
Undefined 1 (2014) 1–5 1
IOS Press

Attack Graphs & Subset Sabotage Games
Davide Catta a,∗ Jean Leneutre a and Vadim Malvone a

a LTCI, Télécom Paris, Institut Polytechnique de Paris, Paris, France
E-mail: {davide.catta, jean.leneutre, vadim.malvone}@telecom-paris.fr

Abstract. We consider an extended version of sabotage games played over Attack Graphs. Such games are two-player zero-sum
reachability games between an Attacker and a Defender. This latter player can erase particular subsets of edges of the Attack
Graph. To reason about such games we introduce a variant of Sabotage Modal Logic (that we call Subset Sabotage Modal Logic)
in which one modality quantifies over non-empty subset of edges. We show that we can characterize the existence of winning
Attacker strategies by formulas of Subset Sabotage Modal Logic.

Keywords: Attack Graphs, Sabotage Games, Logics in Games

1. Introduction

Modern systems are inherently complex and secu-
rity plays a crucial role. The main challenge in devel-
oping a secure system is to come up with tools able
to detect vulnerabilities and unexpected behaviors at a
very early stage of its life cycle. These methodologies
should be able to measure the grade of resilience to ex-
ternal attacks. Crucially, the cost of repairing a system
flaw during maintenance is at least two orders of mag-
nitude higher, compared to fixing at an early design
stage [9].

In the past fifty years, several solutions have been
proposed to check system reliability and, in particu-
lar, system security. In this area a story of success
is the use of formal methods techniques [9]. They
allow checking whether a system is correct by for-
mally checking whether a mathematical model of it
meets a formal representation of its desired behavior.
Recently, classic approaches such as model checking
and automata-theoretic techniques, originally devel-
oped for monolithic systems [8,20], have been mean-
ingfully extended to handle open and multi-agent sys-
tems [1,17,21,24,25]. These are systems that encapsu-
late the behavior of two or more rational agents inter-
acting among them in a cooperative or adversarial way,
aiming at a designed goal [18].

*Corresponding author.

In system security checking, a malicious attack can
be seen as an attempt of an Attacker to gain an unau-
thorized resource access or compromise the system’s
integrity. In this setting, Attack Graph [22] is one of
the most prominent attack models developed and re-
ceiving much attention in recent years. This encom-
passes a graph where each state represents an Attacker
at a specified network location and edges represent
state transitions, i.e., attack actions by the Attacker.
Then, it is the system’s duty to prevent unauthorized
access from the Attacker in each state of the graph.
Said more precisely, the Attacker’s goal is to reach a
certain state of the Attack Graph by traveling through
its edges, while the Defender’s goal is to prevent him
from doing so. To do this, the Defender can dynami-
cally deploy countermeasures preventing the attack to
succeeds. The attacks are represented by the edges of
the Attack Graph. If the Defender deploys a counter-
measure and such countermeasure is successful, the
Attacker will no longer be able to use an attack. We can
formalize such a scenario as a two-player turn based
game between the Defender and the Attacker, where
in turn the latter moves along adjacent states (w.r.t.
the Attack Graph under exam) and the former inhibits
some attacks by erasing some subset of edges of the
Attack Graph itself. The goal of the Defender is to
block the Attacker to reach some designated states,
while not blocking the entire system functionality. The
kind of scenario that we have just sketched is an exam-

0000-0000/14/$00.00© 2014 – IOS Press and the authors. All rights reserved

2 D. Catta et al. / Subset Sabotage Games & Attack Graphs

ple of extended sabotage game [31]. Sabotage games
were introduced by van Benthem in 2005 with the aim
of studying the computational complexity of a special
class of graph-reachability problems. Namely, graph
reachability problems in which the set of edges of the
graph became thinner and thinner as long as a path
of the graph is constructed. To reason about sabo-
tage games, van Benthem introduced Sabotage Modal
Logic. Such a logic is obtained by adding to the ^-
modality of classical modal logic another modality �.
Let G be a directed graph and s one of its vertex (or
states); the intended meaning of a formula �ϕ is “ �ϕ
is true at a state s of G iff ϕ is true at s in the graph
obtained by G by erasing an edge e".

Our sabotage games differ from the one introduced
by van Benthem because one of the players can erase
an entire subset of edges of a given graph. To reason
about such games, we introduce a variant of Sabotage
Modal Logic that we call, for lack of wit, Subset Sabo-
tage Modal Logic (SSML for short). The logic SSML
is obtained by adding a modality �⊂ to the language
of classical modal logic. The intended meaning of a
formula �⊂ϕ is “ �⊂ϕ is true at a state s of a directed
graph G iff ϕ is true at s in the graph G′ that is ob-
tained from G by erasing a non-empty set of its edges".
We prove that the model-checking problem for SSML
is decidable and that the existence of an Attacker win-
ning strategy over an Attack Graph can be expressed
by using an SSML formula.

Structure of the work. The rest of the paper is
structured as follows. In Sec 2 we discuss the related
works. In Sec 3 we briefly present Sabotage Modal
Logic. In Sec. 4 we present Attack Graphs, propose
a formal definition of such objects in terms of Kripke
structures and introduce, informally, subset sabotage
games on Attack Graphs. Then, in Sec 5, we formally
define the class of subset sabotage games on Attack
Graphs that we are interested on. We define plays on
such games and Attacker winning strategies. In the
penultimate section (Sec 6), we introduce Subset Sab-
otage Modal Logic and show that the model checking
problem for such logic is decidable. To prove such a re-
sult, we reduce the model checking problem of SSML
to the one of SML by giving a translation of SSML-
formulas into SML formulas. We then show that the
existence of an Attacker winning strategies for a sub-
set sabotage game over an Attack Graph, is equivalent
to the satisfiability of a certain SSML formula at the
root of the considered Attack Graph. The last section
concludes by discussing possible future works.

2. Related Work

Several existing works have proposed different
game-theoretic solutions for finding an optimal de-
fense policy based on Attack Graphs. Most of these
approaches do not use formal verification to analyze
the game, but rather try to solve them using analytic
and optimization techniques. The work in [11,12] stud-
ies the problem of hardening the security of a net-
work by deploying honeypots to the network to de-
ceive the Attacker. They model the problem as a Stack-
elberg security game, in which the attack scenario is
represented using Attack Graphs. The authors in [26]
tackle the problem of allocating limited security coun-
termeasures to harden security based on attack scenar-
ios modeled by Bayesian Attack Graphs using partially
observable stochastic games. They provide heuristic
strategies for players and employ a simulation-based
methodology to evaluate them. The work in [32] pro-
poses an approach to select an optimal corrective secu-
rity portfolio given a probabilistic Attack Graph. They
define a Bayesian Stackelberg game that they solve by
converting it into Mixed-Integer Conic Programming
(MICP) optimization problem.

