
An SMT-based Approach to the Verification of Knowledge-Based Programs

F. BELARDINELLI , I. BOUREANU , V. MALVONE , S. F. RAJAONA

We give a general-purpose programming language in which programs can reason about their own knowledge. To specify what these

intelligent programs know, we define a “program epistemic” logic, akin to a dynamic epistemic logic for programs. Our logic properties

are complex, including programs introspecting into future state of affairs, i.e., reasoning now about facts that hold only after they and

other threads will execute. To model aspects anchored in privacy, our logic is interpreted over partial observability of variables, thus

capturing that each thread can “see” only a part of the global space of variables. We verify program-epistemic properties on such

AI-centred programs. To this end, we give a sound translation of the validity of our program-epistemic logic into first-order validity,

using a new weakest-precondition semantics and a book-keeping of variable assignment. We implement our translation and fully

automate our verification method for well-established examples using SMT solvers.

ACM Reference Format:
F. Belardinelli, , I. Boureanu, , V. Malvone, and , S. F. Rajaona. 2024. An SMT-based Approach to the Verification of Knowledge-Based

Programs. 1, 1 (October 2024), 25 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION & PRELIMINARIES

The verification of knowledge properties, also known as epistemic properties, is becoming increasingly important

in the design and analysis of real-life systems (e.g., electronic voting protocols, robots), especially with the rise of

privacy concerns on the one side (e.g., anonymity, unlinkability) [8] and AI on the other [20]. This type of analysis of

high-level descriptions of systems is most often done via formal methods and model checking [2]. By contrast, if we

look across into the field of program verification, one is generally no longer looking at using model checking, but rather

at interactive theorem-proving over program logics (such as Hoare logics [28]), or at using predicate transformers (e.g.,

strongest postconditions [14]) to reduce verification of program-logics statements to first-order queries fed into SMT

solvers (e.g., Z3 [13]). In this paper, we will look at this precisely: translating model checking of epistemic properties in

programs into an SMT-solving problem.

But, in this realm of knowledge-centric verification of programs, what are the important questions being asked?

Consider threads 𝐴 and 𝐵 within the same program executing concurrently over the same variable space, but with

each thread having access to only a subset of the global variables, in such a way that the two threads only have partial

observability of the full variable space and this observability is not the same. Then, in our framework, we are interested

in epistemic formulas such as “𝐾𝐴□𝑃𝜑”, meaning to reason if “at this current point, thread 𝐴 knows whether after

executing program 𝑃 , a fact 𝜑 expressed over the global domain of variables holds”. Or, we may wish to check if agent

𝐵 knows that agent 𝐴 knows a fact of this kind, i.e., “𝐾𝐵𝐾𝐴□𝑃𝜑”. Such rich statements allow us to reason about the

threads’ “perception” of the future, and of one another’s perceptions. That is, thread 𝐵 can check what it “thinks” 𝐴 will

“think” of the global state of the system, after some program executes.

Author’s address: F. Belardinelli; , I. Boureanu; , V. Malvone; , S. F. Rajaona.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components

of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on

servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 F. Belardinelli, , I. Boureanu, , V. Malvone, and , S. F. Rajaona

In this same domain, then it becomes important if the program specification/text is publicly known: that is, when

interpreting a formula such as “𝐾𝐴□𝑃𝜑”, does one consider that the specification/text of program 𝑃 is known to thread

𝐴? Of course, thread 𝐴 “knows” some of 𝑃 ’s variables and observes their values, but if thread 𝐴 knows 𝑃 then it

can deduce more information from said values than in the case where thread 𝐴 does not know 𝑃 . To this end, our

endeavour here is the following: reducing model checking of privacy-centric properties to SMT solving for multi-threaded

programs with publicly-known specifications, by first giving a program-epistemic logic which allows the expression of

partial observability of program variables.

Our method is closely related to a series of recent works. In 2017, [23] introduced a “bespoke” epistemic logic for

programs. Under given conditions (e.g., set of program-instructions, variable domain, mathematical behaviour of

program transformer), [23] proved that the model checking problem for their logic can be reduced to SMT-solving. In

this work, we extend the line in [23] to overcome its limitations: (a) not being able to verify knowledge over programs

which “looks ahead" into future states-of-affair; (b) not being able to reason about nested knowledge operators (e.g.,

𝐾𝑎𝑙𝑖𝑐𝑒 (𝐾𝑏𝑜𝑏𝜙)). Moreover, in 2023, [5] advanced a technique similar to ours also aimed at overcoming [23]’s limitations;

however, [5] operates in different settings, including one where the text of the programs is not public. More on these

aspects is discussed in our related-work section.

1.1 Our Contributions

By lifting the limitations of [23] listed above, we make the following contributions:

(1) We define a multi-agent, program-epistemic logic L𝑚DK , which is a dynamic logic [26, 38] whose base language is

a multi-agent first-order epistemic logic [27], under an observability-based semantics (see Section 2).

Our logic is rich, where the programs modality contains tests on knowledge, and formulas with nested knowledge

operators in the multi-agent setting.

This is more expressive than the state-of-the-art.

(2) We introduce the programming language PL (programs with tests on knowledge) that concretely defines the

dynamic operators in L𝑚DK .
We associate the programming language PL with a relational semantics and a weakest-precondition semantics,

and we show their equivalence.

(3) We give a sound translation of the truth of a program-epistemic logic into first-order truth (see Section 3).

(4) We implement the aforesaid translation to allow a fully-automated verification of our program-epistemic logic

via SMT-solving (see Section 4).

(5) We verify the well-known Dining Cryptographer’s protocol [10] and the epistemic puzzle called the “Cheryl’s

birthday problem” [18]. We report competitive verification results. Collaterally, we are also the first to give

SMT-based verification of the “Cheryl’s birthday problem” [18] (see Section 4).

1.2 Presenting These Results.

A short description of our approach was presented in [39]. In this manuscript, we present the full technique. This means

that we added more discussions about the technical parts and extended the helper examples, we included all the proofs

of our theoretical results, we added one example (with three more programs) to our implementation, and we compared

in more details with prior works.

Manuscript submitted to ACM

An SMT-based Approach to the Verification of Knowledge-Based Programs 3

1.3 Preliminaries & Background

We now introduce a series of logic-related notions that are key to explaining our contributions in the related field and

to setting the scene.

Epistemic Logics. Logics for knowledge or epistemic logics [27] follow a so-called Kripke or “possible-worlds”

semantics. Assuming a set of agents, a set of possible worlds are linked by an indistinguishability relation for each

agent. Then, an epistemic formula 𝐾𝑎𝜙 , stating that “agent 𝑎 knows that 𝜙”, holds at a world𝑤 , if the statement 𝜙 is

true in all worlds that agent 𝑎 considers as indistinguishable from world𝑤 .

Modelling Imperfect Information in Epistemic Logics. Interpreted systems were introduced [36] to nuance the possible-

worlds semantics with agents who can perform private sharing of information; to this end, in interpreted systems,

epistemic indistinguishability relations are at the level of agents’ local states (as opposed to global states). Alternatively,

others looked at how epistemic logic with imperfect information could be expressed via direct notions of visibility (or

observability) of propositional variables, e.g., [9, 25, 45].

Logics of Visibility for Programs. Others [23, 35, 40] looked at how multi-agent epistemic logics with imperfect

information would apply not to generic systems, but specifically to programs. In this setting, the epistemic predicate

𝐾𝑎 (𝑦 = 0) denotes that agent 𝑎 knows that the variable 𝑦 is equal to 0 (in some program). So, such a logic allows for the

expression of knowledge properties of program states, using epistemic predicates. This is akin to how, in classical program

verification, one encodes properties of states using first-order predicates, e.g., Dijkstra’s weakest precondition [14].

