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Abstract. We give a general-purpose programming language in which
programs can reason about their own knowledge. To specify what these
intelligent programs know, we define a “program epistemic” logic, akin
to a dynamic epistemic logic for programs. Our logic properties are com-
plex, including programs introspecting into future state of affairs, i.e.,
reasoning now about facts that hold only after they and other threads
will execute. To model aspects anchored in privacy, our logic is inter-
preted over partial observability of variables, thus capturing that each
thread can “see” only a part of the global space of variables. We verify
program-epistemic properties on such AI-centred programs. To this end,
we give a sound translation of the validity of our program-epistemic logic
into first-order validity, using a new weakest-precondition semantics and
a book-keeping of variable assignment. We implement our translation
and fully automate our verification method for well-established exam-
ples using SMT solvers.

1 Introduction & Preliminaries

In a digital world governed by strict rules on privacy and access-control [23], some
thread A and some thread B will execute concurrently over the same variable
space, but A and B will have different, restricted access to global variables.
Moreover, both A and B may be decision-making process which take actions
based on predictions of future states of their environment [23]. In other words,
thread A may need to know now what the state-of-affairs will be after some
procedure P runs, albeit as far as A can know modulo its partial observability
of the system’s variables. More formally, in our framework, we are interested in
formulas such as “KA�Pϕ”, meaning to reason if “at this current point, thread
A knows whether after a procedure P executed, a fact ϕ expressed over the
global domain of variables holds”. Or, we may wish to check if agent B knows
that agent A knows a fact of this kind, i.e., “KBKA�Pϕ”. Such statements are
clearly rich, as they allow threads to reason about the future and moreover about
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their “perception” of the future, and of one another’s perceptions. That is, thread
B can check what it “thinks” A will “think” of the global state of the system,
after some procedure executes.

A New Verification Method Towards Safer AI. On the one hand, eval-
uating such knowledge-centric properties considered in a partial observability
setting is of paramount importance for AI-based decision making [3]. On the
other hand, logics of knowledge, also called epistemic logics [16], have been well-
explored in computer-science since Hintikka [22], and even in the context of
multi-agent systems [31] and under partial observability [37,20,7]. In this space,
our innovation focuses in turn on new methods for automatically verifying epis-
temic properties, but –unlike most of our predecessors– we concentrate on
verification methods not for abstract systems, but rather analyses of concrete
programs (over an arbitrary first-order domain), as well as requirements richer
than what went before us. Notably, we wish to create new formal analyses for
the epistemic reasoning of concrete programs, catering for them knowing facts
not only after they execute (i.e., �AKAϕ or �BKAϕ ), but also before they
execute (i.e., KA�Aϕ); the latter allows them as well as a Formal-Methodist
to check local perception of programs on global futures. To this end, we argue
that this opens up the area of verification methods for AI-rich programs, their
decision-making and thus makes for safer AI.

1.1 Preliminaries & Background

We now introduce a series of logic-related notions that are key to explaining our
contributions in the related field and to setting the scene.

Epistemic Logics. Logics for knowledge or epistemic logics [22] follow a so-
called Kripke or “possible-worlds” semantics. Assuming a set of agents, a set
of possible worlds are linked by an indistinguishability relation for each agent.
Then, an epistemic formula Kaφ, stating that “agent a knows that φ”, holds at
a world w, if the statement φ is true in all worlds that agent a considers as
indistinguishable from world w.

Modelling Imperfect Information in Epistemic Logics. A possible-worlds se-
mantics does not suffice to faithfully capture agents with private information.
To this end, interpreted systems were introduced [31], whereby agents are associ-
ated with private shares of the possible worlds called local states; worlds’ indistin-
guishability is then “sunk” at the level of local states. Alternatively, others looked
at how epistemic logic with imperfect information could be expressed via direct
notions of visibility (or observability) of propositional variables, e.g., [37,20,7].

Logics of Visibility for Programs. Others [18,30,34] looked at how multi-
agent epistemic logics with imperfect information would apply not to generic
systems, but specifically to programs. In this setting, the epistemic predicate
Ka(y = 0) denotes that agent a knows that the variable y is equal to 0 (in some
program). So, such a logic allows for the expression of knowledge properties
of program states, using epistemic predicates. This is akin to how, in classical
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program verification, one encodes properties of states using first-order predicates:
e.g., Dijkstra’s weakest precondition [10].

Perfect vs Imperfect recall. For any of the cases aforesaid, an aspect often
considered is the amount of knowledge that agents retain, i.e., agents forget all
that occur before their current state – memoryless (or imperfect recall) seman-
tics, or agents recall all their history of states – memoryful (or perfect recall)
semantics, or in between the two cases – bounded recall semantics.

“Program-epistemic” Logics. To reason about knowledge change, epistemic
logic is usually enriched with dynamic modalities from Dynamic Logics [33,21].
Therein, a dynamic formula �Pφ expresses the fact that when the program
P ’s execution terminates, the system reaches a state satisfying φ – a statement
given in the base logic (propositional/predicate logic); the program P is built
from abstract/concrete actions (e.g., assignments), sequential composition, non-
deterministic composition, iteration and test.

