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Since 2009, Moving Target Defense (MTD) has become a new paradigm of
defensive mechanism that frequently changes the state of the target system
to confuse the attacker. This frequent change is costly and leads to a trade-
off between misleading the attacker and disrupting the quality of service.
Optimizing the MTD activation frequency is necessary to develop this de-
fense mechanism when facing realistic, multi-step attack scenarios. Attack
modeling formalisms based on DAG are prominently used to specify these
scenarios. Our contribution is a new DAG-based formalism for MTDs and
its translation into a Price Timed Markov Decision Process to find the best ac-
tivation frequencies against the attacker’s time/cost-optimal strategies. For
the first time, MTD activation frequencies are analyzed in a state-of-the-
art DAG-based representation. Moreover, this is the first paper that consid-
ers the specificity of MTDs in the automatic analysis of attack modeling
formalisms. Finally, we present some experimental results using Uppaal
StRatego to demonstrate its applicability and relevance.
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1 INTRODUCTION
There is an asymmetry between the attacker and the defender. The
defender mostly has static defenses, and the attacker can spend
a quasi-unlimited time analyzing the defensive system and find-
ing a vulnerability. Moving Target Defense (MTD) is a defense para-
digm formalized in 2009 [Ghosh et al. 2009] that aims at breaking
this asymmetry by frequently changing the defended system state.
An MTD is defined with three attributes: (i) the moving parameter ,
that is, the system parameter that will be changed, (ii) the set of
valid moving parameter values and a transition function for its next
value, and (iii) how frequently the state changes. Changing a server
IP address uniformly at random in IPs of the form 192.122.X.Y every
20 minutes is an example of well-definedMTD (cf., IP shuffling [An-
tonatos et al. 2007; Clark et al. 2013; Dunlop et al. 2011]). Many sci-
entific publications have addressed MTDs since 2009, including the
surveys [Navas et al. 2021; Okhravi et al. 2014; Sengupta et al. 2020;
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Ward et al. 2018] and the books [Jajodia et al. 2012, 2011]. How-
ever, it is not a mature research field because some challenges like
the cost-benefits trade-off remain unsolved. The choice of the acti-
vation frequency for time-based MTDs has a great impact on the
defense effectiveness and applicability. A higher frequency implies
less time for the attacker to exploit vulnerability but also implies
cost and may reduce the quality of service.The problems addressed
by this paper are (i) how to model multi-step attacks on a complex
system defended with MTDs and (ii) how to find optimal MTD ac-
tivation frequencies in such a model.

We take inspiration from prominent attack modeling formalisms
based on Directed Acyclic Graph (DAG) [Kordy et al. 2014b], such
as Attack Tree (AT) [Mauw and Oostdijk 2006] or Attack Defense
Tree (ADT) [Kordy et al. 2011]. It permits to hierarchically model
threats, their causes, and defenses (for ADT) to represent the possi-
ble attack paths and countermeasures. Using this hierarchical rep-
resentation, we optimize activation frequencies for theMTDs using
a two-player game on a Priced Timed Automata [David et al. 2014]
between the attacker and the defender. We can use state-of-the-art
strategic model checkers like Uppaal StRatego [David et al. 2015]
to extract the optimal strategies.

Our contribution is twofold. First, we introduce a DAG-based
graphical model of attack scenarios with MTD countermeasures
called the Attack Moving target defense DAG (AMG). We try to find
an optimal balance between expressibility, ease of use, and intu-
ition of the formalism. Second, we propose a way to automatically
construct a Priced Timed Markov Decision Process (PTMDP) [David
et al. 2014] from our AMG to compute the attack time and cost
distributions under different optimal attacker’s strategies. We com-
pute it for different MTD activation frequencies to optimize them.
To our knowledge, our paper is the first that proposes a method
to analyze the impact of MTDs activation frequencies and helps to
evaluate an optimal set of activation frequencies for a given system
defended with MTDs.

The paper is organized as follows. Section 2 introduces back-
ground concepts, Section 3 gives a motivating example, Section 4
presents the AMG model translated into a PTMDP in Section 5.
Section 6 solves a concrete use case with Uppaal StRatego. Limi-
tations are discussed in Section 7. Related works are presented in
Section 8 and finally, Section 9 concludes the paper.

2 BACKGROUND
We present, as a background, ATs and PTMDPs. We also define
strategies and runs on the PTMDP.

2.1 Attack Tree
ATs [Mauw and Oostdijk 2006] and their derivatives are graphical
security models representing the hierarchical structures of attacks
in a tree. The original inspiration comes from Weiss’ threat logic
trees for reliability in 1991 [Weiss 1991].
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Fig. 1. Example of a DAG-based structure with MTDs for an electricity meter. Refinements are below subgoals or omitted for single child subgoals.

Definition 2.1 (Attack Tree). An AT ⟨N, E, 𝑔0,⋄⟩ is a rooted tree
structure with a finite set of nodes N, edges E ⊆ N×N, root 𝑔0 ∈ N
called the main goal. Let I ⊆ N be the set of inner-nodes (nodes
with descendants) called subgoals. The list ⋄ = (⋄𝑔)𝑔∈I assigns a
refinement ⋄𝑔 ∈ {∧,∨} for each subgoal 𝑔. The leaves of the tree
are called atomic attacks or basic actions.

Let 𝑔 be a subgoal. If ⋄𝑔 is a conjunctive refinement (∧), then
𝑔’s achievement requires all its children to be completed. If 𝑔 is a
disjunctive refinement (∨), then 𝑔’s achievement requires at least
one of its children to be completed.Sometimes, a “sequential and”
refinement is considered [Camtepe and Yener 2007; Lv and Li 2011],
but we will disregard it.

2.2 Priced Timed Markov Decision Process
Our formalism for PTMDP is identical to the one defined in [David
et al. 2014], except that we allow a transition cost in addition to
the location cost. These two types of costs are standard. For exam-
ple, we find them in the Priced Timed Automata (PTA) definition
in [Behrmann et al. 2005].

To define a PTMDP, we first need to specify what a clock is and
define the clock constraints. A clock is variable in the non-negative
real numbers (denoted R+) representing the time. Let 𝑋 be a set of
clocks. It is always implicitly assumed that the clocks of a clock
set progress synchronously. We define B(𝑋 ) as the set of clock
constraints generated by the grammar with start symbol and non-
terminal 𝑔 and rule 𝑔 → 𝑥 ⊲⊳ 𝑛 | 𝑥 − 𝑦 ⊲⊳ 𝑛 | 𝑔 ∧ 𝑔 | 𝜀 where
𝑥,𝑦 ∈ 𝑋 , ⊲⊳∈ {≤, <,=, >, ≥}, 𝑛 ∈ N, and 𝜀 is the empty string. Given
a clock set 𝑋 , a valuation 𝑣 is a function 𝑣 : 𝑋 ↦→ R+. We call
V𝑋 the set of valuations on 𝑋 , or simply V when the clock set is
clear in the context. For 𝑣 ∈ V , 𝑣 is valid given a clock constraint
𝑠 ∈ B(𝑋 ), denoted 𝑣 ⊨ 𝑠 , if the formula 𝑠 is true when we evaluate
the clocks in 𝑠 with 𝑣 . For 𝑏 ∈ R+, we denote 𝑣 + 𝑏 the valuation
s.t. (𝑣 + 𝑏)(𝑥) = 𝑣 (𝑥) + 𝑏 for 𝑥 ∈ 𝑋 , and for a subset 𝑌 ⊆ 𝑋 , we
denote 𝑣 [𝑌 ] the valuation where 𝑣 [𝑌 ] (𝑥) = 𝑣 (𝑥) for 𝑥 ∈ 𝑋 \𝑌 and
𝑣 [𝑌 ] (𝑥) = 0 otherwise.

A PTMDP is a two-player game on a priced timed stochastic
game structure where a player has a predefined strategy model-
ing the environment.