Perfect vs Imperfect recall. For any of the aforesaid cases, an aspect often considered is the amount of knowledge that

agents retain, i.e., agents forget all that occur before their current state – memoryless (or imperfect recall) semantics, or

agents recall all their history of states – memoryful (or perfect recall) semantics, or in between the two cases – bounded

recall semantics.

Program-epistemic Logics. To reason about knowledge change, epistemic logic is usually enriched with dynamic

modalities from Dynamic Logics [26, 38]. Therein, a dynamic formula□𝑃𝜙 expresses the fact that when the program 𝑃 ’s

execution terminates, the system reaches a state satisfying𝜙 – a statement given in the base logic (propositional/predicate

logic); the program 𝑃 is built from abstract/concrete actions (e.g., assignments), sequential composition, non-deterministic

composition, iteration and test. Gorogiannis et al. [23] gave a program-epistemic logic, which is a dynamic logic with

concrete programs (e.g., programs with assignments on variables over first-order domains such as integer, reals, or

strings).

2 PROGRAM-EPISTEMIC LANGUAGES

We introduce the logics L𝐹𝑂 , L𝑚K , and L𝑚DK . We note that this logic is not introduced for the purpose of studying its

properties or for advancing logics, but for finding a better way to express epistemic properties of programs in a way

that can also be verified in a mechanised way.

We start by describing agents, their variables and states, such that then we can formulate epistemic properties of

states, and program-epistemic properties of states, respectively, in our logics.

2.1 Logics syntax

Agents and variables. We use 𝑎, 𝑏, 𝑐 , . . . to denote agents, 𝐴𝑔 to denote the whole agents’ set, and𝐺 for a subset of 𝐴𝑔.

Manuscript submitted to ACM

4 F. Belardinelli, , I. Boureanu, , V. Malvone, and , S. F. Rajaona

We consider a set Var of variables. We define formulae 𝛼 over variables in Var . Variables can be evaluated over

domains of values.

We use 𝛼 [𝑥\𝑡] for the substitution of variable 𝑥 in 𝛼 by another variable, formula or a value 𝑡 .

Each variable 𝑥 in Var is “indexed” with the group of agents that can observe it. For instance, we write 𝑥𝐺 to make

explicit the group 𝐺 ⊆ 𝐴𝑔 of observers of 𝑥 . For each agent 𝑎 ∈ 𝐴𝑔, the set Var of variables can be partitioned into

the variables that are observable by 𝑎, denoted o𝑎 , and the variables that are not observable by 𝑎, denoted n𝑎 . Thus,
o𝑎 = {𝑥𝐺 ∈ Var | 𝑎 ∈ 𝐺}, and n𝑎 = Var \ o𝑎 .

Base logic L𝑄𝐹 . We assume a user defined base language L𝑄𝐹 , on top of which the other logics are built. We assume

L𝑄𝐹 to be a quantifier-free first-order language with variables in Var . The Greek letter 𝜋 denotes a formula in L𝑄𝐹 .

Example 2.1. The base language LN for integer arithmetic can be given as:

𝑒 ::= 𝑐 | 𝑣 | 𝑒 ◦ 𝑒 (terms)

𝜋 ::= 𝑇𝑟𝑢𝑒 | 𝐹𝑎𝑙𝑠𝑒 | 𝑒 = 𝑒 | 𝑒 < 𝑒 | 𝜋 ∧ 𝜋 | ¬𝜋 (formulas)

where 𝑐 is an integer constant; 𝑣 ∈ Var ; and ◦ ::= +,−,×, /.

First-order logic L𝐹𝑂 . We define the quantified first-order logic L𝐹𝑂 based on L𝑄𝐹 . This logic describes “physical”
properties of a program state and also serves as the target language in the translation of our main logic.

Definition 2.2 (L𝐹𝑂). The quantified first-order logic L𝐹𝑂 is defined by:

𝜙 ::= 𝜋 | 𝜙 ∧ 𝜙 | ¬𝜙 | ∀𝑥𝐺 · 𝜙

where 𝜋 is a quantifier-free formula in L𝑄𝐹 , and 𝑥𝐺 ∈ Var .

The other Boolean connectives ∨, →, ↔, and the existential quantifier ∃, can be derived as standard. We use Greek

letters 𝜙,𝜓, 𝜒 to denote first-order formulas in L𝐹𝑂 . We extend quantifiers over vectors of variables: ∀x · 𝜙 means

∀𝑥1 · ∀𝑥2 · · · ∀𝑥𝑛 · 𝜙 . As usual, 𝐹𝑉 (𝜙) denotes the set of free variables of 𝜙 .

Epistemic logic L𝑚K and program-epistemic logic L𝑚DK . We now define two logics in Definition 2.3.

Definition 2.3 (L𝑚DK). Let L𝑄𝐹 be a base first-order language and 𝐴𝑔 = {𝑎1, . . . , 𝑎𝑚} a set of agents. We define the

first-order multi-agent program epistemic logic L𝑚DK with the following syntax

𝛼 ::= 𝜋 | 𝛼 ∧ 𝛼 | ¬𝛼 | 𝐾𝑎𝛼 | [𝛽]𝛼 | ∀𝑥𝐺 · 𝛼 | □𝑃𝛼

where 𝜋 ∈ L𝑄𝐹 , 𝑎 ∈ 𝐴𝑔, 𝛽 ∈ L𝑚K the fragment of L𝑚DK without any program operator □𝑃 , 𝑥𝐺 ∈ Var , and 𝑃 is a

program.

We now detail on Definition 2.3. Each𝐾𝑎 is the epistemic operator for agent 𝑎; the epistemic formula𝐾𝑎𝛼 reads “agent

𝑎 knows that 𝛼”. The public announcement formula [𝛽]𝛼 , in the sense of [17, 37], means “after every announcement of

𝛽 , 𝛼 holds”. The dynamic formula □𝑃𝛼 reads “at all final states of 𝑃 , 𝛼 holds“. The program 𝑃 is taken from a set PL of

programs that we define in Section 2.2. Other connectives and the existential quantifier ∃ can be derived in a standard

way as for Definition 2.2.

Now, we formalise the language for programs inside a program-operator □𝑃 of the logic that we introduced in the

previous section.

Manuscript submitted to ACM

An SMT-based Approach to the Verification of Knowledge-Based Programs 5

2.2 Programs syntax

We overload a subset PVar of the logic variables in Var to also denote program variables.

Definition 2.4 (PL). The program-epistemic language PL is defined in BNF as follows:

𝑃 ::= 𝜑? | 𝑥𝐺 := 𝑒 | new 𝑘𝐺 · 𝑃 | 𝑃 ; 𝑃 | 𝑃 ⊔ 𝑃

where 𝑥𝐺 ∈ PVar , 𝑘𝐺 ∈ PVar and does not appear before 𝑃 , 𝑒 is a term over L𝑄𝐹 , and 𝜑 ∈ L𝑚K .

The test 𝜑? is an assumption-like test, i.e., it blocks the program when 𝜑 is refuted and let the program continue when

𝜑 holds; 𝑥𝐺 := 𝑒 is a variable assignment as usual. The command new 𝑘𝐺 · 𝑃 declares a new variable 𝑘𝐺 observable by

agents in 𝐺 before executing 𝑃 ; 𝑘𝐺 is assigned arbitrarily before it is first used in 𝑃 . The program 𝑃 ;𝑄 is the sequential

composition of two programs 𝑃 and 𝑄 . Lastly, the 𝑃 ⊔𝑄 is the nondeterministic choice between 𝑃 and 𝑄 .

Commands such as skip and conditional tests can be defined with PL. For instance, if 𝜑 then 𝑃 else𝑄 def

= (𝜑?; 𝑃) ⊔
(¬𝜑?; 𝑄), and skip def

= True?