Gorogiannis et al. [18] gave a “program-epistemic” logic, which is a dynamic
logic with concrete programs (e.g., programs with assignments on variables over
first-order domains such as integer, reals, or strings). Interestingly, à la [37,30,34],
the epistemic model in [18] relies on partial observability of the programs’ vari-
ables by agents. Gorogiannis et al. translated program-epistemic validity into a
first-order validity, and this outperformed the then state-of-the-art tools in epis-
temic properties verification. Whilst an interesting breakthrough, Gorogiannis
et al. present several limitations. Firstly, the verification mechanisation in [18]
only supports “classical” programs; this means that [18] cannot support tests on
agents’ knowledge. Yet, such tests are clearly in AI-centric programs: e.g., in
epistemic puzzles [26], in the so-called “knowledge-based” programs in [15], etc.
Secondly, the logic in [18] allows only for knowledge reasoning after a program
P executed, not before its run (e.g., not Kalice(�Pφ), only �P (Kaliceφ)); this is
arguably insufficient for verification of decision-making with “look ahead" into
future states-of-affair. Thirdly, the framework in [18] does not allow for reasoning
about nested knowledges operators (e.g., Kalice(Kbobφ)).

1.2 Our Contributions

We lift all the limitations of [18] listed above and more. We make the following
contributions:

1. We define a multi-agent, program-epistemic logic LmDK , which is a dynamic
logic whose base logic is a multi-agent first-order epistemic logic, under an
observability-based semantics (Section 2).
Our logic is rich, where the programs modality contains tests on knowledge,
and formulas with nested knowledge operators in the multi-agent setting.
This is much more expressive than the state-of-the-art.

2. We give a programming language PL (programs with tests on knowledge)
that concretely defines the dynamic operators in LmDK . We associate the pro-
gramming language PL with a relational semantics and a weakest-precondition
semantics, and we show their equivalence (Section 3).
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3. We give a sound translation of the validity of a program-epistemic logic into
first-order validity (Section 4).

4. We implement the aforesaid translation to allow a fully-automated verifica-
tion with our program-epistemic logic, via SMT-solving (Section 5).

5. We verify the well-known Dining Cryptographer’s protocol [8] and the epis-
temic puzzle called the “Cheryl’s birthday problem” [13]. We report compet-
itive verification results. Collaterally, we are also the first to give SMT-based
verification of the “Cheryl’s birthday problem” [13] (Section 5).

2 Logical Languages LFO and Lm
DK

We introduce the logics LFO, LmK , and LmDK , used to describe states and epistemic
properties of states, and program-epistemic properties of states.

2.1 Syntax of LFO, Lm
K , and Lm

DK

Agents and variables. We use a, b, c, ... to denote agents, Ag to denote their
whole set, and G for a subset therein. We consider a set Var of variables such
that each variable x in Var is “typed” with the group of agents that can observe
it. For instance, we write xG to make explicit the group G ⊆ Ag of observers of
x. For each agent a ∈ Ag, the set Var of variables can be partitioned into the
variables that are observable by a, denoted oa, and the variables that are not
observable by a, denoted na. Thus, na = {xG ∈ Var | a 6∈ G}.

The base logic LQF . We assume a user defined base language LQF , on top of
which the other logics are built. We assume LQF to be quantifier-free first-order
language with variables in Var . The Greek letter π denotes a formula in LQF .

An example of base language LN, for integer arithmetic, is given by:

e ::= c | v | e ◦ e (terms)
π ::= e = e | e < e | π ∧ π | ¬π (LN formula)

where ◦ ::= +,−, ∗, /,×,mod; c is an integer constant; and v ∈ Var .

First-order logic LFO. We define the quantified first-order logic LFO based
on LQF . This logic describes “physical” properties of a program state and also
serves as the target language in the translation of our main logic.

Definition 1. The quantified first-order logic LFO is defined by:

φ ::= π | φ ∧ φ | ¬φ | ∀xG · φ

where π is a quantifier-free formula in LQF , and xG ∈ Var .

Other connectives and the existential quantifier operator ∃, can be derived as
standard. We use Greek letters φ, ψ, χ to denote first-order formulas in LFO. We
extend quantifiers over vectors of variables: ∀x ·φ means ∀x1 · ∀x2 · · · ∀xn ·φ. As
usual, FV (φ) denotes the set of free variables of φ.
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Epistemic logic LmK and program-epistemic logic LmDK . We now define two
logics at once. The first is the first-order multi-agent epistemic logic LmK enriched
with the public announcement operator. The logic LmK is first-order in the sense
that its atomic propositions are predicates from the base language LQF . The
second is our main logic, LmDK , which extends LmK with program modalities �P .

Definition 2. Let LQF be a base first-order language and Ag = {a1, . . . , am} a
set of agents. We define the first-order multi-agent program epistemic logic LmDK

with the following syntax

α ::= π | α ∧ α′ | ¬α | Kaiα | [α′]α | �Pα | ∀xG · α (LmDK )

where π ∈ LQF , P is a program, G ⊆ Ag, and xG ∈ Var .

Each Kai is the epistemic operator for agent ai, the epistemic formula Kaiα
reads “agent ai knows that α”. The public announcement formula [α′]α, in the
sense of [32,12], means “after every announcement of α′, α holds”. The dynamic
formula �Pα reads “at all final states of P , α holds“. The program P is taken
from a set of programs PL that we define in Section 3. Other connectives and
the existential quantifier ∃ can be derived in a standard way as for Definition 1.

