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Abstract. Alternating-time Temporal Logic (ATL) extends the temporal logic
CTL, permitting quantification over coalitions of agents. During the model check-
ing process, the coalitions defined in a given formula are predetermined, operat-
ing under the assumption that the user possesses knowledge about the specific
coalitions under exam. However, this presumption is not universally applicable.
The outcome of this paper is twofold. Initially, we introduce CATL, a modified
version of ATL which empowers users to define coalition quantifiers based on
two key attributes: the number of agents involved within the coalitions and the
methodology for grouping these agents. Subsequently, we show the incorpora-
tion of CATL into MCMAS, a widely recognized tool dedicated to ATL model
checking. Additionally, we provide details of this extension accompanied by em-
pirical experiments.
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1 Introduction

It is difficult to fully trust software systems. When considering the reliability of a soft-
ware system, it is therefore crucial to ensure certain guarantees are in place for the
end user. Out of these guarantees is demonstrating the correctness of the system under
exams, and it poses a particularly challenging task. For this very reason, the formal
verification of Multi-Agent Systems (MAS) has become an important research field in
both theoretical and applied computer science during the last decades. Reactive, au-
tonomous, and distributed systems have become ubiquitous nowadays, and as a result,
the need to verify the correctness of such systems has emerged. One of the main con-
tributions in formal verification of MAS is model checking: to verify if a MAS satisfies
a given property of interest, a mathematical model (usually a graph-like entity) of the
MAS is defined and the property of interest is expressed as a formula in some logical
language (usually temporal logic). To ensure that the MAS satisfies the property, we
check whether the mathematical representation of the MAS is a model (in the logical
sense) of the logical formula expressing the property of interest. Agents of a MAS are
often conceived as players of a concurrent game: they act synchronously, they have a
goal, and they can pursue the latter either alone or by forming coalitions with other
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agents. For this reason, logics that are used to specify the properties of interest are usu-
ally strategic logics [1,17]. In particular, one of the most popular logics that is used
to specify desired properties of a MAS is Alternating-time Temporal Logic (ATL) [1].
This latter logic is an extension of Computation Tree Logic (CTL) obtained by substi-
tuting the path quantifiers “there is a path” and “for all paths” of CTL with two strategic
operators, ⟨⟨Γ⟩⟩ and [[Γ]], whose meaning can be spelled out as “there exists a joint
strategy for the coalition of agents Γ” and “for all strategies for the coalition of agents
Γ”, respectively. In this context, a strategy is a generic conditional plan that at each
step of the game prescribes an action. With more detail, there are two main classes of
strategies: memoryless and memoryfull. In the former case, agents choose an action by
considering only the current state while, in the latter case, agents choose an action by
considering the full history of the MAS.

From a practical point of view, the most popular tool for the model checking of
Multi-Agent Systems is MCMAS [16]. In this tool, the Multi-Agent System is formally
modeled as an interpreted system that is a product of local models, one for each agent
involved in the multi-agent system to represent its visibility. MCMAS provides the
specification of properties via CTL, ATL [1], Strategy Logic [17], and some of their
extensions/fragments. The tool handles the model checking problem by using a Binary
Decision Diagram (BDD) representation for models and formulas.

Notice that, in the model checking process, both from a theoretical and practical
viewpoint, the coalitions in the strategic operators need to be fixed before the verifi-
cation process. The latter constraint is not always well-known by the developers/users
called to verify the Multi-Agent System. In the following, we analyze the main features
related to our extension.

Coalitions as variables. To automatically generate the coalitions in an ATL formula ϕ,
it is first necessary to have a way to uniquely identify each coalition inside the formula.
In more detail, given an ATL formula ϕ, we can annotate each strategic operator with a
corresponding variable. Just to make an example. Let us assume the ATL formula ϕ is
as follows: ⟨⟨a,b⟩⟩F⟨⟨b,c⟩⟩G⟨⟨a,c⟩⟩X p; with {a,b}, {b,c}, and {a,c} three coalitions,
and p an atomic proposition. The formula becomes ⟨⟨Γ1⟩⟩F⟨⟨Γ2⟩⟩G⟨⟨Γ3⟩⟩X p, where Γ1,
Γ2, and Γ3 are three variables, which will be replaced by the automatically generated
coalitions. Note that, in all strategic operators we may add the same Γ variable. In such
a case, we would enforce to use the same coalition in the three strategic operators of ϕ.

In the following, we report the kind of rules we want to enforce over the coali-
tions. Such rules guide the coalitions’ generation, so that all coalitions proposed by our
approach both make ϕ satisfied in the formal model and respect all the guidelines.

Two types of features could be of interest in our investigation: the number of agents
and how to group the agents.

Number of agents in coalition. The first analysis concerns the size of the coalitions to
generate. In more detail, we want to enforce the minimum (resp. maximum) number
of agents per coalition. This is very important, because it relates to possible real-world
limitations. For instance, there might be scenarios where coalitions with less than n
or more than m agents are not reasonable, because to create a coalition of less than
n or more than m agents is too expensive for its gain. For this reason, a min (resp.
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max) constraint can be specified to rule out all Γ coalitions such that min ≤ |Γ| (resp.
|Γ| ≤ max).

Agents in the same/different coalition. Another relevant group of features concerns
which agents can (or not) be in the same coalition. Again, this finds its motivation in
real-world applications, where it is common to have limitations on how some agents
can be grouped. For instance, considering that the agents are commonly situated in an
environment, it may be possible that some of them are close (or not) to each other. For
this reason, there might be interest in not having in the same coalition agents that are
far from each other (for technological and practical reasons), while there might be in-
terest in having in the same coalition agents that are local to each other. For this reason,
a [a→← b] (resp. [a←→ b]) constraint can be specified to keep all Γ coalitions s.t.
a ∈ Γ ⇐⇒ b ∈ Γ (resp. a ∈ Γ =⇒ b /∈ Γ and b ∈ Γ =⇒ a /∈ Γ); where a and b can be
any agent.

In this paper, we propose a methodology to tackle the above mentioned rules. To
do so, we first introduce a variant of ATL (which we call Coalition ATL) in which the
following specifications can be expressed:

1. there is a coalition Π which includes all the members of Γ and all those of ∆ such
that the member of Π can realize ϕ by coordinating their actions;

2. there is a coalition Π which includes all the members of Γ and no member of ∆

such that the members of Π can realize ϕ by coordinating their actions;
3. there is a coalition Π counting at most n agents such that the members of Π can

realize ϕ by coordinating their actions;
4. there is a coalition Π counting at least n agents such that the members of Π can

realize ϕ by coordinating their actions;

where Γ and ∆ are two coalitions of agents, n is a natural number, and ϕ is a formula
expressing a desired property of the MAS.

Coalition ATL (or CATL for short) is obtained by considering four new strategic
operators whose intuitive semantics is expressed in the four above statements. We study
the formal properties of this logic. In particular, we show that CATL and ATL have the
same expressive power, but CATL can express some ATL properties in an exponentially
more concise manner.

After having introduced CATL, we detail an implementation of it in MCMAS. More
precisely, we present an extension of MCMAS in which we give the ability to the end
user to characterize the coalitions in the strategy quantifiers with respect to two main
features: the number of agents involved in the coalitions and how to group the agents.
That is, we ask the user to give some information on the coalitions involved in each
strategic operator by considering them as a variable of the problem. With more detail,
the user can input a minimum and maximum number of agents involved in the coali-
tions and give guidelines with respect to the agents that have to (resp., cannot) stay in
the same coalitions. After that, our tool extracts all coalitions of agents that respect the
user’s guidelines. Then, for each valid coalition, our tool verifies the formal specifica-
tion over the Multi-Agent System. Finally, the coalitions that make the formal speci-
fication satisfied in the Multi-Agent System are returned to the user. We consider our
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work as a first stone on the development of a more generalized tool for the verification
of multi-agent systems.

