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Model checking provides a rigorous means to analyze complex systems by ensuring properties hold across all
executions. While originally applied to closed systems, model checking now extends to multi-agent systems,
such as distributed protocols, communication systems, robotics, and cybersecurity. A recurring challenge
across these domains is reasoning about agents with hidden and uncertain profiles; for example adversarial
traders in markets, coordinated users in social media, or attackers in cybersecurity. Addressing this requires
logics capable of capturing both probabilistic profiling and reasonig. Alternating-time Temporal Logic (ATL)
offers a foundation for reasoning about strategic abilities in multi-agent systems. Extensions such as ATL
with Stochastic Abilities (ATL-SA) incorporate stochastic capacities, but existing frameworks remain limited:
they can model uncertainty over profiles or allow reasoning about capacities from observed actions, yet not
both simultaneously. In this work, we extend ATL-SA with a probabilistic capacity operator, enabling the
specification and verification of properties that combine stochastic profiling, inference of hidden information,
and strategic reasoning. This framework broadens the scope of formal verification as a general methodology
for adversarial and uncertain environments, with applications spanning markets, social platforms, distributed

computing, and cybersecurity.

1 INTRODUCTION

In many critical domains, static approaches to system
monitoring or defense are easily identified and cir-
cumvented by sophisticated adversaries. More adap-
tive mechanisms address this limitation by evolving
their responses based on observed behavior. However,
the design of such systems hinges on formal reason-
ing frameworks capable of modeling strategic inter-
actions between competing agents in multi-agent en-
vironments.

Model checking is a formal verification technique
employed to automatically ascertain whether a sys-
tem adheres to a specified set of criteria. This method
systematically examines all potential system states
to ensure that the system operates as anticipated ac-
cording to predefined properties. Consequently, it
serves as a robust tool for guaranteeing the correct-
ness, safety, and reliability of complex systems. In the
realm of Multi-Agent Systems (MAS), where mul-
tiple autonomous agents interact, model checking is
foundational in verifying that the system performs as
intended. It emphasizes the strategies, coordination,
and decision-making of agents, considering their di-
verse objectives and knowledge.

Applying model checking techniques to MAS in-
volves reasoning about both the local strategies of in-
dividual agents and the global behavior that emerges
from their interactions. This is particularly relevant
in adversarial settings, where understanding hetero-
geneous behaviors and ensuring reliable system re-
sponses are key to maintaining integrity.

In such contexts, agents can exhibit different pro-
files that reflect their capabilities, expertise, and be-
havioral tendencies. For a system to be robust, it must
not only react to observed actions, but also identify
and adapt to these underlying profiles. In our logical
framework, such a profile is referred to as a capacity,
formally defined as a set of feasible actions available
to an agent. Reasoning about capacities allows ob-
servers to infer agent types from their behavior and
tailor strategies accordingly.

Existing logics like Alternating-time Temporal
Logic with Stochastic Abilities (ATL-SA) (Ballot
et al., 2025b) provide foundational tools for this pur-
pose. However, it has critical limitations in the con-
text of adaptive systems. ATL-SA assigns agents a
distribution a priori over possible profiles but can-
not reason about the posterior probability that an
agent has a certain profile based on observed behav-



ior. To address this gap, we introduce Probabilis-
tic Alternating-Time Temporal Logic with Stochastic
Abilities (PATL-SA) as an extension of ATL-SA that
enriches the strategic layer with reasoning over pos-
terior capacity probability, conditioned on observed
behavior.

Contributions. The contributions of this paper are
the following:

1. We introduce Probabilistic Alternating-Time
Temporal Logic with Stochastic Abilities (PATL-
SA), a novel logic that combines the probabilistic
capacity modeling of ATL-SA with posterior
capacity probability reasoning, enabling capacity
inference with probability.

2. We define the formal semantics of PATL-SA and
provide a model-checking algorithm. We prove
that this algorithm is sound and complete and
that its complexity remains consistent with that of
ATL-SA.

3. We demonstrate the practical utility of PATL-
SA through a cybersecurity case study involving
adaptive honeypots, showing that it enables both
precise attacker profiling and effective dynamic
defense synthesis.

Outline. Section 2 reviews the related literature and
Section 3 presents the general notation and back-
ground. Section 4 introduces PATL-SA’s syntax and
semantic. Section 5 studies its model checking prob-
lem. Section 6 shows PATL-SA’s applicability in a
cybersecurity setting. Finally, Section 7 concludes the

paper.