The first-order multi-agent epistemic logic LmK is the fragment of LmDK with-
out any program operator �P .

2.2 Semantics of LFO and Lm
DK

States and the truth of LQF formulas. We consider a set D, used as the
domain for interpreting variables and quantifiers. A state s of the system is a
valuation of the variables in Var , i.e., a function s : Var → D. We denote the
universe of all possible states by U .

We assume an interpretation I of constants, functions, and predicates, over
D to define the truth of an LQF formula π at a state s, denoted s |=QF π.

Truth of an LFO formula. Let s[x 7→ c] denote the state s′ such that s′(x) = c
and s′(y) = s(y) for all y ∈ Var different from x. This lifts to a set of states,
W [x 7→ c] = {s[x 7→ c] | s ∈W}.

Definition 3. The truth of φ ∈ LFO at a state s, denoted s |=
FO
φ, is defined

inductively on φ by

s |=FO π iff s |=QF π

s |=FO φ1 ∧ φ2 iff s |=FO φ1 and s |=FO φ2

s |=FO ¬φ iff s 6|=FO φ

s |=FO ∀xG · φ iff for all c ∈ D, s[xG 7→ c] |=FO φ.

We lift the definition of |=
FO

to a setW of states, withW |=
FO
φ iff for all s ∈W ,

s |=
FO
φ. The satisfaction set [[φ]] of a formula φ ∈ LFO is defined, as usual, by

[[φ]] = {s ∈ U | s |=FO φ}.
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Epistemic models. We model agents’ knowledge of the program state with a
possible worlds semantics built on the observability of program variables [18].
We define, for each a in Ag, the binary relation ≈a on U by: s ≈a s′ if and only
if s and s′ agree on the part of their domains that is observable by a, i.e.,

s ≈a s′ iff dom(s) ∩ oa = dom(s′) ∩ oa and
∧
x∈(dom(s)∩oa)

(s(x) = s′(x)).

One can show that ≈a is an equivalence relation on U . Each subset W of U
defines a possible worlds model (W, {≈a|W }a∈Ag), such that the states of W are
the possible worlds and for each a ∈ Ag the indistinguishability relation is the
restriction of ≈a on W . We shall use the set W ⊆ U to refer to an epistemic
model, omitting the family of equivalence relations {≈a|W }a∈Ag.

Truth of an LmDK formula. We give the semantics of an LmDK formula at a
pointed model (W, s), which consist of an epistemic modelW and a state s ∈W .

Definition 4. Let W be an epistemic model, s ∈ W a state, α a formula in
LmDK such that FV (α) ⊆ dom(W ). The truth of an epistemic formula α at the
pointed model (W, s) is defined recursively on the structure of α as follows:

(W, s) |= π iff s |=
QF
π

(W, s) |= ¬α iff (W, s) 6|= α

(W, s) |= α ∧ α′ iff (W, s) |= α and (W, s) |= α′

(W, s) |= Kaα iff for all s′ ∈W, s′ ≈a s implies (W, s′) |= α

(W, s) |= [β]α iff (W, s) |= β implies (W|β , s) |= α

(W, s) |= �Pα iff for all s′ ∈ RW (P, s), (R∗W (P,W ), s′) |= α

(W, s) |= ∀xG · α iff for all c ∈ D, (
⋃
d∈D{s′[xG 7→ d] | s′ ∈W}, s[xG 7→ c]) |= α

where xG 6∈ dom(W ), W|β is the submodel of W that consists of the states in
which β is true, i.e., W|β = {s ∈ W | (W, s) |= β} [5].

This definition extends from a pointed model (W, s) to the entire epistemic
model W as follows: W |= α iff for any s in W , (W, s) |= α.

Our interpretation of logical connectors, epistemic formulas, and the public
announcement formulas are all standard [5,12].

For universal quantification, the epistemic contextW is augmented by allow-
ing xG to be any possible value in the domain. When interpreting ∀xG · Kaα

′

where a ∈ G, we have s ≈a s′ iff s[xG 7→ c] ≈a s′[xG 7→ c]. However, if a 6∈ G,
then s[xG 7→ c] ≈a s′[xG 7→ d] for any d ∈ D and for any s′ ≈a s.

In our interpretation of �Pα, the context W is also updated by the relation
RW , by taking the post-image of W by RW 4. The truth of α is interpreted at a
post-state s′ under the new context. We use the function RW (P, ·) : U → P(U)
to model the program P . We give the function RW (P, ·) concretely for each
command P , after we define the programming language PL in the next section.

4 The post-image of a function f is denoted by f∗, i.e., f∗(E) =
⋃
{f(x)|x ∈ E}.
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Remark 1. The index W in RW (P, ·) is a set of states in U . As in classical
relational semantics, RW (P, s) gives the set of states resulting from executing P
at a state s. However, we need the index W to represent the epistemic context
in which P is executed. Before executing P , an agent may not know that the
actual initial state is s, it only knows about the initial state only as far as it can
see from its observable variables. The context W contains any state that some
agent may consider as the possible initial state.

3 Programming Language PL

Now, we formalise the language for programs inside a program-operator �P of
the logic that we introduced in the previous section.