Since the games we introduce are a variant of sab-
otage games, our work is indebted to those dedicated
to this type of games and to Sabotage Modal Logic [3,
23,31]. In particular, the authors of [23] shows the de-
cidability of the model-checking problem for Sabo-
tage Modal Logic. Such a result is important to our
work because we use it to show the decidability of the
model-checking problem for Subset Sabotage Modal
Logic. In [3] the authors develop a complete proof sys-
tem for Sabotage Modal Logic, they define and study
the notion of bisimulation, and they present an exten-
sive discussion of sabotage games and their character-
ization via the logic.

The present work is an extended version of the ma-
terial already published in [7]

3. Sabotage Modal Logic

In this section, we briefly present Sabotage Modal
Logic (SML, for short). Such logic was proposed in
2005 by Van Benthem [31] as a format for analyzing
games that modify the graphs they are played on. SML
was later investigated in a series of papers. Before en-
tering into the matter of SML, let us fix some notation
and terminology that will be used in the following.

D. Catta et al. / Subset Sabotage Games & Attack Graphs 3

Notation& Terminology. Given a sequence ρ, we de-
note its length as |ρ|, and its (j + 1)-th element as ρ j.
For j ≤ |ρ|, let ρ≥ j be the suffix of ρ starting at ρ j and
ρ≤ j the prefix ρ0 · · · ρ j of ρ. The empty sequence will be
denoted by ε. A tree is a (finite or infinite) connected
directed graph, with one node designated as the root,
and in which every non-root node as a unique parent
(s is the parent of t, and t is the child of s is there is an
edge from s to t) and the root has no parent. The arity
of a node x in a three T is the number of child of x.
A path P = x0, x1, . . . is a (finite or infinite) sequence
of nodes such xi is the parent of xi+1 for all i > 0. A
branch is a path that is maximal and whose first node
is the root . A node x is an ancestor of a node y if there
is a path containing x whose last element is y (remark
that every node is the ancestor of itself).

Given a non-empty set P of atomic formulas, and a
finite non-empty set Σ of labels, we define SML for-
mulas by the following grammar:

ϕ ::= p | ⊥ | ¬ϕ | ϕ ∨ ϕ | ^a ϕ | �a ϕ

where p ∈ P and a ∈ Σ. We define > � ¬⊥. If ϕ and
ψ are formulas, we define ϕ → ψ � ¬ϕ ∨ ψ, φ ∧ ψ �
¬(¬ϕ ∨ ¬ψ), �a ψ � ¬^a ¬ϕ and �a � ¬ �a ¬ϕ. The
size |ϕ| of a formula ϕ is inductively defined. It is 1 if
ϕ is an atomic formula or ⊥, it is |ψ|+ 1 if ϕ = ◦ψ with
◦ ∈ {¬, ^a , �a } and max{|ϕ1|, |ϕ2|} + 1 if ϕ = ϕ1 ∨ ϕ2.

We now define the structures that will serve as inter-
pretation of SML-formulas

Definition 1. A rooted Kripke structure is a tuple M =

〈S , s0,Σ,R,V〉 where S is a non-empty set of states,
s0 ∈ S is the initial state, Σ is a finite set of labels,
R ⊆ S ×Σ×S is the transition relation, and V : S → 2P

is the evaluation function, assigning a set of atomic
formulas to any state s ∈ S .

If M = 〈S , s0,Σ,R,V〉 is a Kripke structure and
E ⊆ R, we write M \ E to denote the Kripke structure
obtained by erasing the subset E from the relation R.
If e = (s, a, s′) ∈ R we say that e is a labeled edge or
simply an edge, and that a is the label of e. We denote
by Ra the subset of labeled edges of R whose label is
a, that is Ra = {e ∈ R | e ∈ S × {a} × S }.

The notion of satisfaction of a formula ϕ at a given
state s of a Kripke structure M (written M, s |= ϕ) is
inductively defined as follows:

M, s |= ⊥ never;
M, s |= p iff p ∈ V(s);

M, s |= ¬ϕ iff not M, s |= ϕ (notation M, s 6|= ϕ);
M, s |= ϕ ∨ ψ iff M, s |= ϕ or M, s |= ψ;
M, s |= ^a ϕ iff there is a s′ ∈ S such that
(s, a, s′) ∈ R and M, s′ |= ϕ;
M, s |= �a ϕ iff there is (s1, a, s2) ∈ R such that
M \ {(s1, a, s2)}, s |= ϕ.

We say that a formula ϕ is true in a rooted Kripke
structure M (written M |= ϕ) iff ϕ is true at the initial
state of M. As we can see from the above definition,
the meaning of the boolean connectives of SML logic
is the standard one. Equally, the meaning of the ^a -
connective is the standard meaning in modal logic: a
formula ^a ϕ is true at a given state s of a Kripke struc-
ture whenever s is adjacent (with respect to an edge
labeled by a) to a vertex s′ for which the property ex-
pressed by ϕ is true. The meaning of the �a -connective
can be spelled out as follows: a formula �a ϕ is true at
a given state s of a Kripke structure M whenever ϕ is
true at s in the Kripke structure M′ that is obtained by
erasing an edge (s′, a, s′′) from R in M.

Definition 2. The model checking problem for Sabo-
tage Modal Logic consists of the following data and
question:

Data 1: an SML formula ϕ,
Data 2: a rooted finite Kripke structure M,
Question: Is it the case that M |= ϕ?

The proof of the following theorem can be found
in [23].

Theorem 1. The model checking problem for Sabo-
tage Modal Logic is PSPACE-complete.

4. Attack Graphs

The term Attack Graph has been first introduced by
Phillips and Swiler [29]. Attack Graphs represent the
possible sequence of attacks in a system as a graph. An
Attack Graph may be generated by using the following
pieces of information:

1. a description of the system architecture (topology,
configurations of components, etc.);

2. the list of the known vulnerabilities of the system;
3. the Attacker’s profile (his capabilities, password

knowledge, privileges, etc.) and attack templates
(Attacker’s atomic action, including precondi-
tions and postconditions).

4 D. Catta et al. / Subset Sabotage Games & Attack Graphs

Fig. 1. An illustrating LAN architecture example.

An attack path in the graph corresponds to a se-
quence of atomic attacks. Several works have devel-
oped this approach, see e.g., [16,27,28,30?], and [19]
for a survey. Each of the previously cited works intro-
duced its own Attack Graph model with its specificity,
and thus there is no standard definition of an Attack
Graph. However, all introduced models can be mapped
into a canonical Attack Graph as introduced in [15]. It
is a labeled, oriented graph where:

1. each node represents both the state of the sys-
tem (including existing vulnerabilities) and the
state of the Attacker including constants (At-
tacker skills, financial resources, etc.) and vari-
ables (knowledge of the network topology, privi-
lege level, obtained credentials, etc.);

2. each edge represents an action of the Attacker (a
scan of the network, the execution of an exploit
based on a given vulnerability, access to a device,
etc.) that changes the state of the network or the
states of the Attacker; an edge is labelled with the
name of the action (several edges of the Attack
Graph may have the same label).