2 RELATED WORK

In 2002, Alur et al. introduced Alternating-Time
Temporal Logic (ATL) (Alur et al., 2002) to ver-
ify strategic properties of concurrent games. Since
then, different extensions have been proposed to pro-
vide more expressivity to the logics. This includes
epistemic properties (van der Hoek and Wooldridge,
2002; Schobbens, 2004; Jamroga and van der Hoek,
2004; Schnoor, 2010), probabilistic outcomes (Chen
and Lu, 2007; Huang et al., 2012; Mittelmann
et al.,, 2023; Belardinelli et al., 2024; Berthon
et al., 2024; Ballot et al., 2025b), quantitative rea-
soning (Catta et al., 2024a; Ferrando et al., 2024;
Nguyen and Rakib, 2019), real-time constraints (Bri-
haye et al., 2005; David et al., 2014), strategy spec-
ifications (Walther et al., 2007, Agotnes et al., 2007,

Mogavero et al., 2014), or action specifications (Bal-
lot et al., 2024; Belardinelli et al., 2017; Belar-
dinelli et al., 2020; Agotnes, 2006; Herzig et al.,
2013). Thanks to these extensions, ATL-related log-
ics can specify more accurate properties of systems
and broaden possible use cases.

We discuss, in more details, three closely related
logics.

CapATL. Capacity Alternating-Time Tempo-
ral Logic (CapATL) (Ballot et al., 2024) extends
ATL (Ballot et al., 2025b) by introducing agent
capacities. Formally, CapATL is interpreted over
Capacity Concurrent Game Structures (CapCGS),
where each agent’s chosen capacity restricts its
actions, and agents can observe only states and their
own actions, but not others’ capacities or actions.
A capacity knowledge operator (K%, ()) specifies
what an agent a can infer about another agent’s
capacities over time. For example, a honeypot
defender may infer whether an attacker has advanced
exploitation skills based on the actions observed;
such strategic inferences are naturally expressed
via CapATL’s memoryful strategies and knowledge
operator. Although CapATL accounts for imperfect
information, which leads to undecidability in the gen-
eral case (Dima and Tiplea, 2011), CapATL model
checking remains decidable by limiting uncertainty
to other agents’ actions. However, CapATL lacks
probabilistic modeling, which hinders its ability to
capture partially stochastic or uncertain attacker be-
haviors, an important limitation if defenders need to
weigh probabilities of different attacks or outcomes.
CapATL was also extended to imperfect information
settings (Ballot et al., 2025a), where states might be
indistinguishable.

ATL-SA. The logic Alternating-time Temporal
Logic with Stochastic Abilities (ATL-SA) (Ballot
et al., 2025b) builds on ATL (Alur et al., 2002) by in-
troducing probabilistic agent capacities (correspond-
ing to their profiles). An agent’s capacity is the set of
available actions for that agent. In real-world applica-
tions, domain knowledge or prior statistical analysis
may provide a probability distribution over possible
agent profiles, influencing their available actions. Key
features of ATL-SA include stochastic agent mod-
eling (agents are assigned probabilistic profiles that
determine their abilities), strategic verification with
probability thresholds, and decision-making under
uncertainty, modeling how agents can optimize their
strategies when faced with probabilistic adversaries.
ATL-SA formalizes these aspects using Concurrent
Game Structures with Stochastic Abilities (CGS-SA),



where each agent’s profile influences available actions
probabilistically. In practical terms, domain expertise
or statistical analysis might provide a capacity distri-
bution (e.g., a 70% chance that an attacker is “ad-
vanced” and a 30% chance that he is a “beginner®),
influencing which actions the attacker can use. The
simple following formula expresses that the defender
D can ensure, with at least 80% probability, that the
system eventually reaches a secure state.

(D)= F(secure)

In practice, a winning strategy might first gather in-
formation on the attacker’s profile by guiding the ad-
versary to perform actions specific to a certain ca-
pacity, then adapt its plan to guarantee reaching a se-
cure state, exploiting the inferred attacker limitations.
While ATL-SA elegantly blends stochastic modeling
with strategic reasoning, it lacks the expressivity to
reason about posterior capacity probabilities, such as
specifying a strategy that aims at identifying a profile
with high probability.

PATL. Probabilistic Alternating-Time Temporal
Logic (PATL) was introduced by Chen and Lu (2007)
as a probabilistic extension of ATL (Alur et al., 2002).
PATL enriches strategic reasoning by allowing the
specification of probability thresholds over temporal
objectives, enabling statements about the likelihood
that a coalition can enforce a given property against
adversarial behavior. Formulas in PATL existentially
quantify over strategies of a coalition while account-
ing for the probabilistic evolution of the system.