2.3 Logics semantics

2.3.1 States and the truth of L𝑄𝐹 formulas. We consider a domain D used for interpreting variables and quantifiers. A

state 𝑠 of the system is a valuation of the variables in Var , i.e., a partial function 𝑠 : Var → D. We denote the universe of

all possible states byU.

We assume an interpretation 𝐼 of constants, functions, and predicates, over D to define the truth of an L𝑄𝐹 formula

𝜋 at a state 𝑠 , denoted 𝑠 |=QF 𝜋 . In particular, we assume that a state 𝑠 is adequate for 𝜋 , that is, all free variables in 𝜋 are

assigned some value in D by 𝑠 .

Truth of an L𝐹𝑂 formula. Let 𝑠 [𝑥 ↦→ 𝑐] denote the state 𝑠′ such that 𝑠′ (𝑥) = 𝑐 and 𝑠′ (𝑦) = 𝑠 (𝑦) for all 𝑦 ∈ Var

different from 𝑥 . This lifts to a set of states,𝑊 [𝑥 ↦→ 𝑐] = {𝑠 [𝑥 ↦→ 𝑐] | 𝑠 ∈𝑊 }.

Definition 2.5 (Truth of L𝐹𝑂 -formulas). The truth of 𝜙 ∈ L𝐹𝑂 at a state 𝑠 , denoted 𝑠 |=FO 𝜙 , where 𝐹𝑉 (𝜙) ⊆ dom(𝑠),
is defined inductively on 𝜙 by

𝑠 |=FO 𝜋 iff 𝑠 |=QF 𝜋

𝑠 |=FO 𝜙1 ∧ 𝜙2 iff 𝑠 |=FO 𝜙1 and 𝑠 |=FO 𝜙2

𝑠 |=FO ¬𝜙 iff 𝑠 ̸ |=FO 𝜙

𝑠 |=FO ∀𝑥 · 𝜙 iff for all 𝑐 ∈ D, 𝑠 [𝑥 ↦→ 𝑐] |=FO 𝜙

We lift the definition of |=FO to a set𝑊 of states, with𝑊 |=FO 𝜙 iff for all 𝑠 ∈𝑊 , 𝑠 |=FO 𝜙 .

2.3.2 Epistemic models. We model the agents’ knowledge of the program state with a possible worlds semantics built

on the observability of program variables [23]. We define, for each 𝑎 in 𝐴𝑔, the binary relation ≈𝑎 on U by: 𝑠 ≈𝑎 𝑠′ iff 𝑠
and 𝑠′ agree on the part of their domains that is observable by 𝑎, i.e.:

𝑠 ≈𝑎 𝑠′ iff (o𝑎 ∩ dom(𝑠)) = (o𝑎 ∩ dom(𝑠′)) and for all 𝑥 in(o𝑎 ∩ dom(𝑠)), 𝑠 (𝑥) = 𝑠′ (𝑥)

Note that the definition above takes the intersection of o𝑎 and dom(𝑠), because states are partial functions over the
variables.

Manuscript submitted to ACM

6 F. Belardinelli, , I. Boureanu, , V. Malvone, and , S. F. Rajaona

One can show that ≈𝑎 is an equivalence relation on U. Each subset𝑊 of U defines a possible worlds model

(𝑊, {≈𝑎 |𝑊 }𝑎∈𝐴𝑔), such that the states of𝑊 are the possible worlds and for each 𝑎 ∈ 𝐴𝑔 the indistinguishability

relation is the restriction of ≈𝑎 on𝑊 . We shall use the set𝑊 ⊆ U to refer to an epistemic model, omitting the family

{≈𝑎 |𝑊 }𝑎∈𝐴𝑔 of equivalence relations.

2.3.3 Truth of an L𝑚DK formula. We give the semantics of an L𝑚DK formula at a pointed model (𝑊, 𝑠), which consist of

an epistemic model𝑊 and a state 𝑠 ∈𝑊 .

Definition 2.6 (Truth of L𝑚DK -formulas). Let𝑊 be an epistemic model, 𝑠 ∈𝑊 a state, 𝛼 a formula in L𝑚DK such that

𝐹𝑉 (𝛼) ⊆ dom(𝑠)
The truth of an epistemic formula 𝛼 at the pointed model (𝑊, 𝑠) is defined recursively on the structure of 𝛼 as

follows:

(𝑊, 𝑠) |= 𝜋 iff 𝑠 |=QF 𝜋

(𝑊, 𝑠) |= ¬𝛼 iff (𝑊, 𝑠) ̸|= 𝛼

(𝑊, 𝑠) |= 𝛼 ∧ 𝛼 ′ iff (𝑊, 𝑠) |= 𝛼 and (𝑊, 𝑠) |= 𝛼 ′

(𝑊, 𝑠) |= 𝐾𝑎𝛼 iff for all 𝑠′ ∈𝑊, 𝑠′ ≈𝑎 𝑠 implies (𝑊, 𝑠′) |= 𝛼

(𝑊, 𝑠) |= [𝛽]𝛼 iff (𝑊, 𝑠) |= 𝛽 implies (𝑊 |𝛽 , 𝑠) |= 𝛼

(𝑊, 𝑠) |= □𝑃𝛼 iff for all 𝑠′ ∈ 𝑅𝑃 (𝑊, 𝑠), (𝑅∗𝑃 (𝑊,𝑊), 𝑠′) |= 𝛼

(𝑊, 𝑠) |= ∀𝑥𝐺 · 𝛼 iff for all 𝑐 ∈ D, (⋃𝑑∈D{𝑠′ [𝑥𝐺 ↦→ 𝑑] | 𝑠′ ∈𝑊 }, 𝑠 [𝑥𝐺 ↦→ 𝑐]) |= 𝛼

where 𝑥𝐺 ∉ 𝑉𝑎𝑟 (𝑊), where 𝑉𝑎𝑟 (𝑊) = ⋃
𝑠∈𝑊 𝑉𝑎𝑟 (𝑠), and𝑊 |𝛽 denotes the submodel of𝑊 that consists of the states

in which 𝛽 is true, i.e.,𝑊 |𝛽 = {𝑠 ∈𝑊 | (𝑊, 𝑠) |= 𝛽}.

This definition extends from a pointed model (𝑊, 𝑠) to the entire epistemic model𝑊 as follows:𝑊 |= 𝛼 iff for every

𝑠 ∈𝑊 , (𝑊, 𝑠) |= 𝛼 .
Logical connectors, epistemic modality, and the public announcement modality have standard interpretation [6, 17].

In the following subsections, we explain our interpretation of the dynamic modality□𝑃 and the universal quantification.

2.3.4 On the semantics of the dynamic modality □𝑃 . In our interpretation of □𝑃𝛼 , the context𝑊 is also updated by

the relation 𝑅𝑃 , by taking the post-image of𝑊 by 𝑅𝑃
1
. The truth of 𝛼 is interpreted at a post-state 𝑠′ under the new

context. We use the function 𝑅𝑃 (𝑊, ·) : U → P(U) to model the program 𝑃 . We give the function 𝑅𝑃 (𝑊, ·) concretely
for each command 𝑃 in the next section.

The argument𝑊 in 𝑅𝑃 (𝑊, ·) is a set of states inU. Similarly to relational semantics, 𝑅𝑃 (𝑊, 𝑠) gives the set of states
resulting from executing 𝑃 at a state 𝑠 . However, we need the set of states𝑊 to represent the epistemic context in

which 𝑃 is executed. Before executing 𝑃 , an agent may not know that the actual initial state is 𝑠 , it only knows about

the initial state only as far as it can see from its observable variables. The context𝑊 contains any state that some agent

may consider as the possible initial state.