Definition 2.2 (Priced Timed Markov Decision Process). A PTMDP
is a tupleM = ⟨𝐿, ℓ0, 𝑋, Σ𝑐 , Σ𝑢 , 𝐸, 𝜔, 𝜒, 𝜄, 𝜇𝑢⟩ where 𝐿 is the finite set
of locations, ℓ0 ∈ 𝐿 is the initial location, 𝑋 is a set of synchronous
clocks, Σ𝑐 is the finite set of controllable actions, Σ𝑢 is the finite set
of uncontrollable actions, 𝐸 ⊆ 𝐿×B(𝑋 )×(Σ𝑐∪Σ𝑢 )×𝐿 is a transition
relation, 𝜔 : 𝐿 ∪ 𝐸 ↦→ N assigns cost rates to locations and costs to
edges, 𝜒 : 𝐸 ↦→ 2𝑋 gives the set of clocks reset after a transition,
𝜄 : 𝐿 ↦→ B(𝑋 ) assigns invariants to locations, and 𝜇𝑢 : 𝐿 × V ↦→
(R+ × Σ𝑢 ↦→ [0, 1]) gives a density function for each location ℓ and
valid valuation 𝑣 ∈ V s.t. for 𝐵 = {𝑏 ∈ R+ | ∀𝑏 ′ ∈ [0, 𝑏], 𝑣 + 𝑏 ′ ⊨
𝜄 (ℓ)}, it holds:
• ∑

𝛼 ∈Σ𝑢
∫
𝑏∈𝐵 𝜇𝑢 (ℓ, 𝑣) (𝑏, 𝛼) = 1 and,

• For 𝛼 ∈ Σ𝑢 and 𝑏 ∈ R+ \ 𝐵, 𝜇𝑢 (ℓ, 𝑣) (𝑏, 𝛼) = 0 and,
• For 𝛼 ∈ Σ𝑢 and 𝑏 ∈ 𝐵, if 𝜇𝑢 (ℓ, 𝑣) (𝑏, 𝛼) > 0, there exists
𝑠 ∈ B(𝑋 ), ℓ ′ ∈ 𝐿, and 𝑒 = (ℓ, 𝑠, 𝛼, ℓ ′) ∈ 𝐸 s.t. 𝑣 + 𝑏 ⊨ 𝜄 (ℓ) ∧ 𝑠
and (𝑣 + 𝑏) [𝜒 (𝑒)] ⊨ 𝜄 (ℓ ′).

In the definition, 𝜇𝑢 (ℓ, 𝑣)(𝑏, 𝛼) is the density for the environ-
ment aiming at taking an uncontrollable action 𝛼 ∈ Σ𝑢 after a
delay 𝑏 ∈ R+ respecting the transitions and invariants. The set 𝐵
contains delays s.t. it is still possible to stay in ℓ .For the rest of
this paper, when a general PTMDPM is given, we assumeM =
⟨𝐿, ℓ0, 𝑋, Σ𝑐 , Σ𝑢 , 𝐸, 𝜔, 𝜒, 𝜄, 𝜇𝑢⟩. For a location ℓ ∈ 𝐿, we say that a
valuation 𝑣 on 𝑋 is valid in ℓ if 𝑣 ⊨ 𝜄 (ℓ).

The concept of memoryless strategy on a PTMDP is formalized
as follows: intuitively it is a function that assigns a density to the
subsequent possible actions of the player given the current state of
the game.

Definition 2.3 (Memoryless Strategy). A memoryless strategy 𝜇𝑐

over a PTMDPM is a function 𝜇𝑐 : 𝜇𝑐 : 𝐿×V ↦→ (R+×Σ𝑐 ↦→ [0, 1])
s.t. for ℓ ∈ 𝐿, 𝑣 ∈ V , and 𝐵 = {𝑏 ∈ R+ | ∀𝑏 ′ ∈ [0, 𝑏], 𝑣 + 𝑏 ′ ⊨ 𝜄 (ℓ)},
it holds:

• ∑
𝛼 ∈Σ𝑐

∫
𝑏∈𝐵 𝜇𝑐 (ℓ, 𝑣) (𝑏, 𝛼) = 1 and,

• For 𝛼 ∈ Σ𝑐 and 𝑏 ∈ R+ \ 𝐵, 𝜇𝑐 (ℓ, 𝑣) (𝑏, 𝛼) = 0 and,
• For 𝛼 ∈ Σ𝑐 and 𝑏 ∈ R+, if 𝜇𝑐 (ℓ, 𝑣) (𝑏, 𝛼) > 0, there exists
𝑠 ∈ B(𝑋 ), ℓ ′ ∈ 𝐿, and 𝑒 = (ℓ, 𝑠, 𝛼, ℓ ′) ∈ 𝐸 s.t. 𝑣 + 𝑏 ⊨ 𝜄 (ℓ) ∧ 𝑠
and (𝑣 + 𝑏) [𝜒 (𝑒)] ⊨ 𝜄 (ℓ ′).
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We can notice the similarity with the environment’s 𝜇𝑢 , which
is a memoryless strategy for uncontrollable actions. We can extend
the definition by allowing Dirac distributions for discrete probabil-
ities and adding an extra action 𝛼wait which means waiting forever
and is available only is 𝑣 + 𝑏 ⊨ 𝜄 (ℓ) for all 𝑏 ∈ R+.

Let M be a PTMDP and 𝑄 = {(ℓ, 𝑣) ∈ 𝐿 × V | 𝑣 ⊨ 𝜄 (ℓ)} be
the valid state-valuation pairs. Runs are valid sequences from 𝑄
recording time and cost.

Definition 2.4 (Run). For a PTMDPM, let 𝑇 ⊆ 𝑄 × (R+ ∪ Σ𝑐 ∪
Σ𝑢 ) × N2 × 𝑄 , s.t. for ((ℓ1, 𝑣1), 𝑒, 𝑡, 𝑐, (ℓ2, 𝑣2)) ∈ 𝑇 , 𝑒 represents an
action or a delay, 𝑡 the cumulative time, 𝑐 the cumulative cost, and
we have
• if 𝑒 ∈ R+ then ℓ2 = ℓ1 and 𝑣2 = 𝑣1 + 𝑒 .
• if 𝑒 ∈ Σ𝑐 ∪ Σ𝑢 then there exists 𝑠 ∈ B(𝑋 ) with 𝑣1 ⊨ 𝑠 such

that 𝑒 ′ = (ℓ1, 𝑠, 𝑒, ℓ2) ∈ 𝐸 and 𝑣2 (𝑥) = 0 if 𝑥 ∈ 𝜒 (𝑒 ′) or
𝑣2 (𝑥) = 𝑣1 (𝑥) otherwise.

Let 𝜂 : N2 × (R+ ∪ Σ𝑐 ∪ Σ𝑢 ) ×𝑄 ↦→ N2 be a function returning the
next cumulative time and cost, s.t, for (𝑡, 𝑐, 𝑒, (ℓ, 𝑣)) ∈ N2 × (R+ ∪
Σ𝑐 ∪ Σ𝑢 ) ×𝑄 ,

𝜂 (𝑡, 𝑐, 𝑒, (ℓ, 𝑣)) =
{
(𝑡 + 𝑒, 𝑐 + 𝑒𝜔 (ℓ)) if 𝑒 ∈ R+

(𝑡, 𝑐 + 𝜔 (𝑒)) if 𝑒 ∈ Σ𝑐 ∪ Σ𝑢

A run inM is a finite or infinite sequence 𝑆 of elements of 𝑇 s.t.
two consecutive elements (𝑞1, 𝑒, 𝑡, 𝑐, 𝑞2) and (𝑞′1, 𝑒

′, 𝑡 ′, 𝑐 ′, 𝑞′2) verify
𝑞2 = 𝑞′1 and (𝑡 ′, 𝑐 ′) = 𝜂 (𝑡, 𝑐, 𝑒 ′, 𝑞′1). We denote R the set of runs, R𝑘
the set of runs of length 𝑘 ∈ N, and R0 the set of runs from the top,
i.e., R0 = {(𝑞𝑖 , 𝑒𝑖 , 𝑡𝑖 , 𝑐𝑖 , 𝑞′𝑖 )𝑖∈{1,... } ∈ R | 𝑞1 = (ℓ0, 𝑣0) ∧ (𝑡1, 𝑐1) =
𝜂 (0, 0, 𝑒1, (ℓ0, 𝑣0))} where 𝑣0 is the null valuation.

For 𝑘 ∈ N and a run 𝑟 ∈ R𝑘 we denote 𝑇 (𝑟 ) = 𝑐 and 𝐶 (𝑟 ) = 𝑐
where (𝑞1, 𝑒, 𝑡, 𝑐𝑞2) is the last element of 𝑟 . A PTMDPM with a con-
troller strategy 𝜇𝑐 defines a probability measure PM,𝜇𝑐 on subsets
of R0 giving their probability to happen. Consequently,𝑇 and (resp.
𝐶) can be seen as a random variable giving the time (resp. cost) of
a possible run on the probability space (R0, 2R0 , PM,𝜇𝑐 ) induced
by PM,𝜇𝑐 . We denote EM,𝜇𝑐 [𝑋 ] the expected value of a random
variable 𝑋 and EM,𝜇𝑐 [𝑋 | 𝑅] its conditional expectation given an
event 𝑅 ⊆ R0.