Differently from [13], in this work we introduce the formal machinery to verify
parametric ATL formulas w.r.t. the generated coalitions. To achieve this, we introduce
CATL, a variant of ATL that we prove to be as expressive as ATL, but whose formulas
are exponentially more succinct. In addition, we provide additional experimental results
on some CATL formulas.

Structure of the work. The paper is structured as follows. In Section 2 we give some
related works on formal verification of multi-agent systems. In Section 3 we define
CATL, we prove that CATL and ATL have the same expressive power, and we study
the model checking for our logic. In Section 4 we recall the definition of interpreted sys-
tems, which are the mathematical models used in practice. To exemplify our approach,
we present a variant of the Train Gate Controller in Section 5. Then, in Section 6 we
provide the algorithms to solve CATL model checking via ATL model checking. Fi-
nally, we give the details of our extension for MCMAS in Section 7 and, in Section 8,
provide experimental results on a parameterised version of the Train Gate Controller
scenario. We conclude in Section 9 by recapping our work.

2 Related Work

In the introduction, we mentioned another important logic for the strategic reasoning
called Strategy Logic (SL) [17]. The latter is a powerful formalism for strategic rea-
soning. As a key aspect, this logic treats strategies as first-order objects that can be
determined by means of the existential ∃x and universal ∀x quantifiers, which can be
respectively read as “there exists a strategy x” and “for all strategies x”. Therefore,
in Strategy Logic, these strategies are not intrinsically glued to a specific agent, but an
explicit binding operator (a,x) allows to link an agent a to the strategy associated with a
variable x. Unfortunately, the high expressiveness of SL comes at a price. Indeed, it has
been proved that the model checking problem for SL becomes non-elementary com-
plete [17] and the satisfiability undecidable [18]. To gain back elementariness, several
fragments of SL have been considered. Among the others, Strategy Logic with Simple-
Goals [5] considers SL formulas in which strategic operators, bindings operators, and
temporal operators are coupled. It has been shown that Strategy Logic with Simple-
Goals strictly subsumes ATL and its model checking problem is PTIME-COMPLETE,
as it is for ATL [1]. Note that, none of these fragments, nor SL, explicitly allow to
parameterize over the coalition of agents.

To conclude this section, we want to focus on the agents’ information. Specifically,
we distinguish between perfect and imperfect information [20]. The former corresponds
to a basic setting in which every agent has full knowledge about the MAS. However, in
real-life scenarios it is common to have situations in which agents have to play without
having all relevant information at hand. In computer science these situations occur for
example when some variables of a system are internal/private and not visible to an
external environment [15,8]. In MAS, the imperfect information is usually modeled by
setting an indistinguishability relation over the states of the system [15,20,19]. This
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feature deeply impacts on the model checking complexity. For example, ATL becomes
undecidable in the context of imperfect information and memoryful strategies [10]. To
overcome this problem, some works have either focused on an approximation to perfect
information [3,7], developed notions of bounded memory [2,6], or developed hybrid
techniques [14,11,12]. Note that, even though in this work we focus on the perfect
information scenario, our results hold in the imperfect one as well. We decided to tackle
the former case to simplify the presentation and help the reader to fully understand the
contribution of the work.

3 Coalition ATL

In this section, we introduce Coalition ATL (CATL for short). Before detailing the syn-
tax and semantics of CATL, let us fix some notation and terminology that we shall use
along the paper.

Preliminary notions. If V is a set and U ⊆V , we denote by U the complementary V \U
of U in V . If v is a (finite or infinite) sequence over U , we denote by |v| its length (which
is ω if v is infinite), by vi its i-th element, by v≤i the finite prefix v1, . . . ,vi of v and by v≥i
the (possibly infinite) suffix of v starting at vi. If v is a finite sequence, last(v) denotes
the last element v|v| of v. We fix once and for all a finite set Ap of atomic propositions
or atoms (the letters p,q,r, . . . will range over this set) and a finite set Ag = {1, . . . ,n}
of agents. A subset of Ag will be called a coalition and we will use the Greek Letters
Γ,∆,Π . . . to range over them. If l = ⟨x1, . . . ,xn⟩ is a tuple, we denote by l[i] the i-th
component xi of the tuple.

3.1 Syntax

We now define the syntax of CATL.

Definition 1. State ϕ and path ψ formulas are defined by mutual induction using the
following grammar:

ϕ ::=⊤ | p | ¬ϕ | ϕ∨ϕ | ⟨⟨Γ⟩⟩ψ | ⟨⟨Γ→←∆⟩⟩ψ | ⟨⟨Γ→ ∆⟩⟩ψ | ⟨⟨≤n⟩⟩ψ | ⟨⟨≥n⟩⟩ψ

ψ ::= Xϕ | ϕUϕ | ϕRϕ

where p is an atom, Γ and ∆ are coalitions, and n ≤ |Ag| is a natural number. The
boolean connectives→ and ∧, and the temporal connectives F and G can be defined as
usual. We define ⟨⟨Γ←→∆⟩⟩ψ as (⟨⟨Γ→ ∆⟩⟩ψ)∨ (⟨⟨∆→ Γ⟩⟩ψ). Formulas of CATL are
all and only state formulas. Formulas of ATL are CATL formulas in which no occur-
rences of the operators ⟨⟨Γ→←∆⟩⟩,⟨⟨Γ→ ∆⟩⟩, ⟨⟨≤n⟩⟩, and ⟨⟨≥n⟩⟩ appear for any Γ,∆,
and n.

The size of a formula is the height of its construction tree, the formal definition
follows.
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Definition 2. The size |θ| of a formula θ is recursively defined as follows:

– if θ is an atom then |θ|= 0;
– if θ is θ1 ⋆θ2 with ⋆ ∈ {∧,∨, U , R}, then |θ|= max(|θ1|, |θ2|)+1;
– if θ is ◦θ1 with ◦ ∈ {X ,⟨⟨Γ⟩⟩,⟨⟨Γ→←∆⟩⟩,⟨⟨Γ→ ∆⟩⟩,⟨⟨≤n⟩⟩,⟨⟨≥n⟩⟩}, then |θ| =
|θ1|+1.

3.2 Semantics

We specify the meaning of CATL formulas by means of Concurrent Game Structures
(CGS for short). Intuitively, a CGS is a labeled directed graph that represents the pos-
sible evolution of a given Multi-Agent System with respect to simultaneous choices of
actions of a group of (autonomous) agents. Both states and edges are labeled by mem-
bers of two disjoints alphabets. States are labeled by atomic propositions. These atomic
propositions represent the properties that are true at a given state. Each edge is labeled
by a tuple, and each member of a given tuple represents an action that is available for a
given agent at the source state of the edge. The formal definition follows.

Definition 3. Given a set Ap of atomic proposition, and a set Ag= {1, . . . ,k} of agents,
A Concurrent Game Structure with Imperfect Information (iCGS for short) constructed
over Ap and Ag is a tuple M = ⟨S,sI ,{Acti}i∈Ag,P,T,{∼i}i∈Ag,L⟩, where:

– S is a finite set of states and sI ∈ S is the initial state.
– Acti is a finite non-empty set of actions for any i ∈ Ag; we denote by ACT the

product set Πi∈AgActi and we call elements of this set joint actions.
– P : S×Ag→ (2Acti \ /0) is the protocol function which assigns a non empty-subset

of actions P(s, i) of Acti to any agent i and state s. The set P(s, i) represents the set
of actions that are available at the state s to the agent i.