2.3.5 On the semantics of universal quantification. To evaluate the truth of ∀𝑥 ·𝛼 , the epistemic context𝑊 is augmented

by allowing 𝑥𝐺 to be any value in the domain. When interpreting ∀𝑥𝐺 · 𝐾𝑎𝛼 ′ where 𝑎 ∈ 𝐺 , we have 𝑠 ≈𝑎 𝑠′ iff

𝑠 [𝑥𝐺 ↦→ 𝑐] ≈𝑎 𝑠′ [𝑥𝐺 ↦→ 𝑐]. However, if 𝑎 ∉ 𝐺 , then 𝑠 [𝑥𝐺 ↦→ 𝑐] ≈𝑎 𝑠′ [𝑥𝐺 ↦→ 𝑑] for any 𝑑 ∈ D and for any 𝑠′ ≈𝑎 𝑠 .
1
The post-image of a function 𝑓 is denoted by 𝑓 ∗ , i.e., 𝑓 ∗ (𝐸) = ⋃{ 𝑓 (𝑥) |𝑥 ∈ 𝐸}.
Manuscript submitted to ACM

An SMT-based Approach to the Verification of Knowledge-Based Programs 7

We now discuss this semantics, which may appear non-standard. For that, consider the two following possible

definitions for universal quantifier in our program-epistemic logic. We will argue that the first is not appropriate for

our case, and that the second is – by means of an example.

(𝑊, 𝑠) |= ∀𝑥𝐺 · 𝛼 iff for all 𝑐 ∈ D, (𝑊 [𝑥𝐺 ↦→ 𝑐], 𝑠 [𝑥𝐺 ↦→ 𝑐]) |= 𝛼 (∀-Definition)

(𝑊, 𝑠) |= ∀𝑥𝐺 · 𝛼 iff for all 𝑐 ∈ D, (⋃𝑑∈D{𝑠′ [𝑥𝐺 ↦→ 𝑑] | 𝑠′ ∈𝑊 }, 𝑠 [𝑥𝐺 ↦→ 𝑐]) |= 𝛼 (∀-Definition)

In fact, ∀ corresponds to a quantification over rigid objects. Intuitively, the universally quantified variable 𝑥𝐺 is

given the same value 𝑐 at 𝑠 and at all the other possible states in𝑊 . In contrast, ∀ corresponds to a quantification over

non-rigid objects. The variable 𝑥𝐺 is allowed to vary from state to state in𝑊 .

We need to quantify over non-rigid objects in our context of program-epistemic logic, particularly in our definition

of weakest precondition for assignment, i.e., 𝑤𝑝 (𝑥𝐺 := 𝑒, 𝛼) = ∀𝑘𝐺 · [𝑘𝐺 = 𝑒] (𝛼 [𝑥𝐺\𝑘𝐺]). This is illustrated in the

following example.

Example 2.7. Let ℎ be a variable of type B hidden from all agents, and let 𝑃 = 𝑥𝐺 := ℎ. After the execution of 𝑃 , an

agent 𝑎 ∈ 𝐺 who can observe 𝑥𝐺 (and who knew the execution since programs are executed publicly) learns the value

of ℎ.

We abbreviate 𝐾𝑎 (ℎ = 0) ∨ 𝐾𝑎 (ℎ = 1) as 𝐾𝑉𝑎ℎ, which reads "𝑎 knows the value of ℎ". Intuitively, we expect that

𝑤𝑝 (𝑥𝐺 := ℎ, 𝐾𝑉𝑎ℎ) evaluates to 𝑇𝑟𝑢𝑒 for any 𝑎 ∈ 𝐺 and𝑤𝑝 (𝑥𝐺 := ℎ, 𝐾𝑉𝑏ℎ) evaluates to 𝐾𝑉𝑏ℎ for any 𝑏 ∉ 𝐺 , (1)

i.e., agent 𝑎 ∈ 𝐺 would learn ℎ after 𝑥𝐺 := ℎ from any initial conditions. In contrast, 𝑏 ∉ 𝐺 would know ℎ after executing

𝑥𝐺 := ℎ, only if they already knew ℎ before the execution of 𝑥𝐺 := ℎ.

With our definition of𝑤𝑝 for assignment, we get

𝑤𝑝 (𝑥𝐺 := 𝑠, 𝐾𝑉𝑎ℎ) = ∀𝑘𝐺 · [𝑘𝐺 = ℎ] .𝐾𝑉𝑎ℎ[𝑥𝐺\𝑘𝐺] = ∀𝑘𝐺 · [𝑘𝐺 = 𝑛] .𝐾𝑉𝑎ℎ (2)

First, we show that with ∀-Definition, the weakest precondition (2) does not align with the intuition (1). Consider

a set𝑊 = {ℎ0, ℎ1} = {ℎ ↦→ 0, ℎ ↦→ 1} of initial states. The truth of ∀𝑘𝐺 · [𝑘𝐺 = ℎ]𝐾𝑉𝑎ℎ at (𝑊, 𝑠0) amounts to

establishing [𝑘𝐺 = ℎ]𝐾𝑉𝑎ℎ first at (𝑊 [𝑘𝐺 ↦→ 0], 𝑠0 [𝑘𝐺 ↦→ 0]), and then at (𝑊 [𝑘𝐺 ↦→ 1], 𝑠0 [𝑘𝐺 ↦→ 1]). Since
𝑠0 [𝑘𝐺 ↦→ 0] |=FO 𝑘𝐺 = ℎ and 𝑠0 [𝑘𝐺 ↦→ 1] ̸|=FO 𝑘𝐺 = ℎ, we are left to establish (𝑊 [𝑘𝐺 ↦→ 0] |𝑘𝐺=ℎ, 𝑠0 [𝑘𝐺 ↦→ 0]) |= 𝐾𝑉𝑎ℎ,
which holds iff ({(ℎ, 𝑘𝐺) ↦→ (0, 0)}, (ℎ, 𝑘𝐺) ↦→ (0, 0)) |= 𝐾𝑉𝑎ℎ. The latter always holds whether 𝑎 ∈ 𝐺 or not, since

({(ℎ, 𝑘𝐺) ↦→ (0, 0)}, (ℎ, 𝑘𝐺) ↦→ (0, 0)) |= 𝐾𝑎 (ℎ = 0) whether 𝑎 ∈ 𝐺 or not (the only possible world satisfies ℎ = 0). Thus,

using ∀-Definition, the weakest precondition (2) does not align with the intuition (1) that only agents in 𝐺 would learn

ℎ from 𝑥𝐺 := ℎ

Now, with the ∀-Definition, the truth of ∀𝑘𝐺 · [𝑘𝐺 = ℎ]𝐾𝑉𝑎ℎ at (𝑊, 𝑠0) amounts to establishing [𝑘𝐺 = ℎ] .𝐾𝑉𝑎ℎ
first at (𝑊 [𝑘𝐺 ↦→ 0] ∪𝑊 [𝑘𝐺 ↦→ 1], 𝑠0 [𝑘𝐺 ↦→ 0]), and then at (𝑊 [𝑘𝐺 ↦→ 0] ∪𝑊 [𝑘𝐺 ↦→ 1], 𝑠0 [𝑘𝐺 ↦→ 1]). Since
𝑠0 [𝑘𝐺 ↦→ 0] |=FO 𝑘𝐺 = ℎ and 𝑠0 [𝑘𝐺 ↦→ 1] ̸|=FO 𝑘𝐺 = ℎ, we are left to establish (𝑊 [𝑘𝐺 ↦→ 1] |𝑘𝐺=ℎ ∪𝑊 [𝑘𝐺 ↦→
0] |𝑘𝐺=ℎ, 𝑠0 [𝑘𝐺 ↦→ 0]) |= 𝐾𝑉𝑎ℎ. This is equivalent to ({(ℎ ↦→ 0, 𝑘𝐺 ↦→ 0), (ℎ ↦→ 1, 𝑘𝐺 ↦→ 1)}, (ℎ ↦→ 0, 𝑘𝐺 ↦→ 0)) |= 𝐾𝑉𝑎ℎ.
The latter holds iff 𝑎 ∈ 𝐺 , since then (ℎ ↦→ 0, 𝑘𝐺 ↦→ 0) 0𝑎 (ℎ ↦→ 1, 𝑘𝐺 ↦→ 1) (the value of 𝑘𝐺 allows 𝑎 to distinguish the

two worlds). This satisfies our intuition (1).