Semantically, once a coalition’s strategy is fixed,
the strategies of the opposing agents remain unre-
stricted. As a result, the outcome of a coalition strat-
egy is characterized by a set of probability measures
over execution paths, each corresponding to a pos-
sible response of the opponents. Satisfaction of a
PATL formula is then defined by universally quanti-
fying over these induced probability measures.

While PATL provides a powerful formalism for
probabilistic strategic verification in stochastic game
structures, it associates probabilities with state tran-
sitions rather than with agents’ abilities or action
availability. Consequently, it cannot capture uncer-
tainty or belief evolution regarding agents’ capabili-
ties based on observed behavior, a limitation that mo-
tivates later extensions such as ATL-SA. Importantly,
probabilities on state transitions, as studied in PATL,
are orthogonal to probabilities on agents’ capacities.
While PATL-SA focuses on uncertainty over capaci-
ties, combining both dimensions by also considering
probabilistic transitions constitutes a natural direction
for future work.

3 NOTATIONS AND
BACKGROUND

The set of non-negative integers is denoted by N =
{0,1,...}. Let A be a finite set. We denote by P(A)
the power set of A. A (discrete) probability distri-
bution over A is a function u : A — [0, 1],where [0, 1]
denotes the unit real interval, such that " ,c4 u(a) = 1.
The value u(a) represents the probability assigned to
the element a € A. The set of all probability dis-
tributions over A is denoted by D(A). A probabil-
ity distribution p over A induces a probability opera-
tor P : P(A) — [0,1] such that, for A’ C A, P(A’) =
Y ucarti(a). For Aj,Ay C A with P(Az) # 0, the con-
ditional probability of Ay given A, is P(A; | Ay) =
P(Al ﬂAz)/P(Az).

Concurrent Game Structures (CGS) (Alur et al.,
2002) are formal models used to represent multi-agent
systems in which agents make decisions simultane-
ously, and the outcome depends on the combination
of these choices. In a CGS, each agent independently
selects an action from a set of available options, and
the system transitions to a new state based on the joint
action of all agents. This framework captures the in-
teraction dynamics in environments where multiple
autonomous agents operate concurrently, often with
distinct goals and incomplete knowledge.

Concurrent Game Structures with Stochastic Abil-
ities (CGS-SA) (Ballot et al., 2025b) extend CGS by
associating each agent with a probability distribution
over capacities that is, over subsets of feasible ac-
tions. In this model, an agent’s capacity (its set of
admissible actions) is not fixed but probabilistically
sampled from a known distribution at the beginning
of the execution. This framework is particularly well-
suited for scenarios where agents may exhibit differ-
ent profiles such as skill levels, resources, or intent
and where uncertainty plays a central role in decision-
making. Such modeling is especially relevant in ad-
versarial and dynamic environments like cybersecu-
rity, where behavioral variability is expected (Igbal
and Pearson, 2017). By capturing both strategic rea-
soning and probabilistic uncertainty, CGS-SA pro-
vides a powerful foundation for verifying adaptive be-
haviors and synthesizing robust strategies under pro-
file uncertainty.

Formally, a CGS-SA is a tuple

M = (St,Ag,Ac,TI, T, d, 0,A1, ..., Ajug|),
where:
e St is a finite set of states.

* Ag is a finite set of agents.

e Ac is a finite set of actions.



 ITis a finite (it will be easier) set of atomic propo-
sitions.

e m: St — P(IT) is a labeling function mapping
states to propositions.

o d:Ag xSt — P(Ac) is the function that defines
the set of possible actions that each agent can
make based on the current state of the system.

* 0:8t x Acl8l — St is a partial function defined for
all joint actions aw € d(1,s) X - - - X d(n, s) available
in each state s

* Ap,...,Aj4q| are probability distributions over ac-
tion subsets (capacities) for each agent (A, €
D(P(Ac))).