– T : S×ACT → S is the (partial) transition function. Such function associates to any
state s and joint action a = ⟨a1, . . . ,ak⟩ such that for all i∈Ag, a[i]∈ P(s, i), a state
s′ = T (s,a).

– for each i ∈ Ag, ∼i⊆ S× S is an equivalence relation dubbed indistinguishability
relation.

– L : S→ 2Ap is the labeling function, assigning each state s to a (possibly empty)
subset of Ap.

Given an iCGS M, we say that M is a CGS when the indistinguishability relation∼i
is the identity for any i ∈ Ag.

A path ρ is an infinite sequence of states of M, ρ = s1,s2,s3, . . . respecting the
following constraints: for every i≥ 1, there is a joint action a such that T (si,a) = si+1.
We denote paths by ρ,τ, and π. An history h is a finite prefix of some path ρ. We use
H to denote the set of histories. Given two histories h and h′, we say that h and h′ are
indistinguishable for the agent i (denoted by h≡i h′) when they have the same length m
and ⟨h j,h′j⟩ ∈∼i for all j ≤ m.

Definition 4. A uniform strategy (strategy for short) for an agent i is a function σi :
H→ Acti such that:
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1. for every h ∈ H we have that σi(h) ∈ P(last(h), i).
2. For every pair of histories h and h′, h≡i h′ implies σi(h) = σi(h′).

A strategy is memoryless when for every pair of histories h and h′ we have that
last(h) = last(h′) implies σ(h) = σ(h′).

As usual, we can see a memoryless strategy for an agent as a function whose domain is
the set of states of the iCGS and whose co-domain is the set of agents actions.

Given a coalition Γ, a uniform strategy for Γ, or simply Γ-strategy, is a collection
σΓ of uniform strategies comprising one strategy σi for each i ∈ Γ. Given a path ρ, we
say that ρ is σΓ-compatible iff for every j ≥ 1, ρ j+1 = T (ρ j,a) for some joint action a
such that for every i ∈ Γ, a[i] = σi(ρ≤ j), and for every k ∈ Γ, a[k] ∈ P(ρ j,k). We denote
with Out(s,σΓ) the set of all σΓ-compatible paths whose first state is s.

Finally, given a natural number n ≤ Ag, and two coalitions Γ and ∆ we define
Ag→←Γ,∆ = {Π ∈ 2Ag | Γ∪∆⊆Π}, Ag→Γ,∆ = {Π ∈ 2Ag | Γ ⊆ Π∧Π ⊆ ∆}, Ag≤n = {Γ ∈
2Ag | |Γ| ≤ n}, and Ag≥n = {Γ ∈ 2Ag | |Γ| ≥ n}.

We now have all the needed ingredients to specify CATL semantics.

Definition 5. Given a iCGS M, a state s of M, and a state formula ϕ, the satisfaction
relation M,s |= ϕ is defined by structural induction on ϕ as follows:

– M,s |= p iff p ∈ L(s);
– M,s |= ¬ϕ1 iff it is not the case that M,s |= ϕ1 (noted M,s ̸|= ϕ);
– M,s |= ϕ1∨ϕ2 iff M,s |= ϕ1 or M,s |= ϕ2;
– M,s |= ⟨⟨Γ⟩⟩ψ iff there is a Γ-strategy σΓ such that for all ρ ∈ Out(s,σΓ) we have

that M,ρ |= ψ;
– M,s |= ⟨⟨Γ→←∆⟩⟩ψ iff there is a coalition Π ∈ Ag→←Γ,∆ and there is a Π-strategy

σΠ such that for all ρ ∈ Out(s,σΠ) we have that M,ρ |= ψ;
– M,s |= ⟨⟨Γ→ ∆⟩⟩ψ iff there is a coalition Π ∈ Ag→Γ,∆ and there is a Π-strategy σΠ

such that for all ρ ∈ Out(s,σΠ), M,ρ |= ψ;
– M,s |= ⟨⟨≤n⟩⟩ψ iff there is a coalition Γ ∈ Ag≤n and there is a Γ-strategy σΓ such

that for all ρ ∈ Out(s,σΓ), M,ρ |= ψ;
– M,s |= ⟨⟨≥n⟩⟩ iff there is a coalition Γ ∈ Ag≥n and there is a Γ-strategy σΓ such that

for all ρ ∈ Out(s,σΓ) we have that M,ρ |= ψ.

Given a iCGS M, a path ρ of M, and a path formula ψ, the satisfaction relation is
defined as follows:

– M,ρ |= Xϕ iff M,ρ2 |= ϕ

– M,ρ |= ϕ1Uϕ2 iff there is an i ≥ 1 such that M,ρi |= ϕ2 and M,ρ j |= ϕ1 for all
1≤ j < i;

– M,ρ |= ϕ1Rϕ2 iff either M,ρi |= ϕ2 for all i ≥ 1 or there is an i ≥ 1 such that
M,ρi |= ϕ1 and M,ρ j |= ϕ2 for all 1≤ j ≤ i.

The memoryless satisfaction relation |=r is obtained by substituting “memoryless strat-
egy” to “strategy” in the clauses for the strategic operators. For a CATL formula ϕ we
write M |= ϕ and we say that M is a model of ϕ whenever M,sI |= ϕ.
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We can now define the model checking problem for CATL.

Definition 6. Given a iCGS M and a CATL formula ϕ, the model checking problem is
solved by determining whether M |= ϕ.

Remark 1. Since each ATL formula is a CATL formula and since the model-checking
problem for ATL over iCGS with uniform strategies is undecidable, we have the same
result for CATL.

In what follows, we show that CATL is a variant of ATL, that is: every CATL for-
mula ϕ can be expressed as an ATL formula ϕ′ and these two formulas are semantically
equivalent.

3.3 From CATL to ATL

There is an intuitive translation from CATL formulas to ATL formulas. For instance,
suppose that ⟨⟨Γ→←∆⟩⟩ψ is a CATL formula such that ψ does not contain any occur-
rence of one of the new strategic operators that we introduced. Given a state s of a model
M, we have that M,s |= ⟨⟨Γ→←∆⟩⟩ψ if and only if M,s |= ⟨⟨Π1⟩⟩ψ∨·· ·∨⟨⟨Πn⟩⟩ψ where
the Π1, . . . ,Πn are all the coalitions in Ag that contains all elements of both Γ and ∆.
Following this intuition, we can define (−)• as follows:

(⊤)• = ⊤
(p)• = p
(¬ϕ)• = ¬(ϕ)•

(ϕ1∨ϕ2)
• = (ϕ1)

•∨ (ϕ2)
•

(⟨⟨Γ⟩⟩ψ)• = ⟨⟨Γ⟩⟩(ψ)•
(⟨⟨Γ→←∆⟩⟩ψ)• =

∨
Π∈Ag→←

Γ,∆
⟨⟨Π⟩⟩(ψ)•

(⟨⟨Γ→ ∆⟩⟩ψ)• =
∨

Π∈Ag→
Γ,∆
⟨⟨Π⟩⟩(ψ)•

(⟨⟨≤n⟩⟩ψ)• =
∨

Γ∈Ag≤n ⟨⟨Γ⟩⟩(ψ)
•

(⟨⟨≥n⟩⟩ψ)• =
∨

Γ∈Ag≥n ⟨⟨Γ⟩⟩(ψ)
•

(Xϕ)• = X(ϕ)•

(ϕ1Uϕ2)
• = (ϕ1)

•U(ϕ2)
•

(ϕ1Rϕ2)
• = (ϕ1)

•R(ϕ2)
•

From the above, we can notice that, given the translation (−)• and a CATL formula ϕ,
we can obtain an exponentially bigger representation of ϕ in ATL (in the worst case).