Manuscript submitted to ACM

8 F. Belardinelli, , I. Boureanu, , V. Malvone, and , S. F. Rajaona

2.4 Programs relational semantics

Now, we give the semantics of programs in PL. We refer to as classical program semantics, the modelling of a program

as an input-output functionality, without managing what agents can learn during an execution. In classical program

semantics, a program 𝑃 is associated with a relation 𝑅𝑃 = U ×U, or equivalently a function 𝑅𝑃 : U → P(U), such
that 𝑅𝑃 maps an initial state 𝑠 to a set of possible final states.

As per Subsection 2.3.4, we define the relational semantics of an epistemic program 𝑃 ∈ PL at a state 𝑠 for a given

context𝑊 , with 𝑠 ∈𝑊 . The context𝑊 ⊆ U contains states that some agents may consider as a possible alternative to 𝑠 .

Definition 2.8 (Relational semantics of PL on states). Let𝑊 be a set of states. The relational semantics of a program

𝑃 given the context𝑊 , is a function 𝑅𝑃 (𝑊, ·) : U → P(U) defined inductively on the structure of 𝑃 by

𝑅𝛽? (𝑊, 𝑠) =

{𝑠} if (𝑊, 𝑠) |= 𝛽 ;

∅ otherwise.

𝑅𝑥𝐺 :=𝑒 (𝑊, 𝑠) = {(𝑠 [𝑘𝐺 ↦→ 𝑠 (𝑥𝐺)]) [𝑥𝐺 ↦→ 𝑠 (𝑒)]}

𝑅new 𝑘𝐺 ·𝑃 (𝑊, 𝑠) = 𝑅∗
𝑃
(⋃𝑑∈𝐷𝑊 [𝑘𝐺 ↦→ 𝑑], {𝑠 [𝑘𝐺 ↦→ 𝑑] | 𝑑 ∈ D})

𝑅𝑃 ;𝑄 (𝑊, 𝑠) =
⋃
𝑠′∈𝑅𝑃 (𝑊,𝑠) {𝑅𝑄 (𝑅∗

𝑃
(𝑊,𝑊), 𝑠′)}

𝑅𝑃⊔𝑄 (𝑊, 𝑠) = {𝑠′ [𝑐𝐴𝑔 ↦→ 𝑙] | 𝑠′ ∈ 𝑅𝑃 (𝑊, 𝑠)} ∪ {𝑠′ [𝑐𝐴𝑔 ↦→ 𝑟] | 𝑠′ ∈ 𝑅𝑄 (𝑊, 𝑠)}

such that 𝑘𝐺 is not in dom(𝑊), and 𝑐𝐴𝑔 is not dom(𝑅𝑃 (𝑊, 𝑠)) ∪ dom(𝑅𝑄 (𝑊, 𝑠)).

We model nondeterministic choice 𝑃 ⊔𝑄 as a disjoint union [7], which is achieved by augmenting every updated

state with a new variable 𝑐𝐴𝑔 , and assigning it a value 𝑙 (for left) for every state in 𝑅𝑃 (𝑊, 𝑠), and a value 𝑟 (for right) for

every state in 𝑅𝑄 (𝑊, 𝑠). We assume that every additional 𝑐𝐴𝑔 , in the semantics of 𝑃 ⊔𝑄 , is observable by all agents.

The value of 𝑐𝐴𝑔 allows every agent to distinguish a state resulting from 𝑃 from a state resulting from 𝑄 . The resulting

union is a disjoint-union of epistemic models. It is known that disjoint-union of models preserves the truth of epistemic

formulas, whilst simple union of epistemic models may not [7]. Our modelling of nondeterministic choice as disjoint

union corresponds to allowing agents to see how nondeterministic choice are resolved when a program executes.

The semantics for sequential composition is standard. The semantics of the assignment 𝑥𝐺 := 𝑒 stores the past value

of 𝑥𝐺 into a new variable 𝑘𝐺 , and updates the value of 𝑥𝐺 into expression 𝑒 . With this semantics, an agent always

remembers the past values of a variable that it observes. But, in our semantics, variables may be renamed (e.g., via

assignment); that is to say, an agent has an implicit but not explicit form of perfect recall. The semantics of new 𝑘𝐺 · 𝑃
adds the new variable 𝑘𝐺 to the domain of 𝑠 , then combines the images by 𝑅𝑃 (𝑊, ·) of all states 𝑠 [𝑘𝐺 ↦→ 𝑑] for 𝑑 in D.

A test is modelled as an assumption, i.e., a failed test blocks the program.

In the epistemic context, we can also view a program as transforming epistemic models, rather than states. This view

is modelled with the following alternative relational semantics for PL.

Manuscript submitted to ACM

An SMT-based Approach to the Verification of Knowledge-Based Programs 9

Definition 2.9 (Relational semantics of PL on epistemic models). The relational semantics on epistemic models of a

program 𝑃 is a function 𝐹 (𝑃, ·) : P(U) → P(U) given by

𝐹 (𝛽?,𝑊) = {𝑠 ∈𝑊 | (𝑊, 𝑠) |= 𝛽}

𝐹 (𝑥𝐺 := 𝑒,𝑊) = {𝑠 [𝑘𝐺 ↦→ 𝑠 (𝑥𝐺), 𝑥𝐺 ↦→ 𝑠 (𝑒)] | 𝑠 ∈𝑊 }

𝐹 (new 𝑘𝐺 · 𝑃,𝑊) = 𝐹 (𝑃,⋃𝑑∈D𝑊 [𝑘𝐺 ↦→ 𝑑])

𝐹 (𝑃 ;𝑄,𝑊) = 𝐹 (𝑄, 𝐹 (𝑃,𝑊))

𝐹 (𝑃 ⊔𝑄,𝑊) = {𝑠 [𝑐𝐴𝑔 ↦→ 𝑙] | 𝑠 ∈ 𝐹 (𝑃,𝑊)} ∪ {𝑠 [𝑐𝐴𝑔 ↦→ 𝑟] | 𝑠 ∈ 𝐹 (𝑄,𝑊)}

such that 𝑘𝐺 is not in dom(𝑊) and 𝑐𝐴𝑔 is not in dom(𝐹 (𝑃,𝑊)) ∪ dom(𝐹 (𝑄,𝑊)).

The two relational semantics (Def. 2.8 and Def. 2.9) are equivalent (see Appendix B). However, we use both to

simplify the presentation. On one hand, the relation on states given by 𝑅𝑃 (𝑊, ·) is more standard for defining a dynamic

formula□𝑃𝛼 (see e.g. [23]). On the other hand, 𝐹 (𝑃, ·) models a program as transforming states of knowledge (epistemic

models) rather than only physical states. Moreover, 𝐹 (𝑃, ·) relates directly with our weakest precondition predicate

transformer semantics, which we present next.

We specifically note that the semantics of new 𝑘𝐺 · 𝑃 changes the domain of interpretation; this has an impact, of

course, when this dynamic/program operator is mixed in with the epistemic connectives inside a formula, as we will be

discussing more later in the manuscript.

2.5 Programs weakest precondition semantics

We now give another semantics for our programs, by lifting the Dijkstra’s classical weakest precondition predicate

transformer
2
[14] to epistemic predicates.