For the rest of the article, we con-
sider a general CGS-SA M of the form
M = (St,Ag,Ac, H,n,d,o,Al,...,An), with n
agents (n € N). A path p in M is an infinite sequence
of alternating states and joint actions:

Qo Ol [8%]
P=so—>81 —>852 — "

where, for each index i € N, the joint action a; €
d(1,s;) x --- x d(n,s;) represents the action selected
by each agent in state s;, and the transition function
satisfies o(s;,0;) = s;+1. Moreover, for an agent a and
a joint action a,, t[a] denotes the action of agent a in
o. Given such a path p, we write p[i] = s; to denote
the i-th state on the path, and p<; to refer to the fi-
nite prefix of the path up to (and including) state s;,
along with all preceding joint actions. A capacity as-
signment is a function x : Ag — P(Ac) that assigns
to each agent a subset of actions: its capacity. A ca-
pacity assignment is called complete if it provides a
capacity for every agent in Ag. We denote by I be the
set of all complete capacity assignments with positive
probability. Given a finite path p = sq U 2N Si,
we define the set of capacity assignments consistent
with the history as:

vje{0,...,i—1}, }

K(p) = {Ke Tlva € Ag, a;la] € x(a)

This means % (p) contains all assignments in
which every agent has only performed actions that are
allowed by their assigned capacity.

The probability distributions Aj, ..., A, are as-
sumed independent. As such, they induce a prob-
ability measure P over complete capacity assign-
ments such that, for K C T, we have P(K) =
Ycek [lacagAa(K(a)). It is the probability that the
complete capacity assignment is among K.

A strategy is a function f which takes as input
a complete capacity assignment K and a finite path
(called history) p and returns an action f(x,p). A

strategy assignment G is a partial function that assigns
strategies to agents such that, for any finite path p and
any complete capacity assignment K, the strategy as-
signed to an agent a (of its domain) returns an action
o= o(a)(k,p) verifying o € d(a,s;) Nx(a), where s;
is the last state of p. That is, agent a’s strategy se-
lects a legal action at state s; that is also consistent
with the agent’s assigned capacity k(a). We say that
G is a strategy assignment for a coalition of agents Y
when the domain of ¢ is Y. A strategy assignment
is complete when its domain is the set of all agents.
Moreover, a strategy assignment 6 for Y is uniform
iff, for all a € Y, finite path p, and k,x’ € I', we have
K(a) = «/(a) implies 6(x,p) = 6(k’,p). It means that
the agents use the same action whatever the capacity
of other agents, encoding the fact that agents do not
know others’ capacity.

For a state sp, a complete strategy assignment
o, and a complete capacity assignment X, the out-
come path out(G,M, ) is the unique infinite path p =

S0 Lo, S RN sp--- such that, for all agents a and
J € N such that j > i, the joint action o; satisfies
ojlal = o(a)(k,p<j). In words, out(c,m,x) yields
the unique infinite path that extends the finite prefix
1, progressing via the transition function o according
to the joint actions selected by the agents’ strategies
under the complete capacity assignment k. This out-
come reflects how the system would evolve if each
agent acts according to its assigned strategy and ca-
pacity.

The next section presents our novel logic to ex-
press CGS-SA’s properties.

4 PROBABILISTIC
ALTERNATING-TIME
TEMPORAL LOGIC WITH
STOCHASTIC ABILITIES

To overcome the limitations of CapATL and ATL-SA,
we introduce Probabilistic Alternating-Time Tempo-
ral Logic with Stochastic Abilities (PATL-SA), build-
ing upon the strengths of both logics. It incorpo-
rates stochastic agent capacities where each agent is
associated with a probability distribution over possi-
ble profiles and enables reasoning about these capac-
ities in light of interaction history. Unlike ATL-SA,
which models uncertainty via probabilistic capacities
but does not track capacities’ probabilities over time
explicitly, PATL-SA allows defenders to assess the
likelihood of an agent possessing a given capacity as
the system evolves. This is inspired from CapATL
which allows reasoning about feasible capacities for



a given history, but considers deteministic capacities
only. This expressiveness makes PATL-SA partic-
ularly well-suited for modeling adversarial environ-
ments such as cybersecurity, where defenders must
adapt to evolving threats and incomplete information.
PATL-SA provides the tools to represent both proba-
bilistic variability and inference-driven adaptation in
agent reasoning, which are essential for modern sys-
tems like adaptive honeypots.

4.1 Syntax

Given a set Ag of agents, a set I of atomic proposi-
tions, and a set Ac of actions, the syntax of PATL-SA
formulas is defined as follows:
Ou=11=0|0A0[(¥)y[P(g)
yiu=X0[oUo|ORG
Qr=arc|Q|eAQ
Where [ € I is an atomic proposition, a € Ag is an
agent, Y C Ag is a coalition of agents, and ¢ C Ac
is a capacity, i.e., a set of actions. The comparison
operator < belongs to the set {<,<,>,>}.