3.1 Syntax of PL

We use the notations from the previous section: a, b, c, ... to denote agents, Ag to
denote their whole set, G for a subset therein, etc. We assume that a non-empty
subset PVar of Var consists of program variables.

Definition 5. The programming language PL is defined in BNF as follows:

P ::= ϕ? | xG := e | new kG · P | P ;Q | P tQ

where xG ∈ Var , e is a term over LQF , ϕ ∈ LmK , and any variable in P that is
not bound by new is in PVar .

The test ϕ? is an assumption-like test, i.e., it blocks the program when ϕ is
refuted and let the program continue when ϕ holds; xG := e is a variable assign-
ment as usual. The command new kG ·P declares a new variable kG observable
by agents in G before executing P . The operator P ;Q is the sequential compo-
sition of P and Q. Lastly, P tQ is the nondeterministic choice between P and
Q.

Commands such as skip and conditional tests can be defined with PL, e.g.,
if ϕ then P else Q

def
= (ϕ?; P ) t (¬ϕ?; Q).

3.2 Relational semantics of PL

Now, we give the semantics of programs in PL. We refer to as classical program
semantics, the modelling of a program as an input-output functionality, without
managing what agents can learn during an execution. In classical program se-
mantics, a program P is associated with a relation RP = U ×U , or equivalently
a function R(P, ·) : U → P(U), such that R(P, ·) maps an initial state s to a set
of possible final states.

As per Remark 1, we define the relational semantics of an epistemic program
P ∈ PL at a state s for a given context W , with s ∈ W . The context W ⊆ U
contains states that some agents may consider as a possible alternative to s.
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Definition 6 (Relational semantics of PL on states). Let W be a set of
states. The relational semantics of a program P given the context W , is a func-
tion RW (P, ·) : U → P(U) defined inductively on the structure of P by

RW (P tQ, s) = {s′[cAg 7→ l] | s′ ∈ RW (P, s)}
∪ {s′[cAg 7→ r] | s′ ∈ RW (Q, s)}

RW (P ;Q, s) =
⋃
s′∈RW (P,s){RR∗W (P,W )(Q, s

′)}

RW (xG := e, s) = {s[kG 7→ s(xG), xG 7→ s(e)]}
RW (new kG · P, s) = R∗W (P, {s[kG 7→ d] | d ∈ D})
RW (β?, s) = if (W, s) |= β then {s} else ∅

where kG is not in dom(s), and cAg is not in the domain of any state s′ in
RW (P, s) ∪RW (Q, s).

We model nondeterministic choice P tQ as a disjoint union [6], which is achieved
by augmenting every updated state with a new variable cAg, and assigning it a
value l (for left) for every state in RW (P, s), and a value r (for right) for every
state in RW (Q, s). The semantics for sequential composition is standard. The
semantics of the assignment xG := e stores the past value of xG into a new
variable kG, and updates the value of xG into expression e. With this semantics,
an agent always remembers the past values of a variable that it observes, i.e., it
has perfect recall. The semantics of new kG ·P adds the new variable kG to the
domain of s, then combines the images by RW (P, ·) of all states s[kG 7→ d] for d
in D. A test is modelled as an assumption, i.e., a failed test blocks the program.

In the epistemic context, we can also view a program as transforming epis-
temic models, rather than states. This view is modelled with the following al-
ternative relational semantics for PL.

Definition 7 (Relational semantics of PL on epistemic models). The
relational semantics on epistemic models of a program P is a function F (P, ·) :
P(U)→ P(U) given by

F (P tQ,W ) = {s[cAg 7→ l] | s ∈ F (P,W )}
∪ {s[cAg 7→ r] | s ∈ F (Q,W )}

F (P ;Q,W ) = F (Q,F (P,W ))

F (xG := e,W ) = {s[kG 7→ s(xG), xG 7→ s(e)] | s ∈W}
F (new kG · P,W ) = F (P,

⋃
d∈DW [kG 7→ d])

F (β?,W ) = {s ∈W | (W, s) |= β}

such that kG and cAg are variables not in dom(s).

We assume that every additional cAg, in the semantics of P tQ, is observable
by all agents. The value of cAg allows every agent to distinguish a state resulting
from P from a state resulting from Q. The resulting union is a disjoint-union of
epistemic models [6].
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The two relational semantics (Def. 6 and Def. 7) are equivalent (see Appendix
A in [4]). However, we use both to simplify the presentation. On one hand, the
relation on states given by RW (P, ·) is more standard for defining a dynamic
formula �Pα (see e.g. [18]). On the other hand, F (P, ·) models a program as
transforming states of knowledge (epistemic models) rather than only physical
states. Moreover, F (P, ·) relates directly with our weakest precondition predicate
transformer semantics, which we present next.

3.3 Weakest precondition semantics of PL

We now give another semantics for our programs, by lifting the Dijkstra’s clas-
sical weakest precondition predicate transformer 5 [10] to epistemic predicates.
Notation. α[x\t] substitutes x by the term t in α.

Definition 8. We define the weakest precondition of a program P as the epis-
temic predicate transformer wp(P, ·) : LmK → LmK with

wp(P ;Q,α) = wp(P,wp(Q,α))

wp(P tQ,α) = wp(P, α) ∧ wp(Q,α)
wp(new kG · P, α) = ∀kG · wp(P, α)
wp(β?, α) = [β]α

wp(xG := e, α) = ∀kG · [kG = e](α[xG\kG])

for α ∈ LmK such that FV (α) ⊆ PVar .