By using our translation we can obtain the following result.

Proposition 1. For every CATL formula ϕ, for every iCGS M, and state s of M, we
have that:

M,s |= ϕ if and only if M,s |= (ϕ)•

Proof. The proof is by induction on the size of ϕ. When ϕ is an atom, the result is clear.
When the main connective of ϕ is boolean, the result follows directly by induction
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hypothesis. All the cases for the strategic operators follow exactly the same pattern,
therefore we detail only some of them.
If ϕ is ⟨⟨Γ→←∆⟩⟩ψ and ψ is Xϕ1:

For the (⇒)-direction, suppose that M,s |= ⟨⟨Γ→←∆⟩⟩Xϕ1. This means that there
is a coalition Π ∈ Ag→←Γ,∆ and a Π-strategy σΠ such that for all ρ ∈ Out(s,σΠ) we
have that M,ρ2 |= ϕ1. By induction hypothesis, we obtain that M,ρ2 |= (ϕ1)

•, and
this for every ρ ∈ Out(s,σΠ). We thus conclude that M,s |= ⟨⟨Π⟩⟩X(ϕ1)

•, and by
the semantics of ∨ we deduce that M,s |=

∨
Π∈Ag→←

Γ,∆
⟨⟨∆⟩⟩X(ϕ)• which is exactly

(ϕ)•.
For the (⇐)-direction. Suppose that M,s |= (ϕ)•. By the definition of (−)•, this
means that M,s |=

∨
Π∈Ag→←

Γ,∆
⟨⟨Π⟩⟩X(ϕ1)

• which is the same as M,s |= ⟨⟨Π⟩⟩X(ϕ1)
•

for some Π ∈ Ag→←Γ,∆ . We thus deduce that there is a Π-strategy σΠ such that
M,ρ2 |= (ϕ1)

• for all ρ ∈ Out(s,σΠ). By induction hypothesis M,ρ2 |= ϕ1 for any
ρ ∈ Out(s,σΠ). Since σΠ is a Π-strategy and Π ∈ Ag→←Γ,∆ , we can conclude that
M,s |= ⟨⟨Γ→←∆⟩⟩Xϕ1 as we wanted.

If ϕ is ⟨⟨≤n⟩⟩ψ and ψ is ϕ1Rϕ2:

For the (⇒) direction, suppose that M,s |= ⟨⟨≤n⟩⟩ϕ1Rϕ2, then there is a coalition
Γ ∈ Ag≤n and a Γ-strategy σΓ such that for all ρ ∈ Out(s,σΓ) either M,ρi |= ϕ2 for
all i ≥ 1 or there is a j ≥ 1 such that M,ρ j |= ϕ1 and M,ρi |= ϕ2 for all 1 ≤ i ≤ j.
We use the induction hypothesis, and we conclude that for all ρ ∈ Out(s,σΓ) we
either have that M,ρi |= (ϕ2)

• for all i ≥ 1, or M,ρ j |= (ϕ1)
• for some j ≥ 1, and

M,ρi |= (ϕ2)
• for all 1≤ i≤ j. We thus conclude that M,s |= ⟨⟨Γ⟩⟩(ϕ)•1R(ϕ2)

• and
by the semantics of ∨ we deduce that M,s |=

∨
Γ∈Ag≤n ⟨⟨Γ⟩⟩(ϕ)

•
1R(ϕ2)

• which is
exactly (⟨⟨≤n⟩⟩ϕ1Rϕ2)

•.
For the (⇐) direction, suppose that M,s |= (ϕ)• this means that for some Γ ∈
Ag≤n M,s |= ⟨⟨Γ⟩⟩(ϕ1)

•R(ϕ2)
•, thus there is a Γ-strategy σΓ such that for all ρ ∈

Out(s,σΓ) we either have that M,ρi |= (ϕ2)
• for all i ≥ 1, or there is a j ≥ 1 such

that M,ρ j |= (ϕ1)
•, and M,ρi |= (ϕ1)

• for all 1 ≤ i ≤ j. We use the induction hy-
pothesis, and we conclude that for all ρ∈Out(s,σΓ) we either have that M,ρi |= ϕ2
or there is a j ≥ 1 such that M,ρ j |= ϕ1 and M,ρi |= ϕ1 for all 1 ≤ i ≤ j. Since
Γ ∈ Ag≤n we conclude that M,s |= ⟨⟨≤n⟩⟩ϕ1Rϕ2 as we wanted.

If ϕ is ⟨⟨≥n⟩⟩ψ and ψ is ϕ1Uϕ2:

For the (⇒) direction, suppose that M,s |= ⟨⟨≥n⟩⟩ϕ1Uϕ2 thus there is a coalition
Γ ∈ Ag≥n and a Γ-strategy σΓ such that for all ρ ∈ Out(s,σ) there is a j ≥ 1 such
that M,ρ j |= ϕ2 and M,ρi |= ϕ1 for all 1≤ i < j. We use induction hypothesis and
conclude that for all ρ ∈ Out(s,σΓ) there is a j ≥ 1 such that M,ρ j |= (ϕ2)

• and
M,ρi |= (ϕ1)

• for all 1 ≤ i < j. Thus, we have that M,s |= ⟨⟨Γ⟩⟩(ϕ1)
•U(ϕ2)

• and
by the semantics of ∨ we deduce that M,s |=

∨
Γ∈Ag≥n ⟨⟨Γ⟩⟩(ϕ)

•
1U(ϕ2)

• which is
exactly (⟨⟨≥n⟩⟩ϕ1Uϕ2)

•.
For the (⇐) direction, suppose that M,s |= (ϕ)•, thus M,s |= ⟨⟨Γ⟩⟩(ϕ1)

•U(ϕ2)
• for

some Γ ∈ Ag≥n . This means that there is a Γ-strategy σΓ and for all ρ ∈ Out(s,σΓ)
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we have that there is a j ≥ 1 such that M,ρ j |= (ϕ2)
• and M,ρi |= (ϕ1)

• for all
1≤ i < j. We use induction hypothesis and we conclude that for all ρ ∈Out(s,σΓ)
we have that there is a j ≥ 1 such that M,ρ j |= ϕ2 and M,ρi |= ϕ1 for all 1≤ i < j.
Since Γ ∈ Ag≥n we have that M,s |= ⟨⟨≥n⟩⟩ϕ1Uϕ2 as we wanted.

Given the above result, we can conclude that CATL and ATL have the same expres-
sive power. So, we may derive the following result.

Corollary 1. The satisfaction relation |= and the memoryless satisfaction relation |=r
coincides over CGSs, that is, for every CATL formula ϕ, for every CGS M, and state s:

M,s |= ϕ if and only if M,s |=r ϕ

We now study the complexity of the model checking problem for CATL with respect
to CGSs.

Theorem 1. Given a formula ϕ and a CGS M the problem of determining the set [[ϕ]] =
{s ∈ S |M,s |= ϕ} is in ∆P

2 = PNP with respect to the size of ϕ and M.