This syntax extends ALT-SA’s syntax with the op-
erator P* (@) and the subformulas @. Intuitively, the
strategy formula (Y)*Py expresses that the coalition
Y has a strategy to ensure that the temporal goal y
holds with probability <t p. The operator P*P (o)
evaluates whether the probability that a capacity for-
mula ¢ holds—given the current history—compares
to p with >d. Temporal operators include X ¢ (next),
01 U ¢, (until), and 01 R ¢ (release), following stan-
dard temporal logic conventions. The atomic capac-
ity formula a — c asserts that agent a’s current ca-
pacity is exactly the capacity (i.e., action set) c. The
Boolean operators —, V, and <> are defined as usual
from — and A. The Boolean values T and L denote
respectively true and false. Moreover, the “finally”
operator is F$ := T U ¢ and the “globally” operator
isGo:=_LR¢.

Example. The following formula illustrates the be-
havior of the defender D in ensuring system security:

(D)=*? F(~Hacked A (P=8(A — Advanced)
vPZ08(A Beginner)))

This formula expresses that the defender D can en-
force, with at least 90% probability, a future state in
which the system is not hacked and the attacker A is
identified (with at least 80% probability) as either an
advanced or a beginner attacker. This captures both
the goal of security preservation and adversary profil-
ing with probabilistic confidence.

4.2 Semantics

Let M be such a structure, p be an infinite path, k be
a complete capacity assignment, and i € N. PATL-SA
semantic is defined inductively through the following
satisfaction relation:

o (M,p,i,x) ELiff I € n(pli])
o (M,p,i,x) Ea—ciffk(a) =c
o (M p,i,k) = PP (g) iff

P({K et |(M,p,i,x) =0} | K(p<i)) =i p

where X (p<;) C 7T is the set of capacity assign-
ments consistent with the observed history p<;.

o (M,p,i,x) | (Y)™Py iff there exists a uniform
strategy assignment Gy for the coalition Y such
that for all strategy assignments oy for the re-
maining agents ¥ = Ag\ Y, we have:

P ({x €t | (M, out(o,pli], ), 1.K) = w}) s p

where 6 = oy @ oy denotes the complete strategy
assignment combining strategy assignments with
disjoint domain.

o (M,p,i,x) E —Oiff (M,p,i,x) O
. (M7p,i,l() EOiAYy iff (M,p,i,l() = 1,
and (M,p,i,x) = Os.

o (M,p,i,x) = 01Ud, iff there exists j € N with
J > isuchthat (M, p,j,x) = 0, and for all k € N
with i <k < j, we have (M ,p,k,x) = 0

o« (M,p,i,x) = 01RO, iff either
- forall j >1i, (M,p,],x) = ¢, or
— there exists j > i such that (M ,p,j,x) E &1 A
0y, and for all k with i < k < j, we have
(Mvp’k7K) ':¢2

Note that for a PATL-SA formula ¢, the satisfac-
tion relation (M,p,i,x) = ¢ depends only on M,
the prefix p<;, and the formula ¢. Hence, we may
write (M ,p<;) |E ¢. In particular, for a given state
s € St, (M,s) = ¢ is well defined. PATL-SA’s seman-
tic extends ATL-SA’s uniform semantic but we could
also extends ATL-SA’s distributed semantic in simi-
lar ways (where agents in the strategic coalition share
their assigned capacity).

In the next section, we study the PATL-SA model-
checking problem, which takes as input a CGS-SA
M, an initial state s € St, and a PATL-SA formula
¢, and returns whether (M ,s) = ¢.



S PATL-SA MODEL CHECKING

We denote by MC the global model-checking proce-
dure for PATL-SA formulas. It recursively eliminates
nested strategic subformulas by replacing each inner
occurrence with a fresh atomic proposition and then
delegates temporal verification to the auxiliary proce-
dure MCTemp. Theorem 5.1 shows that the function
MCTemp from Algorithm 2 (using functions SuccN,
SuccU, and SuccR from Algorithm 1 and MCNoStrat
and MCCap from Algorithm 2) enables checking that
a winning strategy exists for a PATL-SA strategy for-
mula without nested strategy subformulas, given a
subset of complete capacity assignments for which
the strategy wins with probability 1.

Although the structure of our model-checking al-
gorithm resembles that of ATL-SA, PATL-SA intro-
duces a probabilistic evaluation phase (MCNoStrat
and MCCap) that computes conditional probabilities
over capacity assignments consistent with the ob-
served history. This additional layer allows evaluating
probability constraints such as P=? (@) within tempo-
ral goals, which CapATL cannot express.