3 MOTIVATING EXAMPLE
After studying an electricity meter, a team of engineers from an
electricity provider find potential threats and attack paths to report
wrong electricity consumption. They obtain the DAG-based graph
of Fig. 1 composed of black rectangles defining subgoals and the red
octagons representing atomic attacks. The engineers also identify
the features of a potential attack: the duration of each atomic attack
step, their success probability, and their cost for the attacker. The
electricity providers have a set of MTDs to harden the attacker’s
task. The MTDs are the nodes in red in Fig. 1. They are attached to
nodes that they defend by resetting the attack on the nodes. Fig. 1
can be read as follows. In order to achieve the main goal of report-
ing a fake consumption (𝑔0), the attacker can either tamper with the
communication (𝑔𝑡𝑐 ), the device hardware (𝑔𝑡ℎ), or the device soft-
ware (𝑔𝑡𝑠 ). Moreover, the attacker must intercept the connection

(𝑎𝑖𝑐 ) and alter the data (𝑎𝑎𝑑 ) to temper the communication. How-
ever, the attack of altering the data is protected by an MTD that
changes the communication key periodically (𝑑𝑑𝑘 ). The rest of the
graph can be interpreted in similar ways.

The problem is that MTDs are costly. For example, changing the
communication key when nobody is attacking the system makes
the communication longer for the regular user. As a result, the
defender must parametrize the MTDs carefully. This parameter is
the activation frequency of the different MTDs. The higher the fre-
quency is, the more the quality of service is impacted, and the more
the MTD prevents the attack. Thus, we need to find a way to eval-
uate a given configuration of MTDs. The attacker is in a multi-
objective optimization situation because he needs to minimize his
cost and attack time. Moreover, the cost and the time are a density
function given a strategy for the attacker because the success of the
attacks and defenses is stochastic.

4 ATTACK MOVING TARGET DEFENSE DAG (AMG)
This section presents the AMG, our extension of AT [Mauw and
Oostdijk 2006] for MTDs.

4.1 Objective
In our model, MTDs forces the attacker to redo attacks with a given
probability because the system state has changed. Moreover, we
want to consider the attacker extra cost involved. Consequently,
we need a model that considers time cost, and probability. In order
to allow various attack paths, we will model the multi-step attack
as a rooted DAG that is more general than a tree. We will allow
conjunction and disjunction refinements for subgoals.The goal will
be to translate the AMG into a automata to automatically compute
the best attacker strategy using model checkers.

4.2 Model
We define the AMG as a DAG-based structure with MTDs, time,
cost, and probabilistic attributes. Fig. 1 is an example of AMG.

Definition 4.1 (Attack Moving Target Defense DAG). We define an
AMG as a tuple T = ⟨N, E, 𝑔0,⋄,D, 𝑐, 𝑐 ′, 𝑡, 𝑝,Δ⟩, s.t. N is a set of
nodes, the pair ⟨N, E⟩ forms a rooted DAG with root 𝑔0 ∈ N, and
edges E ⊆ N × N. Given the AMG, the set A refers to the leaves
of ⟨N, E⟩ and its elements are called atomic attacks, and G refers
to the inner-nodes of ⟨N, E⟩ and its elements are called subgoals.
The list ⋄ = {⋄𝑔}𝑔∈G assigns a refinement ⋄𝑔 ∈ {∧,∨} for each
subgoal 𝑔 ∈ G. The set D is the set of MTDs. The root 𝑔0 is called

Table 1. Attributes of an AMG T = ⟨N, E, 𝑔0, ⋄,D, 𝑐, 𝑐′, 𝑡, 𝑝,Δ ⟩.

Attribute Domain Definition

Atomic attack 𝑎 ∈ A

𝑡𝑎 N completion time
𝑝𝑎 [0, 1] success probability
𝑐𝑎 N activation cost
𝑐′𝑎 N cost rate

MTD 𝑑 ∈ D
𝑡𝑑 N activation period
𝑝𝑑 [0, 1] success probability
Δ𝑑 N nodes defended by 𝑑

Subgoal 𝑔 ∈ G ⋄𝑔 {∧,∨} refinement
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the main goal of the attack. The lists 𝑐 = (𝑐𝑎)𝑎∈A and 𝑐 ′ = (𝑐 ′𝑎)𝑎∈A
give an activation cost 𝑐𝑎 ∈ N and a proportional cost 𝑐 ′𝑎 ∈ N (cost
of each unit of time that the atomic attack 𝑎 is activated) to each
atomic attack 𝑎 ∈ A. The list 𝑡 = (𝑡𝑛)𝑛∈A∪D assigns a completion
time 𝑡𝑎 ∈ N for each atomic attack 𝑎 ∈ A and an activation period
𝑡𝑑 ∈ N for each MTD 𝑑 ∈ D. The list 𝑝 = (𝑝𝑛)𝑛∈A∪D gives a success
probability at completion 𝑝𝑎 ∈ [0, 1] for each atomic attack 𝑎 ∈ A
and a success probability at activation 𝑝𝑑 ∈ [0, 1] for each MTD
𝑑 ∈ D. Finally, the listΔ = (Δ𝑑 )𝑑∈D assigns the setΔ𝑑 ⊆ N of nodes
that a MTD 𝑑 protects. The attributes are summarized in Table 1.

For the rest of this paper, when a general AMG T is given, we
assume T = ⟨N, E, 𝑔0,⋄,D, 𝑐, 𝑐 ′, 𝑡, 𝑝,Δ⟩, and A (resp. G) is the set of
leaves (resp. inner-nodes) of ⟨N, E⟩. Given an AMG T , we denote
OutT (𝑛) as the set of children of a node 𝑛 ∈ N or simply Out (𝑛)
when T is evident in the context. For a defense 𝑛 ∈ N, we will
use Δ−1𝑛 = {𝑑 ∈ D | 𝑛 ∈ Δ𝑑 } the set of MTDs that defend 𝑛. For
a rooted DAG ⟨N, E⟩, we call a directed path a sequence of nodes
𝑛1, . . . , 𝑛𝑘 ∈ N such that the edges (𝑛1, 𝑛2), . . . , (𝑛𝑘−1, 𝑛𝑘 ) are in E.
As ⟨N, E⟩ is rooted, a directed path exists from 𝑔0 to any nodes.

4.3 Informal semantics
Every node has the state completed or uncompleted. In addition, ev-
ery atomic attack and MTD has the state activated or deactivated.
The attacker goal is to turn 𝑔0 completed with the least time and
cost. The defender fixes the defenses periods (𝑡𝑑 )𝑑∈D once before
the attacker starts according to a user defined possible defense pe-
riods (too costly to activate very frequently). His goal is to make
the attack as costly and long as possible. As such, the AMG is inter-
preted in a timed environment. An atomic attack 𝑎 ∈ A has a com-
pletion clock 𝑥𝑎 initialized when the attack gets activated. When its
clock reaches the completion time (𝑥𝑎 = 𝑡𝑎), the attack can succeed
(resp. fail) with probability 𝑝𝑎 (resp. 1 − 𝑝𝑎). If the attack succeeds,
the atomic attack 𝑎 is completed. An MTD 𝑑 ∈ D is periodically ac-
tivated when the clock 𝑥𝑑 reaches 𝑡𝑑 , and the defense can succeed
(resp. fail) with probability 𝑝𝑑 (resp. 1−𝑝𝑑 ). At any time, the system
progresses with two sequential steps:
• Evaluation of the defenses. For each MTD, say 𝑑 ∈ D, that

gets activated (𝑥𝑑 = 𝑡𝑑 ) and succeeds (probability 𝑝𝑑 ), the
defended nodes (Δ𝑑 ) get uncompleted. Moreover, defended
atomic attacks get deactivated, and their completion clock is
reset, i.e., the attack step is reset with probability 𝑝𝑑 .
• Evaluation of the attack progression. Starting from the deeper

nodes (in a bottom-up fashion), every subgoal 𝑔 ∈ G gets
completed if its children’s conjunction (if ⋄𝑔 is ∧) or disjunc-
tion (if ⋄𝑔 is ∨) is completed. The subgoals do not get un-
completed if their completion condition are not satisfied any-
more, i.e., subgoals get uncompleted only by MTDs.

In addition, two asynchronous events can be triggered at any time:
• Atomic attack activation.The attacker can activate atomic at-

tacks that are not activated yet. Their completion clocks are
initialized to 0.
• Atomic attack completion. Every activated atomic attack, say
𝑎, such that (𝑥𝑎 = 𝑡𝑎) gets deactivated. The atomic attack is
completed with probability 𝑝𝑎 , or stays uncompleted with
probability 1 − 𝑝𝑎 .