An Attack Graph is said complete whenever the fol-
lowing condition holds: for every state q and for every
atomic attack att, if the preconditions of the atomic at-
tack hold in q, then there is an out coming edge from q
labeled with att.

By abstracting all the data of the above discussion,
one can see an Attack Graph as a directed graph to-
gether with a labeling of its vertices and edges. The la-
beling of vertices is used to specify which properties
(the kind of properties mentioned in 1) are true at a cer-
tain vertex, while the edge labeling specifies the name
of the action of the Attacker. As we have seen in the
example above, it is also useful to specify the set of At-
tacker’s target states. We thus define an Attack Graph
as follows:

Definition 3. Suppose that the set P contains an
atomic proposition win. An Attack Graph is a tuple
AG = 〈S , s0,Σ,R,V,T 〉 where:

– 〈S , s0,Σ,R,V〉 is a rooted Kripke structure where
the set S of states is finite and for all a ∈ Σ if
(s, a, s′) ∈ R then there is no b ∈ Σ such that
(s, b, s′) ∈ R.

– T is a non-empty subset of S such that win ∈ V(s)
for all s ∈ T.

The set T represent the set of target states of the At-
tacker.

Example 1. Consider the following scenario: an en-
terprise has a local area network (LAN) that features a
Server, a Workstation and two databases A and B. The
LAN also provided a Web Server. Internet access to
the LAN is controlled by a firewall. Such a scenario is
depicted in Figure 1. Suppose that we know some vul-
nerabilities and that we have established that a malev-
olent user can make the attack listed in Table 1, e.g.,
by making att2 an Attacker can exploit a vulnerability
related to the Server: as a precondition, the Attacker
needs to have root access to the Web Server and, as a
postcondition, he will obtain root access to the Server.

Then we can construct an Attack Graph built from
this set of atomic attacks and collecting possible attack
paths as depicted in Figure 21. The Attacker’s initial
state is a node in the Attack Graph. Let us suppose that
the Attacker is in state s1 and wants to reach state s4.
To get to this target, she can perform the sequences of
atomic attacks att2, att4 or att3, att2, att4.

1This Attack Graph is not complete w.r.t. our previous description,
since some possible sequences of atomic attacks are not listed: for
instance att1, att2, att3, att5 are not taken into account.

D. Catta et al. / Subset Sabotage Games & Attack Graphs 5

Attack Location Precondition Postcondition Counter
measure

att1 Web Server web_server : root _

att2 Server web_server : root server : root c2

att3 Workstation web_server : root password : 1234 _

att4 Database A server : root databaseA : root c4

att5 Database B server : root∧ databaseB : root c5

password : 1234

Table 1
Atomic attacks and countermeasures over the LAN of Figure 1.

web_server:root

s1s0

web_server:root
server:root

s2

webserver:root
server:root

database_A:root
win

s4

webserver:root
password:123

s3

webserver:root
password:1234

server:root

s5

webserver:root
password:1234

server:root
database_B:root

s6

att1

att2

att3

att4

att2 att5

att4

Fig. 2. Example of Attack Graph, the atomic proposition satisfied at a given state are listed below the state itself.

5. Attack Graphs & Games

In the previous section, we saw that given a spe-
cific description of a system together with its vulnera-
bilities, we can generate a graph representing the dy-
namics of attacks that are possible over the system.
Given a set of target states over such a graph, one can
ask whether there is a path from an initial state to one
of these target states, i.e., by reasoning over Attack
Graphs, we can encode a security problem as a graph-
reachability problem. Let us make one step more by
adding a dynamic to such reachability problems. An
Attack Graph represents a sequence of possible ac-
tions made by an Attacker to reach a specific goal. Let
us add another character to this story, the Defender,
whose objective is to counter the attack. Suppose that
she has the power to dynamically deploy a predefined
set of countermeasures: for instance by reconfiguring
the firewall filtering rules, or patching some vulner-
abilities, that is by removing one or several precon-
ditions of an atomic attack. A given countermeasure
c will prevent the Attacker from longing a given at-
tack att: deploying c is equivalent to removing all the
edges in the Attack Graph labeled with att. In real
situations, due to budget limitations or technical con-
straints, the set of available countermeasures may not

cover all atomic attacks. Now that we have specified
what is the Defender’s power, we can consider a turn-
based game between an Attacker and a Defender. Both
players play on an Attack Graph 〈S , s0,Σ,R,V,T 〉. The
Attacker’s goal is to reach one of the states in T , while
the Defender’s goal is to prevent him from doing so.
The Defender starts the game by selecting a certain
countermeasure. By choosing such a countermeasure,
she deletes a subset of the edges of the Attack Graph.
The Attacker takes his turn and moves from s0 to one
of its successors along the edges that have not been
erased (if any). The game evolves following this pat-
tern. The Attacker won if he can reach one of the states
in T in a finite number of moves, the Defender wins
otherwise.

Example 2. Consider again the Attack Graph of Fig-
ure 2. Suppose that the initial state is s1. Suppose that
the Defender has at her disposal a countermeasure c2

for attack att2, c4 for attack att4, and c5 for attack att5,
but no one for the attacks att1 and att3 as reported
in the last column of Table 1. The Defender starts the
game by deploying countermeasure c3. The only edge
of the Attack Graph labeled by att3 is the one going
from s1 to s3; consequently, such edge is erased from
the Attack Graph and the Attacker can only move to s2.

6 D. Catta et al. / Subset Sabotage Games & Attack Graphs

The Defender takes again the turn and deploys coun-
termeasure c2. There are two edges that are labeled by
att2 and both are erased from the Attack Graph. The
Attacker moves from s2 to s4 and, since s4 is a target
state, she wins the game.

There is a natural way to look at the games described
above: at each round, the Attacker can follow an edge
from his current position in the given graph, but the
Defender can choose a new graph (which is a subgraph
of the current graph) missing a subset of edges. To pre-
cisely define such plays, we first need an auxiliary no-
tion. We know that it is reasonable to assume that the
Defender is unable to counter each of the Attacker’s
possible attacks. At each step of the game, she can
only deactivate a relation contained in a certain subset
of the Attack Graph relation set. As mentioned above,
we can consider that the Defender selects a sub-graph
of the current Attack Graph whenever it is her turn to
move. According to the limitation set out above, this
sub-graph must be obtained by deleting some specific
subset of the set of labeled edges. We define this notion
as follows.

Definition 4. Let AG = 〈S , s0,Σ,R,V,T 〉 be an Attack-
graph and ∆ ⊆ Σ. The Attack Graph AG′ is ∆-
reachable from AG iff AG′ = 〈S , s0,Σ,R \ Rb,V,T 〉 for
some b ∈ ∆ or AG′ = AG.

We have now all the ingredients to define a play in
our game.