The definitions of wp for nondeterministic choice and sequential composition
are similar to their classical versions in the literature, and follows the original
definitions in [10]. A similar definition of wp for a new variable declaration is also
found in [29]. However, our wp semantics for assignment and for test differs from
their classical counterparts. The classical wp for assignment (substitution), and
the classical wp of tests (implication) are inconsistent in the epistemic context
when agents have perfect recall [30,34]. Our wp semantics for test follows from the
observation that an assumption-test for a program executed publicly corresponds
to a public announcement. Similarly, our semantics of assignment involves a
public announcement of the assignment being made.

3.4 Equivalence between the two program semantics

Now, we show that our weakest precondition semantics and our relational se-
mantics are equivalent. For that, we need the following lemma.

Lemma 1. Consider an epistemic model W , variables xG and kG such that kG
is not in the domain of any state in W . Let WxG\kG be the model that renames
xG into kG in the states of W , then

W |= α iff WxG\kG |= α[xG\kG].
5 The weakest precondition wp(P, φ) is a predicate such that: for any precondition ψ
from which the program P terminates and establishes φ, ψ implies wp(P, φ).
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The following equivalence shows that our weakest precondition semantics is
sound with respect to the program relational model.

Proposition 1. For every program P and every formula α ∈ LmDK ,

F (P,W ) |= α iff W |= wp(P, α).

A detailed proof can be found in Appendix B of the extended version of our
paper [4].Below, we sketch the proofs for the cases of nondeterministic choice
and assignment.

The equivalence for the case of nondeterministic choice follows from the fact
that disjoint union preserves the truth of epistemic formulas (Prop 2.3 in [6]). A
formula that is true at both F (P,W ) and F (Q,W ), remains true at F (PtQ,W ).
This allows us to have a standard conjunctive weakest precondition epistemic
predicate transformer, i.e., wp(P tQ,α) = wp(P, α) ∧ wp(Q,α).

We now explain the equivalence for assignment, i.e., how the bookkeeping of
variables in our relational semantics of Definition 7 equates to wp(xG := e, α) =
∀kG · [kG = e](α[xG\kG]). Recall that F (xG := e,W ) renames xG into kG in
W , then makes a new variable xG that takes the value e. This translates to
the equality F (xG := e,W ) = F (new xG · (xG = exG\kG)?,WxG\kG). In the
right-hand side of this equality, xG is re-introduced as a new variable, W is
expanded, by a Cartesian product, into

⋃
d∈DW [xG 7→ d] (Definition 7), then

restricted to satisfy xG = exG\kG . This restriction corresponds to the semantics of
making the assumption test (or public announcement) (xG = exG\kG)?. Finally,
F (new xG ·(xG = exG\kG)?,WxG\kG) can be directly to the weakest precondition
for assignment via Lemma 1.

The equivalence in Prop 1 serves us in proving that the translation of an
LmDK formula into a first-order formula, which we present next, is sound with
respect to the program relational models.

4 Translating Lm
DK to LFO

Our model checking approach relies on the truth-preserving translation between
LmDK formulas and first-order formulas. We use the following translation function.

Definition 9 (Translation of LmDK into LFO). Let π ∈ LQF and α ∈ LmDK ,
a be an agent. Let n = na ∩ (FV (α) ∪ FV (φ)) be the set of free variables in π
and α that are non-observable by a, and ◦ be an operator in {∧,∨}. We define
the translation τ : LFO × LmDK → LFO as follows:

τ(φ, π) = π

τ(φ,¬α) = ¬τ(φ, α)
τ(φ, α1 ◦ α2) = τ(φ, α1) ◦ τ(φ, α2)

τ(φ, ∀xG · α) = ∀xG · τ(φ, α)

τ(φ,Kaα) = ∀n · (φ→ τ(φ, α))

τ(φ, [β]α) = τ(φ, β)→ τ(φ ∧ τ(φ, β), α)
τ(φ,�Pα) = τ(φ,wp(P, α))
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We use the above translation to express the equivalence between the satis-
faction of a LmK -formula and that of its first-order translation.

Proposition 2. For every φ in LFO, s in [[φ]], α in LmK such that FV (φ) ∪
FV (α) ⊆ PVar , we have that

([[φ]], s) |= α iff s |=
FO
τ(φ, α).

Proof. The proof for the base epistemic logic without public announcement
LK (π,¬,∧,Ka) is found in [18].
Case of public announcement [β]α

([[φ]], s) |= [β]α

≡ if ([[φ]], s) |= β then ([[φ]]|β , s) |= α truth of [β]α

≡ if s |=
FO
τ(φ, β) then ([[φ]]|β , s) |= α induction hypothesis on β

≡ if s |=
FO
τ(φ, β) then ({s′ ∈ U|s′ |=

FO
φ and ([[φ]], s′) |= β}, s) |= α

by definition of [[·]] and definition of |β
≡ if s |=FO τ(φ, β) then ({s′ ∈ U|s′ |=FO φ and s′ |=FO τ(φ, β)}, s) |= α

induction hypothesis on β

≡ if s |=FO τ(φ, β) then ({s′ ∈ U|s′ |=FO φ ∧ τ(φ, β)}, s) |= α truth of ∧
≡ if s |=FO τ(φ, β) then ([[φ ∧ τ(φ, β)]], s) |= α def of [[·]]
≡ if s |=FO τ(φ, β) then s |=FO τ(φ ∧ τ(φ, β), α) induction hypothesis

≡ if s |=FO τ(φ, β)→ τ(φ ∧ τ(φ, β), α) truth of →. �

Now, we can state our main theorem relating the validity of an LmDK formula,
and that of its first-order translation.