𝑔

∧

𝑎1 𝑎2

𝑑

(a)

𝑔

∧
𝑎1 𝑎2

𝑑

(b)

𝑔

∧

𝑎1 𝑎2

𝑑

(c)

subgoal atomic attack MTD

Fig. 2. Three examples of the expressivity of AMG. In (a), at each successful
activation of 𝑑 , the subgoal 𝑔, and the atomic attacks 𝑎1 and 𝑎2 are uncom-
pleted (if they were completed). Moreover, 𝑎1 and 𝑎2 are deactivated (if
they were activated), and their completion clocks, say 𝑥𝑎1 and 𝑥𝑎2 , are set
back to 0. To complete 𝑔, the attacker must complete 𝑎1 and 𝑎2 again. If we
remove 𝑎2 from Δ𝑑 (case (b)), the completion status, the activation status,
and the completion clock of 𝑎2 are not affected by 𝑑 . To complete 𝑔, the at-
tacker needs only to complete 𝑎2 again. If we remove 𝑔 from Δ𝑔 (case (c)),
then 𝑔 acts as a backup point (later called a checkpoint). If 𝑔 is completed
once, then it stays completed even if its children are reset.

If these asynchronous events happen simultaneously between
them, or/and with a sequential step, the precedence is given with
uniform probability. Notice the difference between 𝑑𝑑𝑠𝑟 and 𝑑𝑐𝑝 in
Fig. 1: when 𝑎𝑓 𝑢𝑒 is completed once, its parent 𝑔ℎ𝑠 gets completed
forever, while the parent 𝑔𝑢𝑝 of 𝑎𝑠𝑝 is defended by 𝑑𝑐𝑝 . Our model
assumes that atomic attack probabilities of success are mutually in-
dependent and that several activations of the same atomic attack
succeed with an independent and identically distributed probabil-
ity. Moreover, as opposed to [Gadyatskaya et al. 2016a; Kumar et al.
2015], the attacker can activate as many different atomic attacks as
he wants at the same time. Nevertheless, the attacker is memory-
less: he knows only the current system state. As a result, he cannot
count how many times an atomic attack was activated or the pre-
viously completed atomic attack sequence.

4.4 Expressivity
We allow a node to have several MTDs and an MTD to defend sev-
eral nodes because we believe that is happening in real life. More-
over, our model lets us control where the attack has to be restarted
when a defense succeeds: if a subgoal 𝑔 is the conjunction 𝑎1 ∧ 𝑎2,
we can express some subtle behavior of an MTD 𝑑 . For instance, 𝑑
can turn 𝑔, 𝑎1, and 𝑎2 incomplete, and deactivate 𝑎1 and 𝑎2 (Fig. 2a).
It can also turn only 𝑔, and 𝑎1 incomplete, and deactivate only 𝑎1
(Fig. 2b). It can also turn incomplete and deactivate 𝑎1 and 𝑎2 but
keep 𝑔 completed if it was completed once (Fig. 2c).

It is essential to notice that, at a given moment of the attack,
some subgoals can be completed even if none of its descendants
is. The completed subgoal still contributes in the completion of its
parent (if any). This is the case in Fig. 2c if the attacker completes
𝑎1 and 𝑎2 (thus, 𝑔) and the MTD 𝑑 resets 𝑎1 and 𝑎2. As a result, the
status of all the nodes of the AMG is not given only by the status of
the leaves (as in a regular AT). This justifies the complexity of the
PTMDP interpretation of the AMG presented in Section 5.
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5 CONSTRUCTION OF THE PTMDP FOR AMG

5.1 Computing attack time, cost, and success probability
We want to build a PTMDP that represents the AMG because we
can exploit this structure to find some near-optimal strategies for
specific objectives. Ideally, we have a 2½-player game with the de-
fender, the attacker, and the stochastic environment (counting for ½).
The defender plays first by choosing the defense periods, and the
attacker plays the rest of the game, trying to reach the root of the
AMG. Nevertheless, we simplify the problem by assuming the de-
fender has already chosen a list of defense periods (𝑡𝑑 )𝑑∈D. The re-
sulting game is a 1½-player game where the attacker plays against
the environment. This simplification has two reasons. First, the at-
tacker effectively plays only against the environment. After all, the
defender plays first and only once. Second, the choice of MTD pe-
riods is not countable, so it is hard to express it in a finite game
structure. We can then compute, in the PTMDP, the reachability of
themain goal under time or cost constraints and compute strategies
for the attacker with minimal expected time or expected cost. With
this information, we can evaluate how good is a set of activation
periods for the different MTDs of the AMG.

5.2 Representation of the system state
The system state is given by the set of activated atomic attacks, the
set of completed nodes, and the completion clocks of the atomic
attacks and MTDs. Notice that an atomic attack can be activated
and completed simultaneously, and the clocks will be in the PT-
MDP clock set. Let Ω = 2A × 2N be the set of possible states. The
space Ω contains some useless states. When a node without MTD
is completed, it stays completed for the rest of the analysis. Thus,
its descendant node completion and activation status can be un-
necessary. Given a set of completed nodes 𝐶 , we call a checkpoint
a completed node 𝑛 without defense i.e. 𝑛 ∈ 𝐶 s.t. Δ−1𝑛 = ∅. No-
tably, checkpoints are subgoals that will remind completed even if
its children are uncompleted. We will define an equivalence rela-
tion ∼ over Ω to reduce the state space. Intuitively, we want two
equivalent states for ∼ to be naturally equivalent for the attacker in
terms of future costs, time, success probability, and possible actions
for an optimal attacker (implying that he will not use unnecessary
costs to start or continue an atomic attack that leads only to check-
points).

We introduce the propagation operator that computes the set of
effectively completed nodes given an initial set of completed nodes
(cf., Fig. 3). It is defined through a fixed point of a function adding
the subgoals 𝑔 that have all its children completed (if ⋄𝑔 is ∧) or at
least one child completed (if ⋄𝑔 is ∨).

Definition 5.1 (Propagation operator). Let T be an AMG. We de-
fine the propagation operator 𝜋T : 2N ↦→ 2N as follows. For 𝐶 ⊆ N,
𝜋T (𝐶) is the least fixed point greater or equal to 𝐶 (for ⊆) of 𝑓𝜋 :
2N ↦→ 2N where

𝑓𝜋 (𝑁 ) = 𝑁 ∪ {𝑔 ∈ G | (∃𝑛 ∈ Out (𝑔), 𝑛 ∈ 𝑁 )
⋄𝑔 (∀𝑛 ∈ Out (𝑔), 𝑛 ∈ 𝑁 )}

We extend the definition of 𝜋T on (𝐴,𝐶) ∈ Ω by propagating only
the completed nodes: 𝜋T (𝐴,𝐶) = (𝐴, 𝜋T (𝐶)).

As 𝑓𝜋 is an increasing function, the fixed point is well defined and
is the composition 𝑓 𝑘𝜋 (𝐶) where 𝑘 ∈ N verifies 𝑓 𝑘𝜋 (𝐶) = 𝑓 𝑘+1𝜋 (𝐶).
We will omit the AMG and simply write 𝜋 (𝐶) or 𝜋 (𝐴,𝐶) when T
is clear in the context.

Given a set of completed nodes𝐶 , we call completed descendants
the set of nodes that have a completed node within all sequences
of nodes forming a directed path from 𝑔0 (cf., Fig. 3).

Definition 5.2 (Completed descendants). Let T be an AMG, and
𝐶 ⊆ N a set of completed nodes. We define the completed descen-
dants of 𝐶 as
𝜁 T (𝐶) = {𝑛 ∈ N |∀𝑘 ∈ N,∀𝑔1, . . . , 𝑔𝑘 ∈ G, (𝑔1 = 𝑔0∧

∀𝑗 ∈ {1, . . . , 𝑘 − 1}, (𝑔 𝑗 , 𝑔 𝑗+1) ∈ E ∧ (𝑔𝑘 , 𝑛) ∈ E)
⇒ ∃ 𝑗 ∈ {1, . . . , 𝑘}, 𝑔 𝑗 ∈ 𝐶}

When T is evident in the context, we will write 𝜁 (𝐶).
Let N∅ = {𝑛 ∈ N | Δ−1𝑛 = ∅}. We notice that the set of check-

points in𝐶 is𝐶∩N∅ . We define the pruning operator that eliminates
unnecessary nodes from the system state, considering that com-
pleted descendants of checkpoints can be removed from completed
and activated nodes and that completed nodes can be removed from
activated nodes (cf., Fig. 3).