Theorem 5.1. Let s be a state of a CGS-SA M,
KCT, Y CAg and vy be a temporal formula with-
out strategy subformulas. The following propositions
are equivalent:

1. There is a uniform strategy assignment Gy for Y
such that, for all strategy assignment Gpg\y for
Ag\Y and all x € K, we have:

(M ,out(cy D Cyp\y,5,%),1,K) =y
2. MCTemp(M,s,Y,y) =T.

Proof. The proof relates to the similar theorem in
ATL-SA (Ballot et al.,, 2025b) where the second
proposition is the satisfaction of an ATL formula on a
specific CGS. The algorithms from this theorem per-
form the explicit ATL model checking on the CGS
from (Ballot et al., 2025b)’s proof. The intuition in
SuccN, SuccU, and SuccR is that, after termination
check, agents in Y commit to a action for each of their
possible capacities (the possible capacity assignments
is the argument K in the algorithms). This commit-
ments are the functions { f; } ey, which model the uni-
formity of Y’s strategy assignment (c.f. (Ballot et al.,
2025b)). Then, for all possible opponents response
and capacity assignments in K, the temporal formula
is verified recursively (c.f. (Alur et al., 2002) for ATL
model checking). In SuccU and SuccR, the argument
K is updated as the subset of complete capacity as-
signments which are consistent with the transition and
where Y performs the committed action. The argu-
ment K, keeps track of the set of all consistent capac-
ity assignments (whatever the commitment of ¥) and

allows verifying subformulas of the form P*(¢). In-
deed, there are calls to MCNoStrat for non-strategic
subformula, which is sound because it performs sim-
ple Boolean verification and computes the conditional
probability as expected. O

As in ATL-SA, we can reduce the analysis to for-
mulas where > € {>, >} (c.f. (Ballot et al., 2025b)).
Indeed, let X € {<,<,>,>} such that p; < p, iff
P2 X py, for all py, ps € [0,1], and let X = X(—0),
01 Udy = (=61) R (—92), and ¢1 Rp2 = (—01) U
(—¢2), which is the negation of a temporal for-
mula. Then, the formulas (Y)*Py and (¥)™(!~P)y
are equivalent. We define the function MC from
Algorithm 2, which implements the model check-
ing for any PATL-SA formula. This function induc-
tively checks nested strategy subformulas with a call
to MCTemp and update the structure and formula
to remove strategic operators. By Theorem 5.1, the
function MC is a sound model-checking algorithm for
PATL-SA. This leads to the following Theorem 5.2.

Theorem 5.2. PATL-SA model checking for formulas
of the form (Y )Py without nested strategy formulas

is NEXPTIME-complete. For general formulas, it is in
A5!
2

Proof. The lower bounds come from ATL-SA model
checking (Ballot et al., 2025b). For the upper bound,
notice that MC can choose K nondeterministically and
the rest of its execution (without the call to MCTemp)
is polynomial. Calls to MCTemp take an exponential
time with respect to M and ¢. Indeed, suppose we
call SuccU from MCTemp. The last arguments K,
in the m'™ recursive call to SuccU can be encoded as
Kn = {x € K) | Va € Ag,x(a) € CI'}, for some sets
of capacities C{", ..., C;} with positive probabilities
for each respective agent (and the same holds for the
second last argument). Consequently, the number of
different arguments for SuccU is exponential. More-
over, the loops of SuccU are exponential so SuccU
executes in exponential time overall, and so does
MCTemp. O

To conclude this section, while PATL-SA extends
ATL-SA with a new operator to reason about the
probability that agents have some capacity accord-
ing to the history, the model-checking complexity re-
main the same as ATL-SA. The next section presents a
cybersecurity illustration which demonstrates PATL-
SA’s applicability.

1A§ is the class of problems that can be solved in poly-
nomial time with calls to an NEXPTIME oracle.