Theorem 1 (Main result). Let φ ∈ LFO, and α ∈ LmDK , such that FV (φ) ∪
FV (α) ⊆ PVar , then

[[φ]] |= α iff [[φ]] |=
FO
τ(φ, α).

Proof. The proof is done by induction on α. The case where α ∈ LmK follows
directly from Proposition 2.

We are left to prove the case of the program operator �Pα. Without loss of
generality, we can assume that α is program-operator-free, i.e., α ∈ LmK . Indeed,
one can show that �P (�Qα′) is equivalent to �P ;Qα

′. We have

[[φ]] |= �Pα

≡ iff for all s in [[φ]], ([[φ]], s) |= �Pα by definition of |= for a model

≡ iff for all s in [[φ]], for all s′ in R[[φ]](P, s), (F (P, [[φ]]), s′) |= α |= for �P
≡ iff for all s′ in R∗[[φ]](P, [[φ]]), (F (P, [[φ]]), s

′) |= α post-image

≡ iff for all s′ in F (P, [[φ]]), (F (P, [[φ]]), s′) |= α F (P,W ) = R∗W (P,W )

≡ F (P, [[φ]]) |= α by definition of |= for a model

≡ [[φ]] |= wp(P, α) by Proposition 1

≡ [[φ]] |=
FO
τ(wp(P, α)) since wp(P, α) ∈ LmK , the previous case applies. �



12 F. Rajaona et al.

5 Implementation

Our automated verification framework supports proving/falsifying a logical con-
sequence φ |= α for α in LmDK and φ in LFO. By Theorem 1, the problem be-
comes the unsatisfiability/satisfiability of first-order formula φ∧¬τ(φ, α), which
is eventually fed to an SMT solver.

In some cases, notably our second case study, the Cheryl’s Birthday puzzle,
computing the translation τ(φ, α) by hand is tedious and error-prone. For such
cases, we implemented a LmDK -to-LFO translator to automate the translation.

5.1 Mechanisation of Our Lm
DK -to-FO Translation

Our translator implements Definition 9 of our translation τ . It is implemented
in Haskell, and it is generic, i.e., works for any given example6. The resulting
first-order formula is exported as a string parsable by an external SMT solver
API (e.g., Z3py and CVC5.pythonic which we use).

Our Haskell translator and the implementation of our case studies are at
https://github.com/sfrajaona/program-epistemic-model-checker.

5.2 Case Study 1: Dining Cryptographers’ Protocol [8]

Problem Description. This system is described by n cryptographers dining
round a table. One cryptographer may have paid for the dinner, or their em-
ployer may have done so. They execute a protocol to reveal whether one of the
cryptographers paid, but without revealing which one. Each pair of cryptogra-
phers sitting next to each other have an unbiased coin, which can be observed
only by that pair. Each pair tosses its coin. Each cryptographer announces the
result of XORing three Booleans: the two coins they see and the fact of them
having paid for the dinner. The XOR of all announcements is provably equal to
the disjunction of whether any agent paid.

Encoding in LmDK & Mechanisation. We consider the domain B = {T, F}
and the program variables PVar = {xAg} ∪ {pi, c{i,i+1} | 0 ≤ i < n} where x is
the XOR of announcements; pi encodes whether agent i has paid; and, c{i,i+1}
encodes the coin shared between agents i and i+1. The observable variables for
agent i ∈ Ag are oi = {xAg, pi, c{i−1,i}, c{i,i+1}} 7 , and ni = PVar \ oi.

We denote φ the constraint that at most one agent has paid, and e the XOR
of all announcements, i.e.

φ =
∧n−1
i=0

(
pi ⇒

∧n−1
j=0,j 6=i ¬pj

)
e =

⊕n−1
i=0 pi ⊕ c{i−1,i} ⊕ c{i,i+1}.

The Dining Cryptographers’ protocol is modelled by the program ρ = xAg := e.

6 Inputs are Haskell files.
7 When we write {i, i+1} and {i−1, i}, we mean {i, i+1 mod n} and {i−1 mod n, i}.

https://github.com/sfrajaona/program-epistemic-model-checker
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Experiments & Results. We report on checking the validity for:

β1 = �ρ
(
(¬p0)⇒

(
K0

(∧n−1
i=1 ¬pi

)
∨
∧n−1
i=1 ¬K0pi

))
β3 = �ρ(K0p1)

β2 = �ρ
(
K0

(
x⇔

∨n−1
i=0 pi

))
γ = K0

(
�ρ
(
x⇔

∨n−1
i=0 pi

))
.