Definition 5. Let AG = 〈S , s0,Σ,R,V,T 〉 be an Attack-
graph and ∆ a non-empty subset of Σ. A ∆-play ρ is a
non-empty sequence ρ of length at least 2 where ρ0 =

AG, ρ1 = s0 and for all 2 < j ≤ |ρ|:

1. ρ j is an Attack Graph if j is even.
2. ρ j is a state of S if j is odd.
3. ρ j is ∆-reachable from ρ j−2, if j is even.
4. (ρ j−2, a, ρ j) ∈ R is an edge in the Attack Graph

AG′ = ρ j−1 for some a ∈ Σ, if j is odd.

Let ρ be a finite ∆-play whose last element is state s. We
say that the Attack Graph AG′ is legal for ρ iff win <
V(s) and the sequence obtained by concatenating ρ to
AG′ is a ∆-play.

Remark that given any ∆-play ρ and any even natu-
ral number j < |ρ|, the sequence ρ≥ j is a ∆-play over
the Attack Graph obtained by setting the state ρ j+1 as
initial state of the Attack Graph ρ j. If ρ is ∆-play we
denote by ρA (resp. ρS) the subsequence of ρ in which
only Attack Graphs (resp. states) appears.

Definition 6. Let ρ be a ∆-play over an Attack Graph
AG. We say that ρ is won by the Attacker iff |ρ| = 2n
for some n ∈ N and there is no Attack Graph AG′ legal
for ρ.

Said plainly: the Attacker wins the game whenever he
reaches one of his target states.

s2 s3

s0

s1

a

b
c

d

d

Fig. 3. Another example of Attack Graph. The red state is the only
state in T.

According to the above definition of play, the same
state can appear many times in the same play. For in-
stance, consider the Attack Graph AG shown in Fig-
ure 3. Let AG′ be the Attack Graph obtained by delet-
ing from AG the edge labeled by c. Consider the fol-
lowing {c}-play ρ over AG:

AG s0 AG′ s0 AG′ s0 AG′ s1 AG′ s2 AG′ s3
ρ0 ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 ρ7 ρ8 ρ9 ρ10 ρ11

We can see that the vertex s0 appears three times in
such a play. We define another class of plays in which
this phenomenon cannot happen.

Definition 7. Let ρ be a ∆-play over an Attack Graph
AG. We say that ρ is stubborn whenever for any 0 ≤
j ≤ |ρ| if j is odd then there is no i < j such that
ρi = ρ j.

The definition above precludes the Attacker from
choosing the same vertex of an Attack Graph in two
different turns of the play. As an example, the {c}-play
presented above is not a {c} stubborn play over AG be-
cause ρ1 = ρ3 = ρ5.
Every stubborn ∆-play is a ∆-play. If ρ is a stubborn
∆-play over an Attack Graph AG, then |ρ| ≤ 2(|S | − 1),
where S is the set of states of AG. This is because if
s and s′ are two distinct states of AG and there is a
path p0 · · · pk where all the states pi are distinct, then
k ≤ |S | − 1.

A strategy is usually defined as a function. A func-
tion that specifies, at each moment of the game, which
move a player must play according to the moves pre-

D. Catta et al. / Subset Sabotage Games & Attack Graphs 7

viously played (the history of the game). A strategy is
winning when the player who is following the strat-
egy wins, whatever the history of the game is. We
choose another equivalent definition of strategy. We in-
formally describe how a strategy should operate and
then formalize this notion. Imagine being engaged in a
game G, that the last move of G was played according
to the strategy, and that it is now the Opponent’s turn to
play. The Opponent could extend the game in different
ways: for example, if you are playing chess, you are
white, and you just made your first move by moving a
pawn to a certain position of the chessboard, black can
in turn move a pawn or move a horse. If you are play-
ing according to the strategy, the strategy should tell
you how to react against either type of move. There-
fore, a strategy can be viewed as a tree in which each
node is move of the game, your Opponent’s move have
at most one daughter and your moves have as many
daughters as there are available moves (with respect to
the considered play) for the Opponent. We therefore
define strategies as follows:

Definition 8. An Attacker ∆ winning strategy S for an
Attack Graph AG is a finite tree in which each branch
is a ∆-play won by the Attacker and moreover:

1. for all node v of S: if v is an Attack Graph then v
has a unique child;

2. for all node v of S: if v is a state of AG then v
has as many children as there are ∆-reacheable
Attack Graphs from the parent of v.

A strategy is stubborn iff every branch of the strategy
is a stubborn play.

Remark that any winning Stubborn strategy is a win-
ning strategy by definition.

Let α = AG0 · · · AGn be a finite non empty sequence
of Attack Graphs. Suppose that AG0 = 〈S , s0,Σ,R,T 〉
and for all 1 ≤ i ≤ n, AGi = 〈S , se,Σ, (R \ E1 ∪ · · · ∪

Ei),T 〉 where for each i, Ei is an eventually empty sub-
set of R. If E is a set of edges such that for all e ∈ E e is
of the form (s, a, s′) for some s, s′ ∈ S and a ∈ Σ, then
we denote by α+E the sequence AG′1 · · · AG′n where
AG′0 = 〈S , s0,Σ,R ∪ E,T 〉 and for all 1 ≤ i ≤ n,
AGi = 〈S , s0,Σ, ((R ∪ E) \ E1 ∪ · · · ∪ Ei),T 〉.

Let S be a winning Attacker ∆-strategy for some
Attack graph AG. A critical section of S is a sequence
of nodes s′ · · · s′ that starts and ends with a node s′ ∈ S
and that lies along one of the branches of S. Clearly S
is stubborn iff S does not contain any critical section.

Proposition 1. For any Attack Graph AG if there is a
winning Attacker ∆-strategy S for AG then there is a
winning Attacker stubborn ∆-strategy S′ for AG.

The proof is by induction on the number n of crit-
ical sections of S. If n = 0, then S is already a stub-
born strategy, and we are done. Suppose that the hy-
pothesis of the proposition holds for any winning strat-
egy having at most n critical sections, and let S be a
strategy with n + 1 critical sections. Choose a critical
section s′ · · · s′ of S. In S there is a finite number of
branches ρ1, . . . , ρn for n ≥ 1 in which such a critical
section is included, that is: each of the ρ j has the form
ρ′ s′ · · · s′ τ for some alternated sequence of Attack
Graphs and states τ, and some path ρ′ of S. The idea of
the proof is to cut the critical section s′ · · · s′ from any
of these branches and modify the Attack Graphs of the
obtained sequence to obtain a play. Such a modifica-
tion is obtained by using the construction define below
Definition 8 . Let us denote by c the critical section
s′ · · · s′ and let Rc be the set of edges deleted by the De-
fender along c. For any ρ1 . . . ρn we define ρ j

? = ρ′ s′τ?
where τA

? = τA
+Rc

and τS
? = τS . Any ρ j

? is a ∆-play won
by the Attacker. Let S? be the tree of plays induced
by the transformation above. Clearly, S? is a winning
Attacker strategy for AG that contains less critical sec-
tions than S. We apply the induction hypothesis and
we obtain that there is a winning stubborn strategy S′

for AG.