Definition 2.10. We define the weakest precondition of a program 𝑃 ∈ PL as the epistemic predicate transformer

𝑤𝑝 (𝑃, ·) : L𝑚K → L𝑚K with

𝑤𝑝 (𝛽?, 𝛼) = [𝛽]𝛼

𝑤𝑝 (𝑥𝐺 := 𝑒, 𝛼) = ∀𝑘𝐺 · [𝑘𝐺 = 𝑒] (𝛼 [𝑥𝐺\𝑘𝐺])

𝑤𝑝 (new 𝑘𝐺 · 𝑃, 𝛼) = ∀𝑘𝐺 ·𝑤𝑝 (𝑃, 𝛼)

𝑤𝑝 (𝑃 ;𝑄, 𝛼) = 𝑤𝑝 (𝑃,𝑤𝑝 (𝑄, 𝛼))

𝑤𝑝 (𝑃 ⊔𝑄, 𝛼) = 𝑤𝑝 (𝑃, 𝛼) ∧𝑤𝑝 (𝑄, 𝛼)

for 𝛼 ∈ L𝑚K such that 𝐹𝑉 (𝛼) ⊆ PVar , and 𝑘𝐺 is not free in the expresion 𝑒 .

The definitions of𝑤𝑝 for nondeterministic choice and sequential composition are similar to their classical versions

in the literature, and follows the original definitions in [14]. A similar definition of𝑤𝑝 for a new variable declaration is

also found in [34]. However, our𝑤𝑝 semantics for assignment and for test differs from their classical counterparts. The

classical𝑤𝑝 for assignment (substitution), and the classical𝑤𝑝 of tests (implication) are inconsistent in the epistemic

context when agents have perfect recall [35, 40]. Our 𝑤𝑝 semantics for test follows from the observation that an

2
The weakest precondition 𝑤𝑝 (𝑃,𝜙) is a predicate such that: for any precondition𝜓 from which the program 𝑃 terminates and establishes 𝜙 ,𝜓 implies

𝑤𝑝 (𝑃,𝜙) .
Manuscript submitted to ACM

10 F. Belardinelli, , I. Boureanu, , V. Malvone, and , S. F. Rajaona

assumption-test for a program executed publicly corresponds to a public announcement. Similarly, our semantics of

assignment involves a public announcement of the assignment being made.

Linked to the note right after Definition 2.9, on the semantics of new 𝑘𝐺 · 𝑃 , note that the𝑤𝑝-based interpretation

of this adds a quantification over all variables introduced by new . This will later allow us to “keep track” of these

variables inside super/sub-formulae.

We now discuss the case of our semantics for𝑤𝑝 separately, arguing why our non-standard approach is needed, in

two steps. First, we show that the classical semantics for𝑤𝑝 would not be suited for us. Second, we give an intuition

why we need our approach.

Example 2.11 below shows that the classical𝑤𝑝 semantics (which we denote by𝑤𝑝𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙) does not capture the

information flow in the assignment 𝑥𝐴 := ℎ, where 𝑥𝐴 is observable by 𝐴 and ℎ is a secret.

Example 2.11. Consider a variable 𝑥𝐴 : B, observable by 𝐴, and a secret ℎ. Assume we lifted the classical semantics

𝑤𝑝𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙 –which is a substitution– to work with epistemic formulas, then we would have:

𝑤𝑝𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙 (𝑥𝐴 := ℎ, 𝐾𝐴 (ℎ = 0)) = 𝐾𝐴 (ℎ = 0) [𝑥𝐴\ℎ]

= 𝐾𝐴 (ℎ = 0) (since 𝑥𝐴 does not appear in 𝐾𝐴 (ℎ = 0)) .

Intuitively, this means that 𝐴 knows that ℎ = 0 after 𝑥𝐴 := ℎ only if 𝐴 already knows that ℎ = 0. Thus,𝑤𝑝𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙 does

not capture the leakage of the secret ℎ in 𝑥𝐴 := ℎ.

However, using our𝑤𝑝 semantics, we can deduce that𝑤𝑝 (𝑥𝐴 := ℎ, 𝐾𝐴 (ℎ = 0)) = (ℎ = 0). Indeed,

𝑤𝑝 (𝑥𝐴 := ℎ, 𝐾𝐴 (ℎ = 0))

= ∀𝑢𝐴 · [𝑢𝐴 = 𝑠]𝐾𝐴 (ℎ = 0)

= ∀𝑢𝐴 · (𝑢𝐴 = ℎ) ⇒ 𝐾𝐴 (𝑢𝐴 = ℎ ⇒ ℎ = 0) reduction of PAL, see e.g., [17]

=

{
(ℎ = 0) ∧ (∀𝑢𝐴 · (𝑢𝐴 = ℎ) ⇒ 𝐾𝐴 (𝑢𝐴 = ℎ ⇒ ℎ = 0))
∨(ℎ = 1) ∧ (∀𝑢𝐴 · (𝑢𝐴 = ℎ) ⇒ 𝐾𝐴 (𝑢𝐴 = ℎ ⇒ ℎ = 0))

distribution of𝑇𝑟𝑢𝑒 = (ℎ = 0 ∨ ℎ = 1)

=

{
(ℎ = 0) ∧ (∀𝑢𝐴 · (𝑢𝐴 = ℎ ∧ ℎ = 0) ⇒ 𝐾𝐴 (𝑢𝐴 = ℎ ⇒ ℎ = 0))
∨(ℎ = 1) ∧ (∀𝑢𝐴 · (𝑢𝐴 = ℎ ∧ ℎ = 1) ⇒ 𝐾𝐴 (𝑢𝐴 = ℎ ⇒ ℎ = 0))

absorption rule, ∀ and ∧ commutes

=

{
(ℎ = 0) ∧ (∀𝑢𝐴 · (𝑢𝐴 = 0) ⇒ 𝐾𝐴 (𝑢𝐴 = ℎ ⇒ ℎ = 0))
∨(ℎ = 1) ∧ (∀𝑢𝐴 · (𝑢𝐴 = 1) ⇒ 𝐾𝐴 (𝑢𝐴 = ℎ ⇒ ℎ = 0))

transitivity of =

=

{
(ℎ = 0) ∧ (∀𝑢𝐴 · (𝑢𝐴 = 0) ⇒ 𝐾𝐴 ((𝑢𝐴 = ℎ ∧ 𝑢𝐴 = 0) ⇒ ℎ = 0))
∨(ℎ = 1) ∧ (∀𝑢𝐴 · (𝑢𝐴 = 1) ⇒ 𝐾𝐴 ((𝑢𝐴 = ℎ ∧ 𝑢𝐴 = 1) ⇒ ℎ = 0))

for 𝑢𝐴 observable by 𝐴

=

{
(ℎ = 0) ∧ (∀𝑢𝐴 · (𝑢𝐴 = 0) ⇒ 𝐾𝐴 (𝑇𝑟𝑢𝑒))
∨(ℎ = 1) ∧ (∀𝑢𝐴 · (𝑢𝐴 = 1) ⇒ 𝐾𝐴 (𝐹𝑎𝑙𝑠𝑒))

transitivity of =

= ℎ = 0.

Thus, our weakest precondition captures the intuition that after 𝑥𝐴 := ℎ, agent 𝐴 learns that ℎ = 0 if it is the case. Note,

that the derivation above does not work for an agent 𝐵 who does not observe 𝑥𝐴 , as the second-to-last step would fail.

So, the reason we need a stronger semantics for𝑤𝑝 is that in our case the knowledge of agent 𝐴 comes compoundly:

(a) – knowing the “program text”; (b) how the program (e.g., an assignment) affects an observable variable. This is

richer than in the standard cases for𝑤𝑝 , where knowledge is not of concern and, in essence, where case (b) counts –as

Manuscript submitted to ACM

An SMT-based Approach to the Verification of Knowledge-Based Programs 11

the example above shows. To control 𝐴’s knowledge more under our setting of public “program texts”, we introduced

the new semantics for𝑤𝑝 .