The formula β1 states that after the program execution, if cryptographer 0 has
not paid then she knows that no cryptographer paid, or (in case a cryptographer
paid) she does not know which one. The formula β2 reads that after the program
execution, cryptographer 0 knows that xAg is true iff one of the cryptographers
paid. The formula β3 reads that after the program execution, cryptographer 0
knows that cryptographer 1 has paid, which is expected to be false. Formula γ
states cryptographer 0 knows that, at the end of the program execution, xAg is
true iff one of the cryptographers paid.

Formulas β1, β2, and β3 were checked in [18] as well. Importantly, formula γ
cannot be expressed or checked by the framework in [18]. We compare the perfor-
mance of our translation on this case-study with that of [18]. To fairly compare,
we reimplemented faithfully the SP-based translation in the same environment
as ours. We tested our translation (denoted τwp) and the reimplementation of
the translation in [18] (denoted τSP ) on the same machine.

Note that the performance we got for τSP differs from what is reported in [18].
This is especially the case for the most complicated formula β1. This may be
due to the machine specifications, or because we used binary versions of Z3 and
CVC5, rather than building them from source, like in [18].

The results of the experiments, using the Z3 solver, are shown in Table 1. CVC5
was less performant than Z3 for this example, as shown (only) for β2. Generally,
the difference in performance between the two translations were small. The SP -
based translation slightly outperforms our translation for β2 and β3, but only for
some cases. Our translation outperforms the SP -based translation for β1 in these
experiments. Again, we note that the performance of the SP -based translation
reported here is different from the performance reported in [18]. Experiments
that took more than 600 seconds were timed out

Formula β1 Formula β2 Formula β3 Formula γ

n τwp+Z3 τSP+Z3 τwp+CVC5 τwp+Z3 τSP+Z3 τwp+Z3 τSP+Z3 τwp+Z3 τSP+Z3

10 0.05 s 4.86 s 0.01 s 0.01 s 0.01 s 0.01 s 0.01 s 0.01 s N/A
50 31 s t.o. 0.41 s 0.05 s 0.06 s 0.03 s 0.02 s 0.03 s N/A
100 t.o. t.o. 3.59 s 0.15 s 0.16 s 0.07 s 0.06 s 0.07 s N/A
200 t.o. t.o. 41.90 s 1.27 s 0.71 s 0.30 s 0.20 s 0.30 s N/A

Table 1. Performance of our wp-based translation vs. our reimplementation of the [18]
SP-based translation for the Dining Cryptographers. Formula γ is not supported by
the SP-based translation in [18].
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5.3 Case Study 2: Cheryl’s Birthday Puzzle [13]

This case study involves the nesting of knowledge operatorsK of different agents.

Problem Description. Albert and Bernard just became friends with Cheryl,
and they want to know when her birthday is. Cheryl gives them a list of 10
possible dates: May 15, May 16, May 19, June 17, June 18, July 14, July 16,
August 14, August 15, August 17. Then, Cheryl whispers in Albert’s ear the
month and only the month of her birthday. To Bernard, she whispers the day
only. “Can you figure it out now?”, she asks Albert. The next dialogue follows:
- Albert: I don’t know when it is, but I know Bernard doesn’t know either.
- Bernard: I didn’t know originally, but now I do.
- Albert: Well, now I know too!

When is Cheryl’s birthday?

Encoding and Mechanisation. To solve this puzzle, we consider two agents
a (Albert) and b (Bernard) and two integer program variables PVar = {ma, db}.
Then, we constrain the initial states to satisfy the conjunction of all possible
dates announced by Cheryl, i.e., the formula φ below:

φ(ma, db) = (ma = 5 ∧ db = 15) ∨ (ma = 5 ∧ db = 16) ∨ · · ·

The puzzle is modelled via public announcements, with the added assumption
that participants tell the truth. However, modelling a satisfiability problem with
the public announcement operator [β]α would return states where β cannot
be truthfully announced. Indeed, if β is false at s, (i.e., (φ, s) |= ¬β), then the
announcement [β]α is true. For that, we use the dual of the public announcement
operator denoted 〈·〉 8. We use the translation to first-order formula:

τ(φ, 〈β〉α) = τ(φ, β) ∧ τ(φ ∧ τ(φ, β), α).

In both its definition and our translation to first-order, 〈·〉 uses a conjunction
where [·] uses an implication.

We denote the statement “agent a knows the value of x” by the formula Kvax
which is common in the literature. We define it with our logic LmDK making use
of existential quantification: Kvax = ∃va ·Ka(va = x).

Now, to model the communication between Albert and Bernard, let αa be
Albert’s first announcement, i.e., αa = ¬Kva(db) ∧ Ka(¬Kvb(ma)). Then, the
succession of announcements by the two participants corresponds to the formula

α = 〈(¬Kvb(ma) ∧ 〈αa〉Kvb(ma))?〉Kvadb.

Cheryl’s birthday is the state s that satisfies (φ, s) |= α.

8 The formula 〈β〉α reads “after some announcement of β, α is the case”, i.e., β can
be truthfully announced and its announcement makes α true. Formally, (W, s) |=
〈β〉α iff (W, s) |= β and (W|β , s) |= α.
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Experiments & Results. We computed τ(φ, α) in 0.10 seconds. The SMT
solvers Z3 and CVC5 returned the solution to the puzzle when fed with τ(φ, α).
CVC5 solved it, in 0.60 seconds, which is twice better than Z3 (1.28 seconds).