6. Games & Subset Sabotage Modal Logic

In this section, we explain why we cannot directly
use SML to reason about the above introduced games.
We then introduce the Subset Sabotage Modal Logic
(SSML) precisely to rectify this problem and we study
its properties. In particular, we prove that the model
checking problem for SSML is decidable and that the
existence of an Attacker Winning strategy is equivalent
to the satisfiability of a certain SSML formula.

6.1. What is the problem with SML?

Plays, that we defined in the previous sections, are
nothing more than runs in an insidious sabotage game.
In a sabotage game, one of the two players can delete
an edge of the graph when it is her turn to move. In
our games, one of the two players can delete a sub-
set of edges of the graph when it is her turn to move.
In [3] the authors claims that, by using our terminol-

8 D. Catta et al. / Subset Sabotage Games & Attack Graphs

ogy, the existence of an Attacker winning strategy for
a Sabotage Game over a finite rooted Kripke structure
M = 〈S , s0,Σ,R,V〉 can be expressed by using a par-
ticular SML-formula. Such formula is defined by in-
duction on n,

λn =

win if n = 0
^> ∧ �^(λn−1 ∨ win) otherwise

(1)

where �ϕ �
∧

a∈Σ �a ϕ and ^ϕ �
∨

a∈Σ ^a ϕ for a
given SML formula ϕ, and ^> is used to check that
the � is not satisfied because some relation is empty.

More precisely, if M = 〈S , s0,Σ,R,V〉 is a Kripke
structure such that win ∈ V(s) for some s ∈ S and
|S | = n ≥ 1 then M, s0 |= win ∨ λn−1 if and only if
there is an Attacker winning strategy for the sabotage
game played over M. Such a result is false in the case
of the particular class of sabotage games that we have
defined in the previous section, precisely because the
Defender erases a subset of R at each step of the game.

s1

s0

s2

a

a

Fig. 4. An additional example of Attack Graph. The red states are
the only ones in T.

For instance, consider the Attack Graph depicted in
Figure 4. We can see that there is no {a}-winning strat-
egy over M. If the Defender erases any edge labeled
with a, the Attacker would not be able to move from s0

to one of the winning states s1 or s2. On the contrary,
the formula win ∨ λ2 = win ∨ (^> ∧ �^(λ1 ∨ win)) is
true at s0 in M. This is because if the top-most a-edge
is removed, the Attacker can pass from the lowermost
edge to reach a winning state, and he can pass from the
top-most one if the lower one is removed.

6.2. Subset Sabotage Modal Logic

To speak about our particular games, we introduce
a variant of Sabotage Modal Logic. We call such vari-
ant of Sabotage Modal Logic, Subset Sabotage Modal
Logic.

Definition 9. Given a non-empty set P of atomic
propositions and a finite non-empty set Σ of labels,
formulas of Subset Sabotage Modal Logic (SSML, for
short) are defined by the following grammar:

ϕ ::= p | ⊥ | ¬ϕ | ϕ ∨ ϕ | ^a ϕ | �
⊂
a ϕ

where p ∈ P and a ∈ Σ. Given a rooted Kripke struc-
ture M = 〈S , s0,Σ,R,V〉, recall that for a ∈ Σ, Ra de-
note the subset of R defined by {e ∈ R | e ∈ S ×{a}×S }.
The definition of satisfaction of an SSML formula at a
state s of a Kripke structure M is defined inductively.
Such definition is the same as SML for atomic proposi-
tion, negation, disjunction and the diamond modality.
It is defined as follows for the �⊂a -modality:

M, s |= �⊂a ϕ iff there is a non-empty subset E of
Ra such that M \ E, s |= ϕ

where M \ E denotes the structure M from which
we have erased the subset E of edges. If ϕ is an SSML
formula we define �⊂a ϕ � ¬ �

⊂
a ¬ϕ.

Remark 1. M, s |= �⊂a ϕ if and only if for any non-
empty subset E of Ra we have that M \ E, s |= ϕ, Ra

included. This implies that if M, s |= �⊂a ϕ then M \
Ra, s |= ϕ.

We now define the model checking problem for SSML.

Definition 10. The model checking problem for SSML
consists of the following data and question:

Data 1: a finite rooted Kripke structure M,
Data 2: a SSML formula ϕ,
Question: is it the case that M |= ϕ?

In what follows, we show that the model checking
problem for SSML is decidable. To do so, we reduce
the model-checking problem for SSML to the model-
checking problem for SML. The idea of the proof is
the following: we are considering a finite Kripke struc-
ture. As a consequence, any of its non-empty subset
of edges is finite. We give a name ne to each edge e
of M obtaining a Kripke structure M′. We remark that
M |= �⊂a ϕ iff there is a finite, non-empty subset of
edges {e1, . . . en} of Ra such that M \ {e1, . . . , en} |= ϕ.
If ϕ is a SML formula then M′ |= �ne1

· · · �nen
ϕ,

that is M′ \ {ne1 , . . . nen } |= ϕ, where each nei is the
name of edge ei. Thus, we need to give a translation
from SSML-formulas to SML formulas. Such transla-
tion will be parametrized by Kripke structures because
we need to consider their subsets of edges.

D. Catta et al. / Subset Sabotage Games & Attack Graphs 9

Definition 11. Let M = 〈S , s0,Σ,R,V〉 be a finite
rooted Kripke structure. For all a ∈ Σ, let f : R → N
be an injective function associating to each member
e of R a natural number ne. We define the structure
M⊂ = 〈S ⊂, s⊂0 ,Σ

⊂,R⊂,V⊂〉 as follows:

– the set of states of M⊂ and its initial state are the
same of M;

– the set of labels Σ⊂ is {ne | e ∈ R};
– (s, ne, s′) ∈ R⊂ iff for some a ∈ Σ f (s, a, s′) = ne;
– the evaluation function V⊂ is V.

By the definition above, if ne ∈ Σ⊂, there is exactly
one edge e ∈ Rne = {e ∈ RΣ | e ∈ S × {ne} × S }.

Remark 2. Let M be a finite rooted Kripke Struc-
ture, E any non-empty subset of R and M⊂ the cor-
responding Kripke structure introduced above. For
any non-empty subset E = {e1, . . . , en} of R: (M \
{e1, . . . , en})⊂ = M⊂ \ {ne1 , . . . , nen }.

If E = {e1, . . . , en} is a subset of edges of M and ϕ is a
formula, we write �nEϕ as a short-cut for the formula
�ne1
· · · �nen

ϕ where each nei is the label corresponding
to ei in M⊂.