2.6 Equivalence between program relational semantics and weakest semantics

The following equivalence shows that our weakest precondition semantics is sound with respect to the program

relational model.

Proposition 2.12. For every program 𝑃 and every formula 𝛼 ∈ L𝑚DK ,

𝐹 (𝑃,𝑊) |= 𝛼 iff 𝑊 |= 𝑤𝑝 (𝑃, 𝛼) .

Proof. The proof is done by induction on 𝑃 .

Case 𝛽?.

𝑊 |= 𝑤𝑝 (𝛽?, 𝛼)

≡𝑊 |= [𝛽]𝛼 the definition of 𝑤𝑝 (𝛽?, ·)

≡ ∀𝑠 ∈𝑊, (𝑊, 𝑠) |= [𝛽]𝛼 by the definition of |= on a model

≡ ∀𝑠 ∈𝑊, if (𝑊, 𝑠) |= 𝛽 then (𝑊 |𝛽 , 𝑠) |= 𝛼 |= for public announcement

≡ ∀𝑠 ∈𝑊, if (𝑊, 𝑠) |= 𝛽 then ({𝑠′ ∈𝑊 | (𝑊, 𝑠′) |= 𝛽}, 𝑠) |= 𝛼 def of𝑊|𝛽

≡ ∀𝑠 ∈𝑊, if 𝑠 ∈ 𝐹 (𝛽?,𝑊) then (𝐹 (𝛽?,𝑊), 𝑠) |= 𝛼 by definition of 𝐹 (𝛽?, ·)

≡ 𝐹 (𝛽?,𝑊) |= 𝛼 by the definition of |= on a model

Case 𝑃 ⊔𝑄 . The equivalence for the case of nondeterministic choice follows from the fact that disjoint union preserves

the truth of epistemic formulas (Prop 2.3 in [7]). A formula that is true at both 𝐹 (𝑃,𝑊) and 𝐹 (𝑄,𝑊), remains true at

𝐹 (𝑃 ⊔𝑄,𝑊). Formally, we have

𝐹 (𝑃 ⊔𝑄,𝑊) |= 𝛼

≡ {𝑠 [𝑐𝐴𝑔 ↦→ 𝑙] |𝑠 ∈ 𝐹 (𝑃,𝑊)} ∪ {𝑠 [𝑐𝐴𝑔 ↦→ 𝑙] |𝑠 ∈ 𝐹 (𝑄,𝑊)} |= 𝛼 the definition of 𝐹 (𝑃 ⊔𝑄, ·)

≡ {𝑠 [𝑐𝐴𝑔 ↦→ 𝑙] |𝑠 ∈ 𝐹 (𝑃,𝑊)} |= 𝛼 and {𝑠 [𝑐𝐴𝑔 ↦→ 𝑙] |𝑠 ∈ 𝐹 (𝑄,𝑊)} |= 𝛼
by Prop 2.3 in [7], this is a disjoint union since 𝑐𝐴𝑔 observable by all

≡ 𝐹 (𝑃,𝑊) |= 𝛼 and 𝐹 (𝑄,𝑊) |= 𝛼 𝑐𝐴𝑔 is not in 𝛼

≡𝑊 |= 𝑤𝑝 (𝑃, 𝛼) and𝑊 |= 𝑤𝑝 (𝑄, 𝛼) by induction hypothesis on 𝑃 and𝑄 .

Case 𝑃 ;𝑄 .

𝐹 (𝑃 ;𝑄,𝑊) |= 𝛼 ≡ 𝐹 (𝑄, 𝐹 (𝑃,𝑊)) |= 𝛼 definition of 𝐹 for 𝑃 ;𝑄

≡ 𝐹 (𝑃,𝑊) |= 𝑤𝑝 (𝑄, 𝛼) induction hypothesis on𝑄

≡𝑊 |= 𝑤𝑝 (𝑃,𝑤𝑝 (𝑄, 𝛼)) induction hypothesis on 𝑃

Manuscript submitted to ACM

12 F. Belardinelli, , I. Boureanu, , V. Malvone, and , S. F. Rajaona

Case new 𝑘𝐺 · 𝑃 .

𝑊 |= 𝑤𝑝 (new 𝑘𝐺 · 𝑃, 𝛼)

≡ for any 𝑠 ∈𝑊 , (𝑊, 𝑠) |= ∀𝑘𝐺 ·𝑤𝑝 (𝑃, 𝛼) the definition of 𝑤𝑝 for new 𝑘𝐺

≡ for any 𝑠 ∈𝑊 and any 𝑐 ∈ 𝐷 , (⋃𝑑∈D𝑊 [𝑘𝐺 ↦→ 𝑑], 𝑠 [𝑘𝐺 ↦→ 𝑐]) |= 𝑤𝑝 (𝑃, 𝛼) by definition of |= for ∀𝑘𝐺

≡ for any 𝑠′ ∈ ⋃
𝑑∈D𝑊 [𝑘𝐺 ↦→ 𝑑], (⋃𝑑∈D𝑊 [𝑘𝐺 ↦→ 𝑑], 𝑠′) |= 𝑤𝑝 (𝑃, 𝛼)

≡ ⋃
𝑑∈𝐷𝑊 [𝑘𝐺 ↦→ 𝑑] |= 𝑤𝑝 (𝑃, 𝛼) by lifting |= to the entire model

≡ 𝐹 (𝑃,⋃𝑑∈𝐷𝑊 [𝑘𝐺 ↦→ 𝑑]) |= 𝛼 by induction hypothesis on 𝑃

≡ 𝐹 (new 𝑘𝐺 · 𝑃,𝑊) |= 𝛼 the definition of 𝐹 (new 𝑘𝐺 , ·) .

Case 𝑥𝐺 := 𝑒 .

To understand the proof, observe that the action of 𝐹 (𝑥𝐺 := 𝑒, ·) on𝑊 , is equivalent to renaming the old 𝑥𝐺

into 𝑘𝐺 , then making a new variable 𝑥𝐺 that takes the value 𝑒 . This is captured by the following equality 𝐹 (𝑥𝐺 :=

𝑒,𝑊) = 𝐹 (new 𝑥𝐺 · (𝑥𝐺 = 𝑒𝑥𝐺 \𝑘𝐺)?,𝑊𝑥𝐺 \𝑘𝐺). In the right-hand side of this equality, 𝑥𝐺 is re-introduced as a new

variable. This new variable expands the model𝑊 by a Cartesian product, into

⋃
𝑑∈𝐷𝑊 [𝑥𝐺 ↦→ 𝑑] (Definition 2.9). The

model𝑊 is then restricted to satisfy 𝑥𝐺 = 𝑒𝑥𝐺 \𝑘𝐺 . This restriction corresponds to the semantics of an assumption (or

public announcement) (𝑥𝐺 = 𝑒𝑥𝐺 \𝑘𝐺)?. Finally, 𝐹 (new 𝑥𝐺 · (𝑥𝐺 = 𝑒𝑥𝐺 \𝑘𝐺)?,𝑊𝑥𝐺 \𝑘𝐺) can be directly to the weakest

precondition for assignment via Lemma A.1.

