and runtime verification to verify
strategic properties on MAS. Thus, even though our solution might not be optimal, it is
a milestone for the corresponding lines of research. Additional works will be done to
improve the technique and, above all, its implementation. For instance, we are planning
to extend this work by considering a more predictive flavour.
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