We define a function that maps an SSML formula ϕ
to an SML formula (ϕ)?M . Such a function takes as ar-
guments a Kripke Structure M and an SSML formula
ϕ, and gives as result an SML formula (ϕ)?M . The func-
tion is defined on the structure of ϕ, as follows:

(p)?M = p

(⊥)?M = ⊥

(¬ϕ)?M = ¬(ϕ)?M

(ϕ ∨ ψ)?M = (ϕ)?M ∨ (ψ)?M

(^a ϕ)?M =
∨
e∈Ra

^ne (ϕ)?M

(�⊂a ϕ)?M =
∨

E∈2Ra \∅

(�nE (ϕ)?M)

Lemma 1. For any M = 〈S , s0,Σ,R,V〉, for any SSML
formula ϕ, for any state s ∈ S : M, s |= ϕ iff M⊂, s |=
(ϕ)?M

The proof is by induction on the size of ϕ. We omit
the subscript M since it is clear from the context. If
ϕ = p or ϕ = ⊥ the result is immediate since V(s) =

V⊂(s) for any state s. Suppose that the statement of the
lemma holds for any formula of size k ≤ n, and let ϕ be
a formula of size n + 1. If the main connective of ϕ is a
boolean connective, the result follows by the induction
hypothesis. If ϕ = ^a ψ:

(⇒) M, s |= ^a ψ iff there is s′ such that e =

(s, a, s′) ∈ R and M, s′ |= ψ. By induction hy-
pothesis M⊂, s′ |= (ψ)?. By the definition of
M⊂ we have that (s, ne, s′) ∈ Rne thus s and s′

are adjacent, with respect to Rne , in M⊂. It fol-
lows that M⊂, s |= ^ne (ψ)?. But this means that
M⊂, s |=

∨
e∈Ra

^ne (ψ)? as we wanted.
(⇐) M⊂, s |= (^a ψ)? iff M⊂, s |=

∨
e∈Ra

^ne (ψ)?.
If this is the case, then there is at least an edge
e = (s, a, s′) ∈ Ra such that M⊂, s |= ^ne (ψ)?

which implies that M⊂, s′ |= (ψ)?. By induction
hypothesis M, s′ |= ψ. Since, by definition of M⊂,
(s, a, s′) ∈ R in M, we get the result.

If ϕ = �⊂a ψ:

(⇒) M, s |= �⊂a ψ iff there is a non-empty subset
E = {e1, . . . en} of Ra such that M \ E, s |= ψ.
By induction hypothesis (M \ E)⊂, s |= (ψ)?. As
stated in Remark 2, (M\E)⊂ = M⊂\{ne1 , . . . , nen }.
Since M⊂ \ {ne1 , . . . , nen }, s |= (ψ)? we deduce
that (· · · (M⊂, \{ne1 }) \ · · ·) \ {nen }, s |= ψ?, thus
M⊂, s |= �nE ψ

?.
(⇐) M⊂, s |= (�⊂a ψ)? iff M⊂, s |=

∨
E∈2Ra\∅ (�nE (ψ)?).

This means that there is a subset E of Ra such
that E = {e1, . . . , en} and M⊂, s |= �nE (ψ)?.
By definition of satisfaction, this means that
(· · · (M⊂ \ {ne1 }) \ · · ·) \ {nen } |= (ψ)?, thus
M⊂ \ {ne1 , . . . , nen }, s |= (ϕ)?. As stated in Re-
mark 2, this implies that (M \ E)⊂, s |= (ψ)?. By
induction hypothesis, M \ E, s |= ψ. By the fact
that each ei ∈ Ra, we obtain that M, s |= �⊂a ψ as
we wanted.

From the above lemma and the fact the model checking
problem is decidable for SML, we immediately deduce
the following theorem.

Theorem 2. The model checking problem for SSML
is decidable: if M = 〈S , s0,Σ,R,V〉 is a finite rooted
Kripke Structure and ϕ an SSML formula, we can de-
cide whether M |= ϕ or not.

It should not be surprising that we can express the
existence of Attacker winning strategies for our games
by using SSML: we have designed such logic with pre-
cisely this goal in mind.

Let AG = 〈S , s0,Σ,R,V,T 〉 be an Attack Graph and
∆ a non-empty subset of Σ. If ϕ is an SSML formula,
we define the two SSML-formulas:

�⊂∆ ϕ �
∧
a∈∆

�⊂a ϕ ^ϕ �
∨
a∈Σ

^a ϕ

10 D. Catta et al. / Subset Sabotage Games & Attack Graphs

A strategy is a plan of action. As it is logical, the plan
is winning when it leads me to victory, whatever my
opponent’s plan of action. Thus, a winning strategy can
be expressed as an alternance of universally quantified
sentences and existentially quantified sentences “for
all actions of my Opponent, there is an action that I can
make that leads me to victory". Let us put ourselves in
the villain’s shoes: suppose that we are the Attacker,
and that, by playing, we have reached a certain state s
of an Attack Graph AG. It is now Defender’s turn. If I
have a winning strategy, I must be able to reach a suc-
cessor state s′ of s in whatever subgraph AG′ of AG
that is ∆-reachable from AG. Said differently, we must
have that AG, s |= �⊂

∆
^ϕ = (�⊂a ^ϕ) ∧ · · · ∧ (�⊂b ^ϕ)

for some formula ϕ that expresses the winning condi-
tion. Such formula is nothing but the SSML version of
the one we have defined in 1.

Definition 12 (Winning Formulas). The family {ψn
∆
}n∈N

of Winning formulas is defined by induction on n as
follows:

ψn
∆ =

win if n = 0
^> ∧ �⊂

∆
^(ψn−1

∆
∨ win) otherwise

(2)

We are now ready to prove the main result of our paper.
Namely, that the existence of a winning Attacker ∆-
strategy over an Attack Graph AG is equivalent to the
truth of a winning formula over AG.

Theorem 3. For any Attack Graph AG = 〈S , s0,Σ,R,V,
T 〉 for any non-empty subset ∆ of Σ, if |S | = n, then
AG, s0 |= win ∨ ψn−1

∆
iff there is a winning ∆-strategy

over AG for the Attacker.

Both directions of the theorem are proved by induc-
tion on n.

(⇒) An Attack Graph has a non-empty set of states
by definition. Thus, the base case is n = 1.
AG, s0 |= win ∨ win ⇐⇒ T = {s0}. The strat-
egy we are looking for is the path AGs0. Sup-
pose that the statement of the theorem holds for
any Attack Graph AG′ of size k ≤ n, and let AG
be an Attack Graph of size n + 1. Suppose that
AG, s0 |= win ∨ ψn

∆
. Without loss of generality,

we can suppose that AG, s0 6|= win because other-
wise the result is trivial. Thus AG, s0 |= ψn

∆
. This

means that AG, s0 |= ^> ∧ (�⊂
∆
^ (ψn−1

∆
∨ win)).

By the definition of satisfaction, AG, s0 |= (^>∧
�⊂a ^ (ψn−1

∆
∨ win)) for any a ∈ ∆. Let a one

of the element of ∆. We have that, AG, s0 |=

^> ∧ �⊂a ^ (ψn−1
∆
∨ win)) ⇐⇒ AG, s0 |=

^> and AG, so |= �⊂a ^ (ψn−1
∆
∨ win)). We can

thus conclude that there is a s′ , s such that
(s, c, s′) ∈ R for some c , a and s′ |= ψn−1

∆
∨ win.