Definition 5.3 (Pruning operator). LetT an AMG and Ω = 2A×2N.
We define the pruning operator 𝜅T : Ω ↦→ Ω s.t. for (𝐴,𝐶) ∈ Ω,
𝜅T (𝐴,𝐶) = (𝐴 \ (𝜁 (𝐶 ∩ N∅) ∪𝐶),𝐶 \ 𝜁 (𝐶 ∩ N∅)).

We define the simple state as the composition of propagation and
pruning. Intuitively, given a set of activated nodes𝐴 and completed
nodes𝐶 in an AMG, we want to find the naturally equivalent set of
activated and completed nodes describing the same attack state. As
a result, the completed nodes are propagated according to the AMG
semantic, and then, the unnecessary nodes are removed, resulting
in a new set of activated nodes 𝐴′ and completed nodes 𝐶 ′.

Definition 5.4 (Simple state). Let T be an AMG and Ω = 2A × 2N.
For (𝐴,𝐶) ∈ Ω, we define ⌊𝐴,𝐶⌋T = 𝜅T ◦𝜋T (𝐴,𝐶) the simple state
of (𝐴,𝐶).

We will simply write 𝜅 and ⌊·⌋ when the AMG T is clear in
the context. For (𝐴,𝐶) ∈ Ω, the simple state ⌊𝐴,𝐶⌋ contains the
minimal information needed to describe the attack state. Indeed,
the nodes that are descendants of checkpoints on every path from
the main goal will not help achieve it, so they are not present in
⌊𝐴,𝐶⌋ . Moreover, the activated atomic attacks already completed
are also useless, so they are removed. Fig. 3 illustrates how we get
⌊𝐴,𝐶⌋ from (𝐴,𝐶).

We are now able to define an equivalence relation on the states.
Two states are equivalent if they have the same simple states.

Definition 5.5 (Equivalent states). Let T be an AMG, and Ω =
2A × 2N. We say that two pairs (𝐴,𝐶) ∈ Ω and (𝐴′,𝐶 ′) ∈ Ω are
equivalent, denoted (𝐴,𝐶) ∼ (𝐴′,𝐶 ′), if ⌊𝐴,𝐶⌋ = ⌊𝐴′,𝐶 ′⌋ .

We use two new notations on the quotient set Ω/∼ that let us
access the left member ℓ and right member ℓ of the canonical rep-
resentative ⌊ℓ⌋ = (ℓ, ℓ) of an element ℓ ∈ Ω/∼. We also denote [·]
the equivalence class of an element.As proved in [Ballot et al. 2022],
we have [⌊ℓ⌋ ] = ℓ , so ⌊ℓ⌋ is indeed a representative of ℓ . Moreover
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(a) Initial state (𝐴,𝐶) .

∧

∨

∨

∧

∨

∧

(b) State 𝜋 (𝐴,𝐶) .

∧

∨

∨

∧

∨

∧

(c) State ⌊𝐴,𝐶 ⌋ = 𝜅 ◦ 𝜋 (𝐴,𝐶) .

edge associated
defense

∧∨ refinement

subgoal atomic attack MTD

activated completed activated
and
completed

checkpoint completed
descendants

Fig. 3. Illustration of the simple state in an AMG. Fig. (a) is the initial state
(𝐴,𝐶) , where𝐴 contains the activated atomic attacks in yellow/green, and
𝐶 contains the completed nodes in cyan/green. Fig. (b) is the propagation
where𝐶 becomes𝜋 (𝐶) . Fig. (c) is the pruningwith the operator𝜅 , resulting
in ⌊𝐴,𝐶 ⌋ .

we overload the set difference by writing ℓ \ (𝑎,𝑏) = [ℓ \ 𝑎, ℓ \ 𝑏],
and the set union by writing ℓ ∪ (𝑎,𝑏) = [ℓ ∪ 𝑎, ℓ ∪ 𝑏].

Given an input AMG T , we can now exhibit the construction
MT =

〈
𝐿T , ℓT,0, 𝑋T , Σ𝑢T , Σ

𝑐
T , 𝐸T , 𝜔T , 𝜒T , 𝜄T , 𝜇

𝑢
T

〉
of the associated

PTMDP.

5.2.1 Locations, initial location, and clock set. Let T be the input
AMG. We define 𝐿T = 2A × 2N/∼ the set of locations and ℓT,0 =
[∅, ∅] the initial location.We define𝑋T = {𝑥𝑎}𝑎∈A∪{𝑥𝑑 }𝑑∈D∪{𝑥0}
the set of clocks associated to the different atomic attacks, MTDs,
and 𝑥0 the global time clock.

5.2.2 Actions. The controllable actions set is Σ𝑐T =
{
𝛼act
𝑎 | 𝑎 ∈ A

}
,

corresponding to each atomic attack activation. The uncontrollable

actions set is Σ𝑢T = Σ𝑢mtd ∪ Σ𝑢cmp where,

Σ𝑢mtd =
{
𝛼mtd
𝑑 , 𝛼mtd

𝑑

��� 𝑑 ∈ D}
Σ𝑢cmp =

{
𝛼cmp
𝑎 , 𝛼cmp

𝑎

��� 𝑎 ∈ A}
They correspond respectively to the periodical activation of every
MTD 𝑑 ∈ Dwith the success of the defense (𝛼mtd

𝑑
) or failure (𝛼mtd

𝑑
)

and the completion of every atomic attack 𝑎 ∈ 𝐴 with the success
of the attack (𝛼cmp

𝑎 ) or failure (𝛼cmp
𝑎 ). The set Σ𝑢mtd contains ac-

tions for each MTD but not for each subset of MTDs.This would be
wrong in the general case but a restriction on the AMG presented
later justifies this choice.

5.2.3 Transitions. The set of transitions is 𝐸T = 𝐸act∪𝐸mtd∪𝐸cmp

with,

𝐸act =
{
(ℓ, 𝜀, 𝛼act

𝑎 , ℓ ∪ ({𝑎}, ∅)) |
ℓ ∈ 𝐿T , 𝑎 ∈ A \ (ℓ ∪ ℓ ∪ 𝜁 (ℓ ∩ N∅))

}
𝐸mtd =

{
(ℓ, 𝜀, 𝛼mtd

𝑑 , ℓ \ (Δ𝑑 ,Δ𝑑 )) | ℓ ∈ 𝐿T , 𝑑 ∈ D
}

∪
{
(ℓ, 𝜀, 𝛼mtd

𝑑 , ℓ) | ℓ ∈ 𝐿T , 𝑑 ∈ D
}

𝐸cmp =
{
(ℓ, 𝜀, 𝛼cmp

𝑎 , ℓ ∪ (∅, {𝑎})) | ℓ ∈ 𝐿T , 𝑎 ∈ ℓ
}

∪
{
(ℓ, 𝜀, 𝛼cmp

𝑑
, ℓ \ ({𝑎}, ∅)) | ℓ ∈ 𝐿T , 𝑎 ∈ ℓ

}
where the set 𝐸act contains activation edges for every location ℓ ∈
𝐿T and non-activated, non-completed, and not in the completed de-
scendants of checkpoints atomic attack 𝑎 ∈ A \ (ℓ ∪ ℓ ∪ 𝜁 (ℓ ∩ N∅)).
The transitions in 𝐸mtd correspond to the successful and unsuccess-
ful activation of every MTD 𝑑 ∈ D. Finally, 𝐸cmp is the set of suc-
cessful and unsuccessful completion transitions for every location
ℓ ∈ 𝐿 and activated atomic attack 𝑎 ∈ ℓ . Fig. 4 displays a sample
of the PTMDP with the different kinds of transitions from a given
location [𝐴,𝐶].

The reader could expect the clock constraints in𝐸mtd (resp.𝐸cmp)
to be 𝑥𝑑 ≥ 𝑡𝑑 (resp. 𝑥𝑎 ≤ 𝑡𝑎). However, the environment transition
density 𝜇𝑢T , defined later, will assign a null probability to uncontrol-
lable transition before the defense 𝑑 (resp. atomic attack 𝑎) verifies
𝑥𝑑 ≥ 𝑡𝑑 (resp. 𝑥𝑎 ≥ 𝑡𝑎). So the uncontrollable transitions can have
an empty bound 𝜀.