Proof. We know that given an ATL formula λ, [[λ]] can be computed in polynomial
time w.r.t. the size of λ and M. Consider a subformula ϕ′ of ϕ that contains exactly
one strategic operator ⟨⟨Γ→←∆⟩⟩, or ⟨⟨Γ→ ∆⟩⟩, or ⟨⟨≤n⟩⟩, or ⟨⟨≥n⟩⟩. By Proposition 1
we know that ϕ′ is equivalent to a finite disjunction ϕ1 ∨ ·· · ∨ ϕn of ATL formulas.
Thus given a state s, a certificate consists in an ATL formula ϕi i.e., for the considered
ϕ′ checking whether M,s |= ϕ′ is in the NP class. We then use the classic bottom-up
approach to evaluate each subformula of ϕ on M: we order the subformulas of ϕ by
their size (in ascending order). For each subformula ϕ1 having exactly one of the four
above-mentioned strategic operators, we create a new atom pϕ1 , we substitute pϕ1 to ϕ1
in each subformula ϕ2 that contains ϕ1, and we add pϕ1 to the set of satisfied atoms of
each state s such that M,s |= ϕ1. This means that we use an NP oracle over a polynomial
procedure for each strategic operator in ϕ and each state s of M. Summing up, the total
complexity of determining [[ϕ]] is PNP.

We now study the complexity of the model checking problem for CATL with respect
to iCGSs in which agents use memoryless-strategies.

Theorem 2. Given a formula ϕ and an iCGS M the problem of determining the set
[[ϕ]] = {s ∈ S |M,s |=r ϕ} is in ∆P

3 with respect to the size of ϕ and M.

Proof. We know that the same problem with respect to ATL formulas is in ∆P
2 [21]. We

simply remark that, to solve our problem, we can use another NP oracle |S| times to
guess the good coalitions needed to satisfy a CATL formula as we do in Theorem 1.
From the above the result follows.
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3.4 Fragments

In this subsection, we present a fragment of CATL where we have the same complexity
of ATL model checking. The intuition behind the resulting approach is to generalize
the coalitions involved in the CATL strategic operators. Specifically, we achieve this by
replacing ⟨⟨Γ→←∆⟩⟩ and ⟨⟨≥n⟩⟩ with ⟨⟨Ag⟩⟩.

Before doing this, let us recall a classic result that holds in ATL and that will be
fundamental in our translation.

Proposition 2. For any pair of coalitions Γ and ∆, for any iCGS M and state s of M,
and for any path formula ψ, we have that, if Γ⊆ ∆ then:

M,s |= ⟨⟨Γ⟩⟩ψ implies M,s |= ⟨⟨∆⟩⟩ψ

Proof. See [9].

Let CATL▼ be the subset of CATL formulas constructed using all CATL connectives
but ⟨⟨Γ→ ∆⟩⟩ and ⟨⟨≤n⟩⟩. Let (−)◦ to be a function from CATL▼ formulas to ATL
formulas, such that:

(⊤)◦ = ⊤
(p)◦ = p
(¬ϕ)◦ = ¬(ϕ)◦

(ϕ1∨ϕ2)
◦ =(ϕ1)

◦∨ (ϕ2)
◦

(⟨⟨Γ⟩⟩ψ)◦ = ⟨⟨Γ⟩⟩(ψ)◦
(⟨⟨Γ→←∆⟩⟩ψ)◦= ⟨⟨Ag⟩⟩(ψ)◦

(⟨⟨≥n⟩⟩ψ)◦ = ⟨⟨Ag⟩⟩(ψ)◦
(Xϕ)◦ = X(ϕ)◦

(ϕ1Uϕ2)
◦ =(ϕ1)

◦U(ϕ2)
◦

(ϕ1Rϕ2)
◦ =(ϕ1)

◦R(ϕ2)
◦

We can prove the following result.

Proposition 3. For every CATL▼ formula ϕ, for every iCGS M, and every state s of M,
we have that:

M,s |= ϕ if and only if M,s |= (ϕ)◦

Proof. The proof is by induction on the size of ϕ. When ϕ is an atom, the result is clear.
When the main connective of ϕ is boolean, the result follows directly by induction
hypothesis. As in Proposition 1, all the cases for the strategic operators follow exactly
the same proof pattern. Thus, we only detail the case in which ϕ is ⟨⟨Γ→←∆⟩⟩ψ and ψ

is Xϕ1.

For the (⇒)-direction, suppose that M,s |= ⟨⟨Γ→←∆⟩⟩Xϕ1. By the CATL se-
mantics, this means that there is a Π such that Γ∪ ∆ ⊆ Π and a Π-strategy σ

such that for all ρ ∈ Out(s,σ) we have that M,ρ2 |= ϕ1. By induction hypothe-
sis, we conclude that for all ρ ∈ Out(s,σ) we have that M,ρ2 |= (ϕ1)

◦, which is
the same as M,s |= ⟨⟨Π⟩⟩X(ϕ1)

◦. Since Π⊆ Ag, we conclude by Proposition 2 that
M,s |= ⟨⟨Ag⟩⟩X(ϕ1)

◦ which is exactly (⟨⟨Γ∪∆⟩⟩Xϕ1)
◦.
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For the (⇐)-direction, suppose that M,s |= ⟨⟨Ag⟩⟩X(ϕ1)
◦, thus for all ρ∈Out(s,σ)

we have that M,ρ2 |= (ϕ1)
◦ for some Ag-strategy σ. By induction hypothesis, we

have that M,ρ2 |= ϕ1 for all ρ ∈ Out(s,σ) and since Γ∪∆ ⊆ Ag we can conclude
that M,s |= ⟨⟨Γ→←∆⟩⟩Xϕ1.

Since the ATL model checking problem is PTIME [1] with respect to CGS, we
immediately obtain the following corollary.

Corollary 2. For any CATL▼ formula ϕ and any CGS M, the problem of determining
[[ϕ]] is in PTIME with respect to the size of ϕ and M.

Since the ATL model checking problem is ∆P
2 [21] with respect to iCGS with mem-

oryless strategies, we immediately obtain the following corollary.

Corollary 3. For any CATL▼ formula ϕ and any iCGS M, the problem of determining
[[ϕ]] is in ∆P

2 with respect to the size of ϕ and M.

In the following sections, we exemplify the formal machinery introduced so far by
providing an example.

4 Interpreted Systems

The semantics of a strategic logic, such as ATL or CATL, can be specified, equivalently,
by resorting to either CGSs or Interpreted Systems. As the reader has probably noticed,
we have chosen to resort to the first alternative by defining the semantics of CATL
through CGSs. This choice is due to the fact that CGSs have a simple and intuitive
definition. Essentially, they are directed and labeled graphs in which the edge relation
is serial and in which edges are labeled by tuples of agent’s actions. As intuitive as this
definition is, the MCMAS verification tool operates on interpreted systems. So, for the
sake of completeness, we now introduce the formal definition of interpreted systems.
Then, in the next section, we will present this latter formal model through an example
to guide the reader.

An interpreted system, like a CGS, is a formal description of the computations car-
ried out by a set of agents. More specifically, an interpreted system is given by a set of
agents. Each of these agents operates on local states, representing the information that
they have about the system under exam. The system itself is represented as the product
of the local states of the agents: in any of its local states, an agent can perform a fixed set
of actions, and the global state of the system evolves with respect to the product of the
actions of all the agents. We now state the formal definitions. First, we define agents.

Definition 7 (Agent). Let Ag = {1, . . . ,k} be a finite set of agent indexes. An agent is
a tuple i = ⟨Li,acti,Pi, ti⟩, where:

– Li is the finite non-empty set of local states.
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– Acti is the finite non-empty set of individual actions. We denote by ACT the product
set Πi∈AgActi and we call its elements joint actions.

– Pi : Li → (2Acti \ /0) is the local protocol function associating to any local state a
non-empty set of actions representing the actions available to the agent at that
state.

– ti : Li×ACT → Li is the local transition function. Such function takes an agent’s
state l and a joint action a = ⟨a1, . . . ,ak⟩ and outputs an agent’s state. The function
ti(li,a) is defined if and only if we have that a[i] ∈ Pi(li). Remark that, the output of
the transition function depends on a joint action ⟨a1, . . . ,ak⟩, but we only require
that the i-th component of this joint action belongs to the set of actions that are
available for the considered agent at the considered state.