Consider the subgraph AGa of AG obtained by:
erasing the vertex s0; erasing any edge that has s0

as source or target; erasing any edge whose label
is a and, in which the initial state is s′. The size of
a such graph is n and AGa, s′ |= ψn−1

∆
∨win. By in-

duction hypothesis, there is a winning ∆-strategy
Sa over AGa. We obtain a winning strategy S for
AG by taking the sequence AG s0 and putting an
edge from s0 to the root of Sa for any a ∈ ∆.

(⇐) If n = 1 and there is a winning Attacker strategy
S over AG, then S = {AG s0}. Thus s0 ∈ T and
this means that AG, s0 |= win and we can con-
clude. Suppose that the statement of the theorem
holds for any Attack Graph AG′ of size k ≤ n,
and let AG be an Attack Graph of size n + 1.
Let S be any winning strategy over AG. Suppose
that S contains more than one play (otherwise the
result is trivial). By Proposition 1, we can sup-
pose that S is stubborn. Let Next = {si ∈ S |
∃ρ ρ is a branch of S∧ρ3 = si} i.e., any si ∈ Next
is a state that is adjacent to s0 in the subgraph
of AG obtained by erasing all edges labeled by b
for some b ∈ ∆. Remark that Next is finite and
non-empty and that, since S is stubborn, each si

is different from s0. For any si, let AGsi be the
subgraph of AG obtained by erasing s0, any edge
having s0 as source and whose initial state is si.
Define Ssi to be the tree whose branches are of
the form AGsi si ρ

′ for si ρ
′ subsequence of a play

of S. Clearly, Ssi is a winning Attacker Strategy
over the Attack Graph AGsi for any si. Since AGsi

has n-states, we can use the induction hypothe-
sis and conclude that AGsi , si |= win ∨ ψn−1

∆
. Any

Ssi is stubborn, thus s0 does not appear in any
of its play. We deduce that for any si ∈ Next,
AG, si |= win ∨ ψn−1

∆
. From this latter fact, and by

the definition of Next we conclude that AG, s0 |=

^> ∧ �⊂
∆
^(ψn−1

∆
∨ win).

Example 3. Consider the two following Attack Graphs:

D. Catta et al. / Subset Sabotage Games & Attack Graphs 11

s1

s0

s2

a

a

s1

s0 s3

s2

a

b

a

There is not {a}-winning strategy over the Attack
Graph on the left. In fact, it does not satisfy the formula
win∨ (^>∧ �⊂a ^ ((^>∧ �⊂a ^win)∨win)): we have
that s0 6|= win and s0 6|= �

⊂
a ^ ((^>∧�⊂a ^win)∨win)).

If we erase all edges labeled by the letter a, no edges
are left. Thus s0 6|= ^ϕ for any ϕ.

Consider the Attack Graph on the right, call it AGr

and let AGa
r be AGr without edges labeled by a and

AGb
r be the AGr without the edge labeled by b. The

formula win ∨ ψ{a,b}3 is satisfied by AGr, and there
is a winning strategy S whose branches are: ρ =

AGr so AGa
r s3 and τ = AGr s0 AGb

r s1

7. Conclusion and Future Work

We have presented a natural class of two-player
games over Attack Graphs. Such games are played by
an Attacker and a Defender. The Attacker tries to reach
some vertex of the Attack Graph, while the Defender
tries to prevent him from doing so. To do this, the De-
fender can eliminate subsets of arcs in the graph. We
have seen how these games can be viewed as a general-
ized version of sabotage games, we have formally de-
fined plays of such games and winning strategies. Fi-
nally, we have introduced a variant of Sabotage Modal
Logic, showed that the model checking problem for
such logic is decidable and that we can express the ex-
istence of a winning strategy for our subset sabotage
games by formulas of the new logic.

The games we have defined are perfect informa-
tion games; both players know, at every point in the
game, the location of the other player. This assump-
tion is unrealistic: during a cyberattack, a possible De-
fender may not know what state an Attacker is in, and
conversely, an Attacker may not be aware of changes
made by the Defender to counter his attack. We would
therefore like to extend our play model in order to
include this type of imperfect information. From the
Defender’s point of view, this could be implemented
as an equivalence class between Attack Graph states.
From the Attacker’s point of view, on the other hand,

we could think of a notion of weak bisimulation be-
tween Attack Graphs: the Attacker considers as equal
two models that are bisimilar up to the identification of
some subset of arcs.

We have shown that the model-checking problem
for SSML logic is decidable. However, we have not
investigated the complexity of that problem (which
must, however, be at least P-Space). We leave this in-
vestigation for future work. We suspect that a bisim-
ulation notion for SSML logic can be obtained by
slightly modifying the one for SML and that, at the
same, a complete proof system for SSML can be ob-
tained in terms of tableaux. In conclusion, we suspect
that the satisfiability problem for SSML logic is unde-
cidable. Indeed, the same problem is undecidable for
SML and since our logic is SML in which we quantify
over subset of arcs of a graph, our intuition tells us that
the satisfiability problem for SSML can only be more
difficult than the one of SML.

Finally, we can consider to extend logics for the
strategic reasoning such as ATL [1] and Strategy
Logic [25] by capturing the features of the sabotage
modalities � and �⊂. In this way, we can gain expres-
sive power and check whether the attacker has a strat-
egy to win the game via strategic operators. Further-
more, in this context, we can see �⊂ as a graded modal-
ity of � as done in logics for strategies [2,13]. How-
ever, as we mentioned earlier the more realistic set-
ting for games is with imperfect information, but un-
fortunately, the model checking problem with imper-
fect information for strategic logics is undecidable in
general [10]. Given the relevance of this setting, even
partial solutions to the problem can be useful, such as
abstractions either on the information [4,6] or on the
strategies [5] or on the formulas [14]. In conclusion,
we can embed the mentioned techniques to provide a
more powerful framework.

References

[1] R. Alur, T. Henzinger, and O. Kupferman. Alternating-Time
Temporal Logic. Journal of the ACM, 49(5):672–713, 2002.

[2] B. Aminof, V. Malvone, A. Murano, and S. Rubin. Graded
modalities in strategy logic. Inf. Comput., 261:634–649, 2018.

[3] G. Aucher, J. V. Benthem, and D. Grossi. Modal logics of sab-
otage revisited. Journal of Logic and Computation, 28(2):269
– 303, Mar. 2018.

[4] F. Belardinelli, A. Lomuscio, and V. Malvone. An abstraction-
based method for verifying strategic properties in multi-agent
systems with imperfect information. In The Thirty-Third AAAI
Conference on Artificial Intelligence, AAAI 2019, The Thirty-
First Innovative Applications of Artificial Intelligence Con-

12 D. Catta et al. / Subset Sabotage Games & Attack Graphs

ference, IAAI 2019, The Ninth AAAI Symposium on Educa-
tional Advances in Artificial Intelligence, EAAI 2019, Hon-
olulu, Hawaii, USA, January 27 - February 1, 2019, pages
6030–6037. AAAI Press, 2019.