All the experiments were run on a 6-core 2.6 GHz Intel Core i7 MacBook
Pro with 16 GB of RAM running OS X 11.6. For Haskell, we used GHC 8.8.4.
The SMT solvers were Z3 version 4.8.17 and CVC5 version 1.0.0.

6 Related Work

SMT-Based Verification of Epistemic Properties of Programs. We start
with the work of Gorogiannis et al. [18] which is the closest to ours. We already
compared with this in the introduction, for instance explaining therein exactly
how our logic is much more expressive than theirs. Now, we cover other points.

Program Models. The program models in [18] follow a classical program se-
mantics (e.g., modelling nondeterministic choice as union, overwriting a variable
in reassignment). This has been shown [30,34] to correspond to systems where
agents have no memory, and cannot see how nondeterministic choices are re-
solved. Our program models assume perfect recall, and that agents can see how
nondeterministic choices are resolved.

Program Expressiveness. Gorogiannis et al. [18] have results of approxima-
tions for programs with loops, although there were no use cases of that. Here we
focused on a loop-free programming language, but we believe our approach can
be extended similarly. The main advantage of our programs is the support for
tests on knowledge which allows us to model public communication of knowledge.

Mechanisation & Efficiency. We implemented the translation which include
an automated computation of weakest preconditions (and strongest postcondi-
tions as well). The implementation in [18] requires the strongest postcondition be
computed manually. Like [18], we test for the satisfiability of the resulting first-
order formula with Z3. The performance is generally similar, although sometimes
it depends on the form of the formulas (see Table 1).

Verification of information flow with program algebra. Verifying epis-
temic properties of programs with program algebra was done in [30,28,34]. In-
stead of using a dynamic logic, they reason about epistemic properties of pro-
grams with an ignorance-preserving refinement. Like here, their notion of knowl-
edge is based on observability of arbitrary domain program variables. The work
in [34] also consider a multi-agent logics and nested K operators and their pro-
gram also allows for knowledge tests. Finally, our model for epistemic programs
can be seen as inspired by [34]. That said, all these works have no relation with
first-order satisfaction nor translations of validity of program-epistemic logics to
that, nor their implementation.

Dynamic Epistemic Logics Dynamic epistemic logic (DEL, [32,2,12]) is a
family of logics that extend epistemic logic with dynamic operators.

Logics’ Expressivity. On the one hand, DEL logics are mostly propositional,
and their extensions with assignment only considered propositional assignment
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(e.g., [11]); contrarily, we support assignment on variables on arbitrary domains.
Also, we have a denotational semantics of programs (via weakest preconditions),
whereas DEL operates on more abstract semantics. On the other hand, action
models in DEL can describe complex private communications that cannot be
encoded with our current programming language.

Verification. Current DEL model checkers include DEMO [14] and SMCDEL [35].
We are not aware of the verification of DEL fragments being reduced to satisfia-
bility problems. In this space, an online report [36] discusses –at some high level–
the translation SMCDEL knowledge structures into QBF and the use of YICES.

A line of research in DEL, the so called semi-public environments, also builds
agents’ indistinguishability relations from the observability of propositional vari-
ables [37,7,20]. The work of Grossi [19] explores the interaction between knowl-
edge dynamics and non-deterministic choice/sequential composition. They note
that PDLs assumes memory-less agents and totally private nondeterministic
choice, whilst DELs’ epistemic actions assume agents with perfect recall and
publicly made nondeterministic choice. This is the same duality that we ob-
served earlier between the program epistemic logic in [18] and ours.

Other Works. Gorogiannis et al. [18] discussed more tenuously related work,
such as on general verification of temporal-epistemic properties of systems which
are not programs in tools like MCMAS [27], MCK [17], VERICS [25], or one line
of epistemic verification of models specifically of JAVA programs [1]. [18] also
discussed some incomplete method of SMT-based epistemic model checking [9],
or even bounded model checking techniques, e.g., [24]. All of those are loosely
related to us too, but there is little reason to reiterate.

7 Conclusions

We advanced a multi-agent epistemic logic for programs LmDK , in which each
agent has visibility over some program variables but not others. This logic allows
to reason on agents’ knowledge of a program after its run, as well as before its
execution. Assuming agents’ perfect recall, we provided a weakest-precondition
epistemic predicate transformer semantics that is sound with respect to its rela-
tional counterpart. Leveraging the natural correspondence between the weakest
precondition wp(P, α) and the dynamic formula �Pα, we were able to give a
sound reduction of the validity of LmDK formulas to first-order satisfaction.

Based on this reduction an LmDK formula into a first-order, we implemented a
tool that fully mechanise the verification, calling an SMT solver for the final de-
cision procedure. Our method is inspired from [18], but applies to a significantly
larger class of program-epistemic formulas in the multi-agent setting.

The multi-agent nature of the logic, the expressiveness of it with respect to
knowledge evaluation before and after program execution, as well as a complete
verification method for this are all novelties in the field. In future work, we will
look at a meet-in-the-middle between the memoryless semantics in [18] and the
memoryful semantics here, and methods of verifying logics like LmDK but with
such less “absolutist" semantics.
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