5.2.4 Cost, clock reset, and invariant. Let ℓ, ℓ ′ ∈ 𝐿T , 𝑎 ∈ A with
clock 𝑥𝑎 , 𝑑 ∈ D with clock 𝑥𝑑 . We define the cost in locations as
𝜔T (ℓ) =

∑
𝑎∈ℓ 𝑐

′
𝑎 . The cost for an activation transitions 𝑒 of the

form 𝑒 = (ℓ, 𝜀, 𝛼act
𝑎 , ℓ ′) is 𝜔T (𝑒𝑎) = 𝑐𝑎 and for any other type of

transition the cost is null. The clock reset function 𝜒T is defined as
follows when a transition 𝛼act

𝑎 , 𝛼mtd
𝑑

, 𝛼mtd
𝑑

, 𝛼cmp
𝑎 , or 𝛼cmp

𝑎 exists:

𝜒T (ℓ, 𝜀, 𝛼act
𝑎 , ℓ ′) = {𝑥𝑎}

𝜒T (ℓ, 𝜀, 𝛼mtd
𝑑 , ℓ ′) = 𝜒T (ℓ, 𝜀, 𝛼mtd

𝑑 , ℓ ′) = {𝑥𝑑 }
𝜒T (ℓ, 𝜀, 𝛼cmp

𝑎 , ℓ ′) = 𝜒T (ℓ, 𝜀, 𝛼cmp
𝑎 , ℓ ′) = {𝑥𝑎}

The invariant function is 𝜄T (ℓ) =
∧

𝑎∈ℓ (𝑥𝑎 ≤ 𝑡𝑎)
∧

𝑑∈D (𝑥𝑑 ≤ 𝑡𝑑 ).
Now we have all the elements to present a restriction on our

structure before exhibiting the last element 𝜇𝑢T ofMT .
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𝐴,𝐶

∧𝑎∈𝐴 (𝑥𝑎 ≤ 𝑡𝑎)
∧𝑑∈D (𝑥𝑑 ≤ 𝑡𝑑 )

∑
𝑎∈𝐴 𝑐 ′𝑎

𝐴 ∪ {𝑎′},
𝐶

𝐴 \ {𝑎},
𝐶

𝐴,
𝐶 ∪ {𝑎}

𝐴 \ Δ𝑑 ,
𝐶 \ Δ𝑑

𝑥𝑑′ ← 0
𝛼mtd
𝑑′ 𝑥

𝑑 ′ ←
0

𝛼 mtd𝑑 ′

𝛼act
𝑎′

𝑥𝑎′ ← 0

𝑐𝑎′

𝛼 mtd𝑑

𝑥
𝑑 ←

0

𝛼
m

td
𝑑

𝑥
𝑑
←

0

𝛼
cm

p
𝑎𝛼

cm
p
𝑎

𝑋,𝑌 location [𝑋,𝑌 ]

uncontrollable
transition
controllable
transition

𝑥 ⊲⊳ 𝑦 location
invariant

𝑐 location and
transition cost

𝛼𝑥𝑦 action type

𝑥 ← 0 clock reset

Fig. 4. Sample of the transitions in the PTMDP MT from a location
[𝐴,𝐶 ] ∈ 𝐿. Notice that there are as many outgoing transitions from [𝐴,𝐶 ]
as there are such 𝑎 ∈ 𝐴, 𝑎′ ∈ A \ (𝐴∪𝐶 ∪ 𝜁 (𝜋 (𝐶) ∩ N∅)) , 𝑑 ∈ Δ−1𝐴∪𝐶 , and
𝑑′ ∈ D \ Δ−1𝐴∪𝐶 .

5.2.5 A restriction on the AMG. As seen in Section 4, when there
is simultaneous activation of several MTDs, all the successfully de-
fended nodes are removed before evaluating the new state. This
sequentiality is essential because, for ℓ ∈ 𝐿T and 𝑑1, 𝑑2 ∈ D two
MTDs that get successfully activated at the same time, it does not
hold in general that ℓ \ (Δ𝑑1 ∪ Δ𝑑2 ,Δ𝑑1 ∪ Δ𝑑2 ) is equal to (ℓ \
(Δ𝑑1 ,Δ𝑑1 )) \ (Δ𝑑2 ,Δ𝑑2 ). This means that multiple transitions in our
PTMDP in a row that remove the completed and activated nodes
associated with several MTD are not equivalent to a single transi-
tion that simultaneously removes all the completed and activated
nodes. As a result, from any location ℓ , we have to put a transition
for every element of 2D that is the possible set of MTDs activated
at a given time. This exponential size is not desired, so we will add
a restriction on the AMG to have only 𝑂 ( |D|) outgoing defense
edges from every location. We define a relation that expresses that
an MTD directly follows another one.

Definition 5.6. Given an AMG T , we define ⊲T as a binary rela-
tionship on D s.t. for 𝑑1, 𝑑2 ∈ D,

𝑑1 ⊲T 𝑑2 ⇐⇒ ∃𝑛1 ∈ Δ𝑑1 , ∃𝑛2 ∈ Out (𝑛1), 𝑛2 ∉ Δ𝑑1 ∧ 𝑛2 ∈ Δ𝑑2
the relation 𝑑1 ⊲T 𝑑2 is read “𝑑2 follows 𝑑1 in T ”.

In words, 𝑑1 ⊲T 𝑑2 if 𝑑2 defends a node 𝑛2 that is a child of a
node 𝑛1 defended by 𝑑1, and 𝑑1 does not defend 𝑛2. We will simply
write 𝑑1 ⊲𝑑2 when evident. Using this relation, we show a sufficient
condition s.t., if several MTDs 𝑑1, . . . , 𝑑𝑘 are activated successfully
at the same time, we can virtually activate them sequentially and
obtain the same result as if they were activated simultaneously.

TheoRem 5.7. Let T be an AMG. Suppose the directed graph of the
relation ⊲, i.e., ⟨D, {(𝑑1, 𝑑2) ∈ D × D | 𝑑1 ⊲ 𝑑2}⟩, has no cycle. Then,
for all𝐷 ⊆ D, we can order the elements of𝐷 in a sequence (𝑑1, . . . , 𝑑𝑘 )
s.t. for all 𝑖 ∈ {1, . . . , 𝑘} and integer 𝑗 < 𝑖 , 𝑑 𝑗 ⋫ 𝑑𝑖 . Moreover, for all
ℓ ∈ 𝐿T , this order verifies,

ℓ \ (∪𝑘𝑗=1Δ𝑑 𝑗
,∪𝑘𝑗=1Δ𝑑 𝑗

) = ℓ \ (Δ𝑑1 ,Δ𝑑1 ) · · · \ (Δ𝑑𝑘 ,Δ𝑑𝑘 )

We refer to [Ballot et al. 2022] for the proof. Now, we impose
that the input AMG T verifies that the directed graph of the rela-
tion ⊲ has no cycle. So, if at some point the MTDs 𝑑1, . . . , 𝑑𝑘 ∈ D
are successfully activated at a given time, we can evaluate them se-
quentially starting with 𝑑𝑖 where it holds that 𝑑 𝑗 ⋫ 𝑑𝑖 for all the
𝑗 ∈ {1, . . . , 𝑘}. The Theorem 5.7 proves the correctness of consider-
ing only one outgoing edge perMTD activation from every location
when we impose the restriction on T . Otherwise, we should have
considered one edge per subset of MTDs.

5.2.6 Environment’s density. Let ℓ ∈ 𝐿T , 𝑏 ∈ R+, 𝑣 ∈ V be a valid
valuation, and
𝐴𝑏
(ℓ,𝑣) = {𝑎 ∈ ℓ | 𝑣 (𝑥𝑎) + 𝑏 = 𝑡𝑎}

𝐷𝑏
(ℓ,𝑣) = {𝑑 ∈ D | 𝑣 (𝑥𝑑 ) + 𝑏 = 𝑡𝑑 ∧ ∀𝑑 ′ ∈ D, 𝑑 ⊲ 𝑑 ′ ⇒ 𝑣 (𝑥𝑑′) + 𝑏 ≠ 𝑡𝑑′}

𝛾𝑏(ℓ,𝑣) = 1/|𝐴𝑏
(ℓ,𝑣) ∪ 𝐷

𝑏
(ℓ,𝑣) |

be respectively the set of activated atomic attacks completed after
the delay 𝑏, the set of MTDs 𝑑 activated after 𝑏 s.t. any other MTD
𝑑 ′ in relation𝑑⊲𝑑 ′ is not active after the same delay, and, the inverse
of their number of elements. By convention, 1/0 = 0 in 𝛾𝑏(ℓ,𝑣) . For
𝑎 ∈ A, 𝑑 ∈ D, we define 𝜇𝑢T (ℓ, 𝑣) as,

𝜇𝑢T (ℓ, 𝑣) (𝑏, 𝛼
mtd
𝑑 ) = 𝛾𝑏(ℓ,𝑣)𝑝𝑑𝛿 (𝑣 (𝑥𝑑 ) + 𝑏 − 𝑡𝑑 )