By the above definition, an agent i is situated in a local state l ∈ Li representing the
information it has about the system. At any state, the agent can perform the actions in
Acti according to the protocol function Pi. A joint action determines a change in the
state of the agent according to the transition function ti.

If Ag is a set of agents of length k, a global state s ∈ G is a tuple s = ⟨l1, . . . , lk⟩
where each li is an i agent’s state for i≤ k. A history is a finite sequence h = s1, . . . ,sn
of global states. We denote by HG the set of histories of global states. Two global states
s and s′, are equivalent for the agent i whenever s[i] = s′[i]. We denote such notion by
s ∼i s′. Two histories h and h′ are equivalent for the agent i whenever they have the
same length m and h j ∼i h′j for any j ≤ m.

Definition 8. Given a set of atomic propositions Ap, an interpreted system is a tuple
I = ⟨Ag,s0,T,Π⟩ where Ag is a set of agents, s0 ∈ G is the (global) initial state, T :
G×ACT →G is the global transition function such that T (s,a) = s′ iff for every i∈Ag,
ti(s[i],a[i]) = s′[i]. Finally, Π : G→ 2Ap is the labeling function, associating to any
global state an (eventually empty) set of atomic propositions.

A strategy for an agent i, is a function from the set of local histories HG to the set of
actions acti of the agent i defined exactly as in Definition 4. Joint strategies and paths
that are compatible with joint strategies are also defined as the corresponding notions
for iCGSs. The semantics of CATL formulas on interpreted systems is defined exactly
as in Definition 5, the only difference is that we use an interpreted system I instead of a
iCGS M in such a definition.

5 Train Gate Controller Scenario

In this section, we exemplify the formal apparatus introduced in the previous sec-
tion through an example. We consider a revised version of the Train Gate Controller
by [1,3,7,4] in which there are two trains and a controller. The aim of the two trains
is to pass a gate. To do this, they need to coordinate with the controller. The trains are
initially placed outside the gate and to ask to go in the gate they need to do a request
(action req). If the controller accepts the request (actions ac1 and ac2, respectively), the
train has the grant to pass through the gate. Note that, to perform the physical action of
passing through the gate, the train has to select the action in. Then, it stays in the gate
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out grant in(*,i,*)

(*,out,*)

(ac1,req,*) (*,in,*)

Fig. 1: Local model for train 1 [13].

out grant in(*,*, i)

(*,*, out)

(ac2,*,req) (*,*,in)

Fig. 2: Local model for train 2 [13].

until it does the action out. What we want to show in this game is the fact that the trains
need the accordance of the controller to achieve their objectives (i.e. to pass the gate).

More formally, this game can be represented as the Interpret System I = ⟨Ag,s0,T,Π⟩,
such that:

– Ag = {Train1,Train2,Controller};
– ActTrain1 = ActTrain2 = {req, in,out, i}, where by action req they do a request, by

action in they go in the gate, by action out they go outside the gate, and by action
i they do nothing. ActController = {ac1,ac2, i}, where by action ac j the Controller
gives the access to train j ∈ {1,2}, and by action i it does nothing.

The local model for Train1 is given in Figure 1, the local model for Train2 is given
in Figure 2, and the local model of the Controller is given in Figure 3. The global
initial state, the transition function, and the labeling function are given in Figure 4.
In particular, each global state is represented as a rectangle where the tuple (lc, lt1 , lt2)
includes the Controller’s local state (lc), the Train 1’s local state (lt1 ), and the Train 2’s
local state (lt2 ). Furthermore, by the tuple of local states, we can consider as atomic
propositions true in each state the names of the local states and, in accordance to them,
define the labeling function. Notice that, in the figures, we denote any available action
with the symbol ∗.

idle busy

(ac1,req,∗) or (ac2,∗,req)

(*, out, *) or (*, *, out)

(*, *, *)
(*, *, *)

Fig. 3: The local model for the controller [13].
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idle, out, out

busy, grant, out busy, out, grant

busy, out, inbusy, in, out

(ac1,req,*) (ac2,*,req)

(*,in,*) (*,*,in)

(*,out,*) (*,*,out)

(*,*,*)

(*,*,*)(*,*,*)

Fig. 4: The interpreted systems IS, where s0 = (idle,out,out) [13].

The property the Train 1 has a winning strategy to achieve the gate can be repre-
sented as follows:

ϕ1 = ⟨⟨Train1⟩⟩F in1

We observe that ϕ1 is false since to make the property true the Train 1 needs the
agreement of the Controller. By consequence, the property that can be satisfied is the
following:

ϕ1 = ⟨⟨Train1,Controller⟩⟩F in1

Analysis over coalitions. Considering our example, a possible guideline over the size
of the coalitions could be min : 2. With such feature, we would enforce the generation
of coalitions with at least two agents. This could be guided by the fact that we know
that no agent in isolation can achieve its own goals in the train gate controller exam-
ple. Another possible constraint could be [Train1→←Controller], where we enforce
Train1 and Controller to be in coalition. For similar reasons, we may add the constraint
[Train1←→ Train2] and enforce the two trains to not be in coalition. Remark that such
constraints precisely corresponds to the CATL operators ⟨⟨Γ→←∆⟩⟩ and ⟨⟨Γ←→∆⟩⟩3.

6 Verification

In this section, we present the algorithms to solve, in practice, the model checking prob-
lem for CATL. To do so, we exploit the MCMAS model checker, and its verification en-
gine for ATL formulas. Note that, as proved previously in the paper (see Proposition 1),
CATL and ATL share the same semantics; because of that, the actual verification of
CATL formulas can be obtained through the standard verification of ATL ones.

3Remark that this operator can be defined in terms of ⟨⟨Γ→ ∆⟩⟩ see Definition 1.
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Once an interpreted system I has been defined, we can unleash our approach. Start-
ing from such model, we can verify for which coalitions of agents an ATL formula ϕ is
verified in I. Specifically, differently from standard ATL, we do not want to explicitly
state each Γ coalition in ϕ; instead, we want to automatically generate such coalitions.
Naturally, not all coalitions are always of interest; this of course depends on the domain
of use. Thus, even though a coalition makes a formula ϕ satisfied by a model I, it does
not necessarily mean such coalition is a good one (i.e., a usable one).

Now, we move forward and present how our approach uses the pre-processing steps
to perform the actual formal verification on MAS. Specifically, this is obtained through
two algorithms. Let us explore them in detail.

Algorithm 1 GenCoalitions(Ag, min, max, T , S)
1: Γvalid = /0

2: for k ∈ [min,max] do
3: for Γ ∈ Γ

Ag
k do

4: if ∃[Γ1→← Γ2] ∈ T : {Γ1,Γ2} ̸⊆ Γ∧{Γ1,Γ2}∩Γ ̸= /0 then continue
5: if ∃[Γ1←→ Γ2] ∈ S : {Γ1,Γ2} ⊆ Γ then continue
6: Add Γ to Γvalid

7: return Γvalid

Algorithm 2 MCMASco(I, ϕ, min, max, T , S, num_coalitions)

1: Ag = GetAgents(I)
2: Γgood = /0

3: Γvalid = GenCoalitions(Ag,min,max,T,S)
4: for Γ ∈ Γvalid do
5: if I |= ϕΓ then
6: Add Γ to Γgood