Algorithm 1 Temporal formula handlers with a global table U and R.

function SUCCN(M ,s,Y,d,K)
foralla € Agdo C, + {x(a) | k€ K}
for all {f,},cy where, forally €Y, f, : C, = Acs.t. fy(c) €d(a,s)Nc do
valid < T B
for all x € K and all {a;}, 5 s.t. forallz€Y, o € d(z,5) Nk(z) do
for all y € Y do o, + f(x(y))
s o(s,0,...,0,); K+ {x € K|Va € Ag,a, € k(a)}
if “MCNoStrat(M,s',K,, ) then valid < L; break
if valid then return T
return L
end function

function SuccU(M ,s,Y,¢1,02,Kp,K)
ifUls,Y,¢1,02,K,,K] exists then return U[s,Y, 01,2, K, K]
if MCNoStrat(M,s,K,,,¢,) then save in U and return T
if -MCNoStrat(M,s,K},,01) then save in U and return
U[S7Y7¢] 7¢27KP7K] «— T
foralla € Agdo C, + {x(a) | x €K}
for all {f,},cy where, forally €Y, f, : C, = Acs.t. fy(c) €d(a,s)Nc do
valid < T _
for all x € K and all {a;}, 5 s.t. forallz€ Y, o, € d(z,5) Nx(z) do
for all y € Y do o, + f(x(y))
s+ o(s,0q,...,0)
K, < {x' € K, |Va € Ag,0, € ¥'(a)} B
K «—{K eK|V¥yeY, fi(k(y)=0yandVzeY,a, € ¥ (z)}
if ~SuccU(M,5',Y,01,02,K),, K') then valid < L; break
if valid = T then save in U and return T

save in U and return |
end function

function SUCCR(M,S,Y,(})l,(])Q,Kp,Ko)
if R[s,Y,01,¢2,K,, K] exists then return R[s,Y,01,,K,, K]
if -MCNoStrat(s,K,,¢,) then save in R and return L
if MCNoStrat(s,K,, (1) then save in R and return T
R[S7Y>¢17¢27Kp7K] — J~
foralla € Agdo C, + {x(a) | k€ K}
for all { f,},cy where, forally € Y, f, : Cy = Acs.t. fy(c) € d(a,s)Nc do
valid <+ T _
for all x € K and all {o;},y s.t. forallz€ Y, o € d(z,5)Nk(z) do
for all y € Y do o, + f,(x(y))
s < o(s,0q,...,0)
K, +{x' €K, |VacAg,0, €¥'(a)} B
K+ {K eK|VyeY, f(k(y)) =0yandVz€Y,0, € ¥'(2)}
if ~SuccR(s',Y,01,02,K},,K’) then valid < L; break
if valid = T then save in R and return T

save in R and return
end function




Algorithm 2 PATL-SA model-checking algorithms.

function MCNOSTRAT(M , s, K, ®)

if o =/ then return whether / € (s)
if = ¢’ then return -MCNOSTRAT(M ,s,K,¢)
if = &1 A ¢, then return MCNOSTRAT(M ,s,K,$1) A MCNOSTRAT(M ,5,K,02)
if $ = P™(¢) then

P1<0;p2 0

for all K’ € K do

if MCCAP(«, ¢) then p1 = pi +[Tueay Aa(K ()

p2=p2+ HaGAg Aa(Kl(a))
return whether p;/p, > p

end function

function MCCAP(k, 0)
if = a — c then return whether ¢ = k(a)

if = ¢’ then return -MCCAP(K, ¢')
if(I) = ¢1 /\(1)2 then return MCCAP(K7¢1) A MCCAP(K7 ¢2)
end function

function MCTEMP(M ,s5,Y, ¥, K)
if v = X ¢’ then return SUCCN(M ,s5,Y, ¢, K)
if v = 0; U ¢, then return SuccU(M,,s,Y,01,0,,T,K)
if y = 01 R ¢, then return SUCCR(M,,s,Y,01,0,,T,K)
end function

function MC(M , s, ¢)
if there is an innermost strategic subformula ¢; in ¢ then
if 0, = (Y)"Py with b € {<, <} then ¢ « (Y)™ 1Py
if o = (Y)™Py with > € {>, >} then
for all state s in M do
if there is K C T s.t. P(K) <t p and MCTEMP(M , 5,Y,y, K) then
give label Iy, to s in M’
¢’ < replace ¢ by ly, in ¢
return MC(M’ s, ¢")
return MCNOSTRAT(M ,s,T, -, )
end function




6 CYBERSECURITY
ILLUSTRATION

We now demonstrate PATL-SA on a cybersecurity
case study. The goal is to illustrate how probabilis-
tic capacity inference supports attacker profiling and
adaptive defense synthesis. To demonstrate the power
of formal verification in cybersecurity, we model a
corporate network defended by an adaptive honeypot
system, which dynamically mimics real services and
introduces decoy vulnerabilities to engage and profile
attackers. The interaction between attacker and de-
fender is captured as a stochastic game, and we verify
key security objectives in PATL-SA.