𝜇𝑢T (ℓ, 𝑣) (𝑏, 𝛼
mtd
𝑑 ) = 𝛾𝑏(ℓ,𝑣) (1 − 𝑝𝑑 )𝛿 (𝑣 (𝑥𝑑 ) + 𝑏 − 𝑡𝑑 )

𝜇𝑢T (ℓ, 𝑣) (𝑏, 𝛼
cmp
𝑎 ) = 𝛾𝑏(ℓ,𝑣)𝑝𝑎𝛿 (𝑣 (𝑥𝑎) + 𝑏 − 𝑡𝑎)

𝜇𝑢T (ℓ, 𝑣) (𝑏, 𝛼
cmp
𝑎 ) = 𝛾𝑏(ℓ,𝑣) (1 − 𝑝𝑎)𝛿 (𝑣 (𝑥𝑎) + 𝑏 − 𝑡𝑎)

where 𝛿 is the Dirac distribution used for discrete probabilities.This
density function reflects that the uncontrollable actions satisfying
their activation condition after a delay 𝑏 are chosen with uniform
probability (through the use of 𝛾𝑏(ℓ,𝑣) ). The probability of success
(resp. failure) is chosen with probability 𝑝𝑎 (resp. 1 − 𝑝𝑎) for an
atomic attack 𝑎, and 𝑝𝑑 (resp. 1 − 𝑝𝑑 ) for an MTD 𝑑 .

Finally, in this section, given an input AMG T , we specified the
constructionMT =

〈
𝐿T , ℓT,0, 𝑋T , Σ𝑢T , Σ

𝑐
T , 𝐸T , 𝜔T , 𝜒T , 𝜄T , 𝜇

𝑢
T

〉
.

5.3 Using the PTMDP for MTD.
Given an AMG T and its associated PTMDPMT , the goal of the
attacker is to reach the PTMDP state ℓT = [∅, {𝑔0}] (we assume
there is no MTD on 𝑔0) representing the completion of the main
goal 𝑔0. We can evaluate and optimize an attacker strategy 𝜇𝑐 on
MT . Indeed, 𝜇𝑐 generates a probability measure PMT ,𝜇𝑐 on sub-
sets of R0 (c.f. Section 2). We define RT the subset of the possi-
ble runs R s.t. the final location is the goal node ℓT , i.e., RT =
{(𝑞𝑖 , 𝑒𝑖 , 𝑡𝑖 , 𝑐𝑖 , 𝑞′𝑖 )𝑖∈{1,...,𝑘 } ∈ R

𝑘 | 𝑘 ∈ N∧∃𝑣 ∈ V, 𝑞𝑘 = (ℓT , 𝑣)} and
two random variables 𝑇 and 𝐶 giving the attack time and attack
cost in the following way. For a run 𝑟 ∈ R0, and 𝑟1 the smallest
run (if exists) in RT s.t. 𝑟 = 𝑟1 · 𝑟2 with 𝑟2 ∈ R, 𝑇 (𝑟 ) = 𝑇 (𝑟1) (resp.
𝐶 (𝑟 ) = 𝐶 (𝑟1)) if 𝑟1 exists or𝑇 (𝑟 ) = ∞ (resp.𝐶 (𝑟 ) = ∞). Notice that
EMT ,𝜇𝑐 [𝑇 ] (resp. EMT ,𝜇𝑐 [𝐶]) does not exist if PMT ,𝜇𝑐 [𝑇 = ∞] > 0

(resp. PMT ,𝜇𝑐 [𝐶 = ∞] > 0) and by convention if PMT ,𝜇𝑐 [𝑇 = ∞] =
0 (resp. PMT ,𝜇𝑐 [𝐶 = ∞] = 0) we consider that∞×0 = 0 in the com-
putation of the expected value.
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atomic attacks 𝑎𝑎𝑑 𝑎𝑖𝑐 𝑎𝑠𝑝 𝑎𝑝 𝑎𝑏𝑓 𝑎𝑠𝑠 𝑎𝑓 𝑢𝑒
completion time (𝑡 ) 8 4 440 1 1 30 720

success probability (𝑝) 0.5 0.3 0.8 1 0.001 0.2 0.8
activation cost (𝑐) 10 0 20 0 0 10 10

cost rate (𝑐′) 20 5 0 0 100 1 0 0

MTDs 𝑑𝑑𝑘 𝑑𝑐𝑝 𝑑𝑐𝑐 𝑑𝑑𝑠𝑟
activation period (𝑡 ) value to optimize

success probability (𝑝) 1 0.5 1 1
Table 2. Attributes for the atomic attacks andMTDs from the AMG in Fig. 1
chosen for the use case.

Suppose the defender prefers distributions according to their ex-
pected values (this is not the only way to compare distributions
c.f. [Rass 2015], maybe the defender wants a very low variance).
Then, the most dangerous attacker would have strategies minimiz-
ing the expected values EMT ,𝜇𝑐 [𝑇 ] and EMT ,𝜇𝑐 [𝐶]. These optimal
points draw the Pareto frontier, that is, the set of points s.t. de-
creasing the expected attack time (resp. cost) would increase the
expected attack cost (resp. time). As a result, we are interested in
computing the Pareto frontier to see the impact of the defenses.

6 EXPERIMENT AND DISCUSSION
Uppaal StRatego [David et al. 2015] can be used to compute strate-
gies to solve a cost/time-bounded reachability objective with near-
optimal cost or time (separately). We had to make some adjust-
ments, described in [Ballot et al. 2022], to express the PTMDP as
a Uppaal structure.

We implement the AMG T in Fig. 1 with the attributes given in
Table 2 and translate it into a Uppaal StRatego model. We aim to
draw the Pareto frontier of optimal expected attack time and cost.
However, Uppaal StRatego can only find the strategies minimiz-
ing the following conditional expected values

EMT ,𝜇𝑐 [𝑇 | 𝑇 < 𝑡max]
EMT ,𝜇𝑐 [𝐶 | 𝑇 < 𝑡max]
EMT ,𝜇𝑐 [𝑇 | 𝐶 < 𝑐max]
EMT ,𝜇𝑐 [𝐶 | 𝐶 < 𝑐max]

with time limit 𝑡max and cost limit 𝑐max [David et al. 2014].
We vary these limits to explore the different minimizing strate-

gies. The minimal value, say EMT ,𝜇𝑐 [𝑇 | 𝑇 < 𝑡max] in the first
case, is not useful if we are not provided the probability of the as-
sociated condition, here PMT ,𝜇𝑐 [𝑇 < 𝑡max]. Indeed, If EMT ,𝜇𝑐 [𝑇 |
𝑇 < 𝑡max] is one hour, we could think that there is a major attack
path. But if the associated probability PMT ,𝜇𝑐 [𝑇 < 𝑡max] is very
low, then this attack is very unlikely to succeed. For instance, the
attacker can break a system in one minute if he guesses the admin
password at the first try, but this is very unlikely to happen. Con-
sequently, reasoning with the conditional probabilities, we should
draw a Pareto surface in the three-dimension space of conditional
expected time, conditional expected cost, and probability of the
condition. This Pareto surface contains more information than the
two-dimension Pareto frontier of expected time and cost since the
2D frontier is the cut of the surface for a conditional probability

axis equal to one. However, we will not reason on the 3D surface
because we do not control the probability of the condition in Up-
paal StRatego strategy optimization and wewould need exponen-
tially more points to draw the surface instead of the frontier. To
simplify, we assume that a strategy minimizing the conditional ex-
pected value might be a strategy giving non-conditional expected
values close to the expected cost/time Pareto frontier.This is a strong
assumption, and finding a better optimization method is a neces-
sary future work. By varying the time and cost bounds we extract
optimal strategies and plot their unconditional expected time and
cost. Repeating this procedure for different MTD activation fre-
quencies we can compare the different Pareto frontiers.