𝐹 (𝑥𝐺 := 𝑒,𝑊)

= {𝑠 [𝑘𝐺 ↦→ 𝑠 (𝑥𝐺), 𝑥𝐺 ↦→ 𝑠 (𝑒)] |𝑠 ∈𝑊 } by definition of 𝐹 (𝑥𝐺 := 𝑒, ·)

= {𝑠 [𝑥𝐺 ↦→ 𝑠 (𝑒𝑥𝐺 \𝑘𝐺)] |𝑠 ∈𝑊𝑥𝐺 \𝑘𝐺 } by definition of𝑊𝑥𝐺 \𝑘𝐺

= (⋃𝑑∈D𝑊𝑥𝐺 \𝑘𝐺 [𝑥𝐺 ↦→ 𝑑]) |𝑑=𝑠 (𝑒𝑥𝐺 \𝑘𝐺) because 𝑥𝐺 is not in dom(𝑊𝑥𝐺 \𝑘𝐺)

= 𝐹 ((𝑥𝐺 = 𝑒𝑥𝐺 \𝑘𝐺)?,
⋃
𝑑∈D𝑊𝑥𝐺 \𝑘𝐺 [𝑥𝐺 ↦→ 𝑑]) by definition of 𝐹 for tests

= 𝐹 (new 𝑥𝐺 · (𝑥𝐺 = 𝑒𝑥𝐺 \𝑘𝐺)?,𝑊𝑥𝐺 \𝑘𝐺) by definition of 𝐹 for new 𝑥𝐺 .

where𝑊𝑥𝐺 \𝑘𝐺 renames 𝑥𝐺 into 𝑘𝐺 in the states of𝑊 . Now,

𝐹 (𝑥𝐺 := 𝑒,𝑊) |= 𝛼

≡ 𝐹 (new 𝑥𝐺 · (𝑥𝐺 = 𝑒𝑥𝐺 \𝑘𝐺)?,𝑊𝑥𝐺 \𝑘𝐺) |= 𝛼 from the previous equality

≡ 𝐹 (new 𝑘𝐺 · (𝑘𝐺 = 𝑒)?,𝑊) |= 𝛼𝑥𝐺 \𝑘𝐺 after swapping 𝑥𝐺 and 𝑘𝐺 (Lemma A.1)

≡𝑊 |= 𝑤𝑝 (new 𝑘𝐺 · (𝑘𝐺 = 𝑒)?, 𝛼𝑥𝐺 \𝑘𝐺) by induction hypothesis on new 𝑘𝐺

≡𝑊 |= ∀𝑘𝐺 · [𝑘𝐺 = 𝑒]𝛼𝑥𝐺 \𝑘𝐺 by the definition of 𝑤𝑝 for assignment

■

The equivalence in Prop 2.12 serves us in proving that the translation of an L𝑚DK formula into a first-order formula,

which we present next, is sound with respect to the program relational models.

Manuscript submitted to ACM

An SMT-based Approach to the Verification of Knowledge-Based Programs 13

3 REDUCTION TO FIRST-ORDER VALIDITY

Our verification approach relies on the truth-preserving translation between program-epistemic formulas and first-order

formulas. The translation of an L𝑚DK formula is defined at a given epistemic context. Recall that the epistemic context

is a set of reachable or epistemically relevant states. This context is now given as the satisfaction set of a first-order

formula 𝜙 , in which the free variables are program variables in PVar . The satisfaction set of 𝜙 , denoted by [[𝜙]]PVar , or
simply [[𝜙]] when PVar is clear from the context, is defined by {𝑠 : PVar → D | 𝑠 |=FO 𝜙}.

Definition 3.1 (Translation of L𝑚DK into L𝐹𝑂). We define the translation 𝜏 of an L𝑚DK formula 𝛼 , at a given context 𝜙

inductively on the structure of 𝛼 , as follows

𝜏 (𝜙, 𝜋) = 𝜋

𝜏 (𝜙,¬𝛼) = ¬𝜏 (𝜙, 𝛼)

𝜏 (𝜙, 𝛼 ◦ 𝛼 ′) = 𝜏 (𝜙, 𝛼) ◦ 𝜏 (𝜙, 𝛼 ′)

𝜏 (𝜙, 𝐾𝑎𝛼) = ∀n · (𝜙 → 𝜏 (𝜙, 𝛼))

𝜏 (𝜙, [𝛽]𝛼) = 𝜏 (𝜙, 𝛽) → 𝜏 (𝜙 ∧ 𝜏 (𝜙, 𝛽), 𝛼)

𝜏 (𝜙,□𝑃𝛼) = 𝜏 (𝜙,𝑤𝑝 (𝑃, 𝛼))

𝜏 (𝜙,∀𝑥𝐺 · 𝛼) = ∀𝑥𝐺 · 𝜏 (𝜙, 𝛼)

where 𝜋 ∈ L𝑄𝐹 and 𝛼, 𝛼 ′ ∈ L𝑚DK , ◦ be an operator in {∧,∨}, 𝑎 an agent, n = n𝑎 ∩ (𝐹𝑉 (𝛼) ∪ 𝐹𝑉 (𝜙)) is the set of free
variables in 𝜙 and 𝛼 that are non-observable by 𝑎, 𝑃 is a program in PL, and 𝑥𝐺 is a variable not free in 𝜙 .

Let us pause on some cases of this translation. First, the epistemic modality 𝐾𝑎 is translated using quantification over

the non-observable variables in n as the latter encode the indistinguishability relation ≈𝑎 . Note that if 𝛼 contains new
that would have first introduced some variables 𝑘 (by the definition and semantics of new in Def. 2.9 and Def. 2.10).

That would have augmented the domain of interpretation also. And, this ∀ will (recursively) quantify potentially also

over the variables 𝑘 introduced by 𝛼 earlier. Similarly, if 𝛼 is of the form □𝑃𝛼 ′ and 𝑃 contains assignment, then –by

our treatment of assignment – this reduces to same case as new . In turn, this means that even if we use SSA (Single

Static Assignment) [41] and we store in a given variable 𝑥 only its latest value, we have all its previous values in

new -introduced variables 𝑘 and those are “book-kept” (and quantified over if needed) via our semantics and translation.

We use the above translation to express the equivalence between the satisfaction of a L𝑚K -formula and that of its

first-order translation.

Proposition 3.2. For every 𝜙 in L𝐹𝑂 , 𝑠 in [[𝜙]], 𝛼 in L𝑚K such that 𝐹𝑉 (𝜙) ∪ 𝐹𝑉 (𝛼) ⊆ PVar , we have that

([[𝜙]], 𝑠) |= 𝛼 iff 𝑠 |=FO 𝜏 (𝜙, 𝛼) .
Proof. The proof for the base epistemic logic without public announcement L𝐾 (𝜋,¬,∧, 𝐾𝑎) is found in [23].

Manuscript submitted to ACM

14 F. Belardinelli, , I. Boureanu, , V. Malvone, and , S. F. Rajaona

Case of public announcement [𝛽]𝛼 .

([[𝜙]], 𝑠) |= [𝛽]𝛼

≡ if ([[𝜙]], 𝑠) |= 𝛽 then ([[𝜙]] |𝛽 , 𝑠) |= 𝛼 truth of [𝛽]𝛼

≡ if 𝑠 |=FO 𝜏 (𝜙, 𝛽) then ([[𝜙]] |𝛽 , 𝑠) |= 𝛼 induction hypothesis on 𝛽

≡ if 𝑠 |=FO 𝜏 (𝜙, 𝛽) then ({𝑠′ : PVar → D | 𝑠′ |=FO 𝜙 and ([[𝜙]], 𝑠′) |= 𝛽}, 𝑠) |= 𝛼 by definition of [[·]] and definition of |𝛽

≡ if 𝑠 |=FO 𝜏 (𝜙, 𝛽) then ({𝑠′ : PVar → D | 𝑠′ |=FO 𝜙 and 𝑠′ |=FO 𝜏 (𝜙, 𝛽)}, 𝑠) |= 𝛼 induction hypothesis on 𝛽

≡ if 𝑠 |=FO 𝜏 (𝜙, 𝛽) then ({𝑠′ : PVar → D | 𝑠′ |=FO 𝜙 ∧ 𝜏 (𝜙, 𝛽)}, 𝑠) |= 𝛼 truth of ∧

≡ if 𝑠 |=FO 𝜏 (𝜙, 𝛽) then ([[𝜙 ∧ 𝜏 (𝜙, 𝛽)]], 𝑠) |= 𝛼 def of [[·]]

≡ if 𝑠 |=FO 𝜏 (