7: if |Γgood |= num_coalitions then
8: return Γgood

9: return Γgood

Algorithm 1. It reports the steps required to generate a set of valid coalitions, i.e.,
coalitions that respect the user’s guidelines. Algorithm 1 takes in input the set of agents
Ag, and the user’s guidelines, such as the minimum/maximum number of agents to be
in the coalitions, and the set of agents that have to (resp., cannot) stay in the same
coalition T (resp., S). At line 1, the set of valid coalitions is initialized to the empty set.
Then, at line 2, a value k is selected for any integer value between min and max (both
included). After that, the algorithm loops over all possible values of k (lines 3-6); with
k denoting the current size of the considered coalitions. Naturally, there are multiple k
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coalitions that can be formed over a set Ag of agents. In more detail, they correspond
to all possible combinations of k agents taken from the set Ag; this is expressed by the
set Γ

Ag
k . For each of these coalitions, the algorithm checks whether the constraints hold

or not. First, it checks if all agents that are required to be together in the coalition are as
such (line 4). If for at least one couple [Γ1→← Γ2], we find only one subset of agents
in the coalition, then we skip to the next possible coalition to evaluate. In the same way,
the algorithm checks for the agents that are not meant to be together (lines 5). This
again is achieved by checking whether for some couple both the subset of agents are
in the coalition. If that is the case, then the algorithm moves on to the next coalition to
evaluate. At the end of the algorithm, the set Γvalid contains all coalitions respecting the
user’s guidelines.

Algorithm 2. It performs the actual verification considering all valid agents’ coalitions.
Algorithm 2 takes in input the model I, the ATL formula to verify ϕ, and the user’s
guidelines. At line 1, the set of agents is extracted from I. These are the agents involved
in the model. At line 2, the set of good coalitions is initialized to the empty set. By
the end of the algorithm, such set will contain the coalitions that respect the user’s
guidelines and make ϕ satisfied in I. At line 3, Algorithm 1 is called. In this step, all
valid coalitions respecting the user’s guidelines are returned. After that, the algorithm
loops over such valid coalitions (lines 4-8). For each of them, the model checking is
performed (line 5). In here, with ϕΓ we denote ϕ where the coalition has been replaced
with the currently selected one (i.e., Γ). If the model checking returns true, i.e., model
I satisfies formula ϕΓ, then Γ is added to the set of good coalitions Γgood (line 6).
After that, if the number of required coalitions has been found (the number of good
coalitions in Γgood is equal to num_coalitions), then the coalitions are returned (lines
7-8). Otherwise, the algorithm evaluates all the valid coalitions, and returns the good
ones at the end (line 9). Note that, in Algorithm 2, we only show the case with one
strategic operator in ϕ, that is, only one Γ coalition is replaced in ϕ. We decided to do
so in order to improve the readability of the procedure. However, in case multiple Γ

coalitions are used, the same reasoning is followed, where for each one of them a set
of valid coalitions is generated (using Algorithm 1). Then, instead of performing model
checking only once (Algorithm 2, line 5), the algorithm would perform the latter for
every possible permutation.

Remark 2. Given a CATL formula ϕ and a model I, to solve the model checking prob-
lem through our procedure (Algorithm 2), we need to set num_coalitions to 1. This is
done to enforce the algorithm to terminate as soon as a good coalition is found (in accor-
dance to the CATL strategic operators’ semantics). Furthermore, given the CATL strate-
gic operators involved in the formula ϕ, we need to determine the values for the different
parameters: min, max, T , and S. On one hand, suppose that we have a CATL formula
ϕ = ⟨⟨≤n⟩⟩X p (resp., ϕ = ⟨⟨≥n⟩⟩X p), then the parameters passed to Algorithm 2 are set
as follows: min = 0, max = n, T = /0, and S = /0 (resp., min = n, max = |Ag|, T = /0, and
S = /0). On the other hand, suppose that we have a CATL formula ϕ = ⟨⟨Γ1→←Γ2⟩⟩X p
(resp., ϕ = ⟨⟨Γ1←→Γ2⟩⟩X p), then the parameters passed to Algorithm 2 are set as fol-
lows: min = 0, max = |Ag|, T = {[Γ1→← Γ2]}, and S = /0 (resp., min = 0, max = |Ag|,
T = /0, and S = {[Γ1←→ Γ2]}).
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7 Implementation

A prototype of our approach has been implemented in Python4. The prototype gets in
input an interpreted system I, specified in terms of an ISPL file (the formalism sup-
ported by the MCMAS model checker), an ATL formula to verify ϕ, and generates all
coalitions of agents which make I |= ϕ. To understand the tool, first, we need to describe
its pillar components.

The model checker we use is MCMAS [16], which is the de facto standard model
checker of strategic properties on MAS. MCMAS expects in input an interpreted system
specified as an ISPL file. In such a file, the interpreted system is defined along with the
formal property of interest to verify. From the viewpoint of a MCMAS user, our tool
can be seen as an extension of MCMAS that allows the user to, not only perform the
verification of ATL properties as usual, but to extract which coalitions of agents make
such properties verified in the model.

Since MCMAS expects a fully instantiated ATL formula, in order to extract which
coalitions of agents are good candidates, our tool performs a pre-processing step. In
such step, as described previously in the paper, all coalitions which follow the user’s
guidelines are generated (Algorithm 1) and tested on MCMAS (Algorithm 2). In each
run, MCMAS returns the boolean result corresponding to the satisfaction of the ATL
formula over the interpreted system. The coalitions for which MCMAS returns a pos-
itive verdict are then presented as output to the user. To help the reader to understand
the whole machinery see Figure 5.

ISPL

Tool
rules

Modified
ISPL

MCMAS

ϕ

ϕ
Γ

add Γ in Γgood

Γ

yes

no

return Γgood

Fig. 5: Overview of the tool.

4https://github.com/AngeloFerrando/mcmas-multi-coalitions

https://github.com/AngeloFerrando/mcmas-multi-coalitions
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The generation of all agents’ coalitions has been implemented in Python, as well
as its enforcement over the ISPL file. In fact, for each coalition following the user’s
guidelines, our tool updates the ISPL in the following way. Considering Algorithm 2,
this step is implicitly performed in line 5, where the model checking is performed.
However, at the implementation level, the actual verification through MCMAS requires
to explicitly modify the ISPL file w.r.t. the Γ coalition of interest (i.e., each coalition
generated by Algorithm 1). To achieve this technical step, first, the tool searches all
occurrences of Γ coalitions in the ISPL file. This can be done by looking for the groups
keyword (which is the one used in MCMAS to define the agents belonging to each
coalition used in the ATL formula). After that, the tool replaces each coalition with
a coalition following the user’s guidelines. Naturally, in case of multiple Γ coalitions
in the ATL formula, all possible permutations of valid coalitions are considered. Once
the ISPL file has been properly modified with valid coalitions, MCMAS is called to
perform the actual verification.

8 Experiments

We tested our tool over the train gate controller scenario, on a machine with the follow-
ing specifications: Intel(R) Core(TM) i7-7700HQ CPU @ 2.80GHz, 4 cores 8 threads,
16 GB RAM DDR4. We carried out various experiments on our running example. But,
we have not only considered the case with two trains. Instead, we experimented with
larger number of trains as well, to better evaluate our tool’s performance. Tables 1–3
report the results we obtained.

N - ≥ 2 ≥ 3 ≥ 4 ≤ 2 ≤ 3 ≤ 4 ∃!i.[Ti→←C] ∀i.[Ti→←C] ∃!(i, j).[Ti←→ T j] ∀(i, j).[Ti←→ T j]
2 3 3 1 0 2 3 3 2 1 2 2
4 15 15 11 5 4 10 14 8 1 11 4
6 63 63 57 42 6 21 41 32 1 47 6
8 255 255 247 219 8 36 92 128 1 191 8

10 1023 1023 1013 968 10 55 175 512 1 767 10
Table 1: Number of good coalitions generated in our experiments. 1st column reports
number of trains. 2nd column, no guidelines are given. 3rd to 5th column minimum num-
ber of agents per coalition is required. 6th to 8th column maximum number of agents
per coalition is required. 9th to 12th columns guidelines on which agents can stay (or
not) in coalition with [13].