We report1 the Pareto frontiers for different sets of MTD acti-
vation periods in Fig. 5. Reasoning about the AMG in Fig. 1 and
the attributes in Table 2, we notice a fast and costly attack with
the atomic attack 𝑎𝑎𝑑 and defended by the MTD 𝑑𝑑𝑘 , a medium-
fast medium-costly attack with the atomic attacks 𝑎𝑠𝑝 , 𝑎𝑝 , and the
subgoal 𝑔𝑎𝑐 defended by the MTDs𝑑𝑐𝑝 and 𝑑𝑐𝑐 , and a long cheap
attack with the atomic attack 𝑎𝑓 𝑢𝑒 and the subgoal 𝑔𝑎𝑐 defended
by the MTD 𝑑𝑑𝑠𝑟 . As expected, the frontiers with small period for
𝑑𝑑𝑘 (𝑡𝑑𝑑𝑘 = 5) limit the attack time to more than 500 time units
even with unlimited cost (blue line). Furthermore, small period for
𝑑𝑐𝑝 (𝑡𝑑𝑐𝑝 ≤ 300) is efficient in increasing the cost of long attacks to
more than 200 cost units (frontiers in green and brown) provided
that the cheap attack path is protected with 𝑡𝑑𝑑𝑠𝑟 < 𝑡𝑎𝑓 𝑢𝑒 = 720
(otherwise, we have the orange or red frontier with low cost for
long attacks). We also notice that the MTD 𝑑𝑐𝑐 influences the cost
of long attacks even when 𝑡𝑑𝑑𝑠𝑟 is high (purple line), but this influ-
ence is only about 40 cost units for 𝑡𝑑𝑐𝑐 = 60.

This example is simple as the expected attack cost and time are
increasing with each MTD activation frequency. However, in more
complex systems, this might not be true. For instance, when differ-
ent MTDs defend parent and child nodes, it could be better to have
the same frequency for two MTDs (so they are coupled) than hav-
ing one MTD slightly more frequent. This justifies that optimizing
(𝑡𝑑 )𝑑∈D cannot be component by component in the general case
and need powerful tools like PTMDPs.

7 LIMITATIONS
The AMG suffers from some limitations: (i) the AMG assumes that
the user can identify the attacks and defenses and their attributes
(probability, cost, and time), (ii) nodes are defended by disjunctions
of MTDs, but we could nest the countermeasures and use be con-
junctions as in ADT, (iii) we only consider success or failure after a
given time rather than general distributions. To address the limita-
tion (i) we could test the parameter robustness of the expected time
and cost to see if small parameter changes induce a big difference
in the computed values. The rest is left for future work.

Moreover, the current method for MTD activation frequency op-
timization has other limitations: (i) Uppaal StRatego solves lim-
ited types of objectives, leading us to make too strong assumptions
about the problem (cf., Section 6), (ii) it does not scale tomuch larger
problems due to the exponential size of the PTMDP compared to
the AMG, and (iii) as the number of MTDs increases, the number

1To reproduce the experiment: https://github.com/gballot/mtd.
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Fig. 5. Pareto frontiers of the expected time and expected cost of the attacks on the AMG of Fig. 1 with attributes in Table 2. Each line correspond to a
different defensive configuration (defense periods) and the attacker cannot expect to carry an attack with a time and cost below the Pareto frontier of the
chosen configuration. We impose log(𝑡𝑑𝑑𝑘 𝑡𝑑𝑐𝑝 𝑡𝑑𝑐𝑐 𝑡𝑑𝑑𝑠𝑟 ) to be constant for the different defensive configurations to simulate a defensive budget (otherwise
the best configuration is to activate every MTD at every unit of time). These curves help the system administrator choose the best suited MTD activation
periods respecting the budget. This selection could also be automatic according to user-defined worse attack time/cost preference rules.

of Pareto frontiers to analyze grows exponentially, leading the user
to confusion. To address the limitation (i), we will think about a bet-
ter optimization process specific to the problemwewant to achieve.
For limitation (ii), we have to improve the construction and maybe
limit the aspects we are dealing with (time, cost, and probability).
For limitation (iii), we could set design conditions (e.g., a desired
minimal Pareto frontier) so the optimizer only displays the config-
urations satisfying this minimal requirement. Finally, a more real-
istic use case is desired.

8 RELATED WORK
Awell-established formalism for ATwith defenses is the Attack De-
fense Tree (ADT) [Kordy et al. 2011, 2014a]. AMG is different from
ADT. On the one hand, the AMG restricts ADT because an ADT
node can have disjunction and conjunction of countermeasures,
which can be nested. On the other hand, the AMG extends the ADT
in two ways. First, there is an attribute on the inner nodes. Second,
the AMG allows a DAG structure for the nodes and the defenses.
Notice that ADT can have the same label on different nodes, so it is
as expressive as a DAG for some semantics (that is the case for the
propositional semantic, for instance). Other formalisms derive from
ADT (see the surveys [Kordy et al. 2014b; Wideł et al. 2019]). In par-
ticular, in [Hermanns et al. 2016], Hermanns et al. define Attack De-
fense Diagram, which is more expressive than most attack-defense
formalism but does not explicitly model MTDs. Moreover, security
engineers may find our model best balanced between expressivity
and ease of use, mainly thanks to our tool for strategy optimization
with Uppaal StRatego. In [Hansen et al. 2021], Hansen et al. come

with the comprehensive tool support for modeling ADT extended
with dynamic defender policies and atomic attack expiring. How-
ever, atomic attack expiry dates are relative to their activation date
and not to defenses, making them unsuitable for MTDs. In [Arnold
et al. 2014], the authors consider both time and stochasticity in an
AT whose basic actions have the Cumulative Distribution Function
(CDF) of the completion of atomic attacks.TheCDF is propagated to
the parents to get the CDF for the whole tree.This method does not
use automata but directly computes the CDF through an alternative
representation of the CDF called acyclic phase-type distribution.

Our work combines DAG-based attack-defense modeling for de-
fense optimization andMTDactivation frequency optimization.The
following papers studied separately these two aspects. In [Kumar
et al. 2015], the authors translate an AT into a network of Priced
Timed Automata (PTA), thanks to a PTA interpretation for each
node of the tree. They can then use Uppaal CoRa to uncover the
best attack path regarding costs and time. In [Gadyatskaya et al.
2016b; Hansen et al. 2018], the authors consider the ADT to con-
struct a network of PTA and analyze the impact of enabling differ-
ent defenses on the best attack. These papers do not use Uppaal
StRatego, and for that reason, they need to iterate on faster and
faster attacks to get the fastest one (resp. iterate on cheaper to get
the cheapest). Instead, in our analysis, Uppaal StRatego optimizes
the strategy for the attacker directly. Moreover, it does not apply to
time-based defenses like MTDs. In [Ayrault et al. 2021; Feng et al.
2017; Li and Zheng 2019], the authors study the optimal activation
frequencies for MTDs with a game theoretic approach. They model

, Vol. 1, No. 1, Article . Publication date: August 2022.



10 • G. Ballot et al.

the attacker and the defender with a Stackelberg game (the de-
fender plays first, and the attacker plays the rest of the game). How-
ever, they only consider single step attacks.The authors of [Ayrault
et al. 2021] can formulate the game equilibrium and compute the op-
timal parameters for the defender directly and the authors of [Feng
et al. 2017; Li and Zheng 2019] derive a semi-Markovian decision
process from the game to optimize the activation frequencies of the
MTDs. Many other papers deal withMTDwith a game theoretic ap-
proach including[Clark et al. 2015; Sengupta et al. 2017; Umsonst
et al. 2021]. The authors of [Umsonst et al. 2021] consider MTDs
against stealthy sensor attacks and derive a Bayesian game to ex-
tract optimal MTD strategy even with only the prior of the possible
attacker goals. The paper [Sengupta et al. 2017] focuses on web ap-
plications, and [Clark et al. 2015] on IP address randomization.

9 CONCLUSION AND FUTURE WORK
In this paper, we introduced the AMG, a DAG-based attack-defense
model that considers the time, cost, and stochastic properties of
MTDs and attacks. This newmodel permits to hierarchically model
threats on complex systems defended with MTDs. We constructed
a PTMDP from this AMG that induces a probability measure on the
sets of runs. Thanks to this measure, we define a reachability objec-
tive with time and cost constraints and present the optimization
problem for the attacker’s strategy. We can then find the MTD acti-
vation frequencies that will protect our system the best according
to the user preferences. We implemented the automatic construc-
tion of the PTMDP from the AMG and used Uppaal StRatego to
illustrate the applicability of the optimal strategy computation in a
use case. It displayed the influence of four MTDs on an electricity
meter on the best attacker’s strategy in a two-dimension optimiza-
tion of attack time and cost.

We plan to explore the dependency between the defense acti-
vation frequencies to find a way to optimize them in future work.
We should consider each aspects (time, cost, probability) indepen-
dently to improve each step. Moreover, it would be interesting to
consider the change in the attack surface (by extension, the attack
DAG) that is caused by the MTD movement. We also plan to ex-
tend the AMG to include the full ADT expressivity and show how
to consider non-MTD defense in a broader formalism. Finally, we
consider implementing our own tool to find the strategies giving
the Pareto frontier of the attack cost and attack time.
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