6.1 System Model

The adaptive honeypot model progresses through a fi-
nite set of network configurations as the defender and
attacker interact. Initially, the system resides in state
I, representing the untouched network before any en-
gagement. Depending on the defender’s decoy choice
and the attacker’s probing, the game may transition
to one of the P; states, where service s; appears vul-
nerable. If the attacker attempts an exploit on these
services, they may enter the intermediate state Ei3,
reflecting partial penetration efforts on Py or P,. At
this point, the defender can lure the attacker further
into the honeypot, moving them into the winning de-
coy state Ey, where a long-running fake exploit (W)
fully engages the adversary. Finally, the model in-
cludes a true compromise state H, indicating that the
attacker has breached real assets. Figure 1 shows
these states and their interconnections. Each state’s
labels are their respective name.

6.2 Verification Objectives

The following formulas are presented as illustrative
examples, demonstrating the expressiveness and effi-
ciency of PATL-SA in capturing key security and in-
telligence goals; they are not intended as prescriptive
objectives for any specific deployment.

1. Attacker Identification. The honeypot can infer
the attacker skill level with 80% confidence:
0ig = PZ03(A — Beg) v PZ0%¥(A — Int)
VPZO8(A 5 Adv)
2. Strategic property. There exists a defender strat-
egy that, with probability at least 90%, eventually

both keeps the system safe (—H) and reaches the
profiling objective of ¢;4.

0= (D)=’ F(—H A 0ia)

By model-checking these properties on the adap-
tive honeypot CGS-SA (for instance, checking
whether the initial state 7 from Figure 1 satisfies I |=
0), we obtain quantitative guarantees guiding the de-
sign of dynamic deception strategies in real-world cy-
bersecurity defenses.

Figure 1: CGS-SA for the cybersecurity use case.

Agent | Cap | Proba | Actions
Beg | 0.50 | BP,BF,DC,n
A Inter | 0.35 | BP, BEF, DC, SP, PC,
EKV,n
Adv | 0.15 | BP, BF, DC, SP, PC,
EKV, ZD, EB, n
D HP 1 S],SQ,S3,F,H

Table 1: Agent capacities and available actions for the cy-
bersecurity case study.

The following details the interpretation of the actions
listed in Table 1 and depicted in Figure 1.

¢ Attacker actions:

— BP: Basic probe (network scan or service fin-
gerprinting).
— BF: Brute-force authentication attempt.

— DC: Interaction with a decoy asset (click or
download).

SP: Spear-phishing.

PC: Privilege-escalation command.

EKYV: Exploitation of a known vulnerability.
EB: Exploit bypass to evade honeypot detec-
tion.

— ZD: Zero-day exploit.

n: No operation.



* Defender actions:

S1: Spear-phishing decoy.
S,: Fake login page with a known CVE.

S3: Encrypted-channel decoy.
F: Fake long-running exploit success.
n: No action.

7 CONCLUSION

This article introduces PATL-SA as an extension of
ATL-SA (Ballot et al., 2025b) with an operator to rea-
son about the posterior probability that agents have
some capacity after observing a history. We study the
model-checking complexity and prove its NEXPTIME-
completeness for formulas of the form (Y)™Py with-
out nested strategy formulas. For general formulas, it
is in AE. These complexity results are consistent with
those of ATL-SA while we gain in expressibility. We
showcase PATL-SA’s applicability in a cybersecurity
example where we verify attacker attribution objec-
tives for an adaptive honeypot. While demonstrated
in a cyber-defense scenario, PATL-SA offers a gen-
eral tool for reasoning about agents whose abilities
and intentions unfold probabilistically over time.

Future works include extending the model to
imperfect information structures. Strategic logics
are notoriously undecidable in general in this con-
text (Dima and Tiplea, 2011). However, limiting
agents memory or imperfect information can help re-
trieving decidability (Catta et al., 2025; Belardinelli
et al., 2023; Belardinelli et al., 2022b). Another ex-
tension would consider probability on transitions as
well as capacities, as in (Chen and Lu, 2007). Then,
we could see the impact of stochastic strategies in
this context. Finally, we plan to implement this logic
within a model checker such as VITAMIN(Ferrando
and Malvone, 2025a; Ferrando and Malvone, 2025b),
which has already been successfully applied to a wide
range of strategic reasoning logics, including natu-
ral strategic logics (Jamroga et al., 2019; Belardinelli
et al.,, 2022a) and obstruction logics (Catta et al.,
2023; Catta et al., 2024b).
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