Let us start with Table 1. It contains the number of coalitions we found through
experiments. In more detail, the table is so structured. The first column reports the
number of trains used in the experiments (from 2 to 10 trains). Then, the rest of the
columns correspond to the results we get w.r.t. some specific guidelines. Going from
left to right. First, we find the case where no guidelines have been passed to the tool. In
such case, the tool reports all good coalitions, without any filter. This would correspond
to a scenario where we would not have any sort of resource limitation and to group
agents. Then, we have three different scenarios where we set the minimum number of
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agents per coalition (i.e., we pass the min guideline). We do so for min equals to 2, 3, and
4. That is, we request only coalitions containing at least 2, 3, and 4 agents, respectively.
Here, we can note how with min : 2, the number of coalitions does not change w.r.t. the
case with no guidelines. This is due to the fact that, as expected, no coalitions with less
than 2 agents can satisfy the property of interest; which we remind being ϕ = ⟨⟨Γ⟩⟩F in.
Instead, the other two cases have a fewer number of coalitions. This does not come as a
surprise, since we are requesting only larger coalitions (we filter out all coalitions with
2 and 3 agents, respectively). After that, we find similar cases, where instead the max
guideline is used. First, by enforcing the maximum number of agents in each coalition
to be 2, then 3, and finally 4. W.r.t. the previous cases, here we can note how the choice
of limiting the maximum number of agents in the coalitions is much more effective in
reducing the number of good coalitions proposed. This again is reasonable, because we
are filtering out the larger coalitions. Finally, we find the last four columns, which are
focused on guidelines on which agents can stay with whom in the coalitions. First, we
find the case where we request one single train to be in coalition with the controller.
Note that, we do not decide such train a priori; it can be any of the available trains. In
such case, the number of good coalitions is reduced, but not too much. This is due to the
fact that requesting only one train to be in coalition with the controller is not a strong
guideline (indeed, other trains can be in coalition as well). Then, the next case consists
in requesting all trains to be in coalition with the controller. In this case, we obtain
only one good coalition (no matter the number of trains). Since we are requesting all
agents to be in coalition, this result is in line with the expectations. In the second to
last column, we find a case where we request two trains not to be in coalition. As
before, we are not interested in which trains, as long as only two are required not to
be in coalition. As expected, this guideline does not affect much the number of good
coalitions generated. Indeed, asking to not having just two trains in coalition does not
filter out many viable alternatives. Last column presents the same scenario, but where
all trains are requested to not be in the same coalition. So, each train cannot collaborate
with any other train. This produces a number of coalitions equivalent to the number of
trains used in the experiments. This again does not come as a surprise, since the only
possible good coalitions are the ones with one train and the controller (no other trains
involved).

N - ≥ 2 ≥ 3 ≥ 4 ≤ 2 ≤ 3 ≤ 4 ∃!i.[Ti→←C] ∀i.[Ti→←C] ∃!(i, j).[Ti←→ T j] ∀(i, j).[Ti←→ T j]
2 0,06 0,03 0,01 0,00018 0,05 0,05 0,05 0,03 0,01 0,04 0,04
4 0,28 0,23 0,15 0,06 0,13 0,22 0,36 0,13 0,02 0,2 0,09
6 8,87 8,33 6,88 4,62 1,99 4,34 6,9 4,45 0,08 6,68 0,89
8 53,41 51,11 47,4 38,88 4,5 12,49 24,69 25,18 0,1 37,99 1,77

10 382,18 380,66 369,09 340,04 12,03 40,58 99,93 186,9 0,19 304,06 3,94

Table 2: Execution time (in seconds) to generate the set of good coalitions in our exper-
iments. 1st column reports number of trains. 2nd column, no guidelines are given. 3rd

to 5th column minimum number of agents per coalition is required. 6th to 8th column
maximum number of agents per coalition is required. 9th to 12th columns guidelines on
which agents can stay (or not) in coalition with [13].
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Moving on with Table 2, we find the same kind of experiments of Table 1. Nonethe-
less, instead of reporting the number of good coalitions generated, Table 2 reports
the execution time required to extract such coalitions. The execution time comprises
both the generation of the valid coalitions, and their verification through MCMAS. The
columns are the same as in Table 1, but we can observe how much time the tool required
to extract the coalitions. Naturally, we can observe that stronger are the guidelines, less
is the execution time (since less are the valid coalitions that need to be verified in MC-
MAS). One important aspect to point out is that our experiments required less than 1
minute when considering the scenarios with at most 8 trains and less than 6 minutes (or
so) for 10 trains. This is encouraging, since our approach handles even scenarios where
the resulting model is far from being trivial (or small).

N ⟨⟨≥0⟩⟩ ⟨⟨≥2⟩⟩ ⟨⟨≥3⟩⟩ ⟨⟨≥4⟩⟩ ⟨⟨≤2⟩⟩ ⟨⟨≤3⟩⟩ ⟨⟨≤4⟩⟩ ⟨⟨T1→←C⟩⟩ ⟨⟨T→←C⟩⟩ ⟨⟨T1←→T2⟩⟩
2 0,06 0,03 0,01 0,00018 0,05 0,05 0,05 0,03 0,01 0,04
4 0,12 0,05 0,05 0,04 0,12 0,12 0,12 0,05 0,02 0,09
6 1,16 0.47 0,41 0,32 0,99 0,99 0,99 0,48 0,08 0,97
8 1,28 0,87 0,76 0,65 1,95 1,95 1,85 0,86 0,1 1,84

10 5,02 2,06 1,75 1,55 4,35 4,08 4,02 2,19 0,19 4,26
Table 3: Execution time (in seconds) to verify CATL formulas in our experiments. 1st

column reports number of trains. 2nd column, no guidelines are given. 3rd to 5th column
minimum number of agents per coalition is required. 6th to 8th column maximum num-
ber of agents per coalition is required. 9th to 11th columns guidelines on which agents
can stay (or not) in coalition with. Note that T stays for the whole set of trains.

In Table 3, we provide the results for the CATL formula ϕ = ⟨⟨−⟩⟩F in1, in which
for each column we use the corresponding strategic operator. Notice that, for all the
cases our tool returns ⊤, but row 2 column 5. In the latter case, the procedure returns ⊥
because there are no coalitions with more than 4 agents. In fact, in the above mentioned
case, we have only two trains and one controller (i.e., the maximum number of agents
is 3). Furthermore, we have removed the 12th column since it is semantically equivalent
to column 6th. Another relevant aspect is that our procedure performs better in the case
of CATL formulas. This is due to the fact that our algorithm needs to search for only
one good coalition (i.e., num_coalitions = 1); while in the experiments carried out in
Table 1 and Table 2, all good coalitions are returned (i.e., num_coalitions = ∞).

9 Conclusions

In this paper, we have presented a variant of ATL, called CATL, in which we can reason
upon coalitions. We have proved that CATL has the same expressive power of ATL,
but it is exponentially more succinct than ATL. We also studied the model checking
complexity of CATL in case of both imperfect and perfect information. Furthermore we
implemented an extension of MCMAS in which the users can characterize the coalitions
in the strategy quantifiers. To do this, we have considered coalitions as variables of



22 D. Catta et al.

the problem. In particular, we have shown how to give the power to a user to handle
two main features: the number of agents involved in the coalitions and how to create
coalitions by considering who have to play together and who have to play against. This
tool is a first stone to develop a more generalized verification approach for MAS.
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