[5] F. Belardinelli, A. Lomuscio, V. Malvone, and E. Yu. Approx-
imating perfect recall when model checking strategic abilities:
Theory and applications. J. Artif. Intell. Res., 73:897–932,
2022.

[6] F. Belardinelli and V. Malvone. A three-valued approach to
strategic abilities under imperfect information. In D. Cal-
vanese, E. Erdem, and M. Thielscher, editors, Proceedings of
the 17th International Conference on Principles of Knowledge
Representation and Reasoning, KR 2020, Rhodes, Greece,
September 12-18, 2020, pages 89–98, 2020.

[7] D. Catta, J. Leneutre, and V. Malvone. Subset sabotage games
& attack graphs. In A. Ferrando and V. Mascardi, editors, Pro-
ceedings of the 23rd Workshop "From Objects to Agents", Gen-
ova, Italy, September 1-3, 2022, volume 3261 of CEUR Work-
shop Proceedings, pages 209–218. CEUR-WS.org, 2022.

[8] E. M. Clarke and E. A. Emerson. Design and synthesis of syn-
chronization skeletons using branching time temporal logic. In
O. Grumberg and H. Veith, editors, 25 Years of Model Check-
ing - History, Achievements, Perspectives, volume 5000 of Lec-
ture Notes in Computer Science, pages 196–215. Springer,
2008.

[9] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking.
The MIT Press, Cambridge, Massachusetts, 1999.

[10] C. Dima and F. Tiplea. Model-checking ATL under imperfect
information and perfect recall semantics is undecidable. CoRR,
abs/1102.4225, 2011.

[11] K. Durkota, V. Lisý, B. Bosanský, and C. Kiekintveld. Approx-
imate solutions for attack graph games with imperfect informa-
tion. In M. H. R. Khouzani, E. A. Panaousis, and G. Theodor-
akopoulos, editors, Decision and Game Theory for Security
- 6th International Conference, GameSec 2015, London, UK,
November 4-5, 2015, Proceedings, volume 9406 of Lecture
Notes in Computer Science, pages 228–249. Springer, 2015.

[12] K. Durkota, V. Lisy, B. Bošansky, and C. Kiekintveld. Opti-
mal network security hardening using attack graph games. IJ-
CAI’15, page 526–532. AAAI Press, 2015.

[13] M. Faella, M. Napoli, and M. Parente. Graded alternating-
time temporal logic. Fundam. Informaticae, 105(1-2):189–
210, 2010.

[14] A. Ferrando and V. Malvone. Towards the combination of
model checking and runtime verification on multi-agent sys-
tems. In F. Dignum, P. Mathieu, J. M. Corchado, and F. de la
Prieta, editors, Advances in Practical Applications of Agents,
Multi-Agent Systems, and Complex Systems Simulation. The
PAAMS Collection - 20th International Conference, PAAMS
2022, L’Aquila, Italy, July 13-15, 2022, Proceedings, volume
13616 of Lecture Notes in Computer Science, pages 140–152.
Springer, 2022.

[15] T. Heberlein, M. Bishop, E. Ceesay, M. Danforth,
C. Senthilkumar, and T. Stallard. A taxonomy for com-
paring attack-graph approaches. [Online] http://netsq.
com/Documents/AttackGraphPaper. pdf, 2012.

[16] K. Ingols, R. Lippmann, and K. Piwowarski. Practical at-
tack graph generation for network defense. In 2006 22nd An-
nual Computer Security Applications Conference (ACSAC’06),
pages 121–130, 2006.

[17] W. Jamroga and A. Murano. Module checking of strategic abil-
ity. In G. Weiss, P. Yolum, R. H. Bordini, and E. Elkind, edi-
tors, Proceedings of the 2015 International Conference on Au-
tonomous Agents and Multiagent Systems, AAMAS 2015, Is-
tanbul, Turkey, May 4-8, 2015, pages 227–235. ACM, 2015.

[18] N. R. Jennings and M. Wooldridge. Application of intelligent
agents. In Agent Technology: Foundations, Applications, and
Markets. Springer-Verlag, 1998.

[19] K. Kaynar. A taxonomy for attack graph generation and usage
in network security. J. Inf. Secur. Appl., 29(C):27–56, Aug.
2016.

[20] O. Kupferman, M. Vardi, and P. Wolper. An Automata The-
oretic Approach to Branching-Time ModelChecking. Journal
of the ACM, 47(2):312–360, 2000.

[21] O. Kupferman, M. Vardi, and P. Wolper. Module Checking.
Information and Computation, 164(2):322–344, 2001.

[22] R. P. Lippmann and K. W. Ingols. An annotated review of past
papers on attack graphs. 2005.

[23] C. Löding and P. Rohde. Model checking and satisfiability for
sabotage modal logic. In P. K. Pandya and J. Radhakrishnan,
editors, FST TCS 2003: Foundations of Software Technology
and Theoretical Computer Science, 23rd Conference, Mumbai,
India, December 15-17, 2003, Proceedings, volume 2914 of
Lecture Notes in Computer Science, pages 302–313. Springer,
2003.

[24] A. Lomuscio, H. Qu, and F. Raimondi. MCMAS: A model
checker for the verification of multi-agent systems. In Proceed-
ings of the 21th International Conference on Computer Aided
Verification (CAV09), volume 5643 of Lecture Notes in Com-
puter Science, pages 682–688. Springer, 2009.

[25] F. Mogavero, A. Murano, G. Perelli, and M. Y. Vardi. Reason-
ing about strategies: On the model-checking problem. ACM
Transactions in Computational Logic, 15(4):34:1–34:47, 2014.

[26] T. H. Nguyen, M. Wright, M. P. Wellman, and S. Baveja.
Multi-stage attack graph security games: Heuristic strategies,
with empirical game-theoretic analysis. MTD ’17, page 87–97,
New York, NY, USA, 2017. Association for Computing Ma-
chinery.

[27] S. Noel, S. Jajodia, B. O’Berry, and M. Jacobs. Effi-
cient minimum-cost network hardening via exploit dependency
graphs. In Proceedings of the 19th Annual Computer Security
Applications Conference, ACSAC ’03, page 86, USA, 2003.
IEEE Computer Society.

[28] X. Ou, W. F. Boyer, and M. A. McQueen. A scalable approach
to attack graph generation. In Proceedings of the 13th ACM
conference on Computer and communications security, pages
336–345, 2006.

[29] C. Phillips and L. P. Swiler. A graph-based system for network-
vulnerability analysis. In Proceedings of the 1998 workshop
on New security paradigms, pages 71–79, 1998.

[30] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. Wing. Au-
tomated generation and analysis of attack graphs. pages 273–
284, 02 2002.

[31] J. van Benthem. An Essay on Sabotage and Obstruction,
pages 268–276. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2005.

[32] Y. Zhang and P. Malacaria. Bayesian stackelberg games
for cyber-security decision support. Decis. Support Syst.,
148:113599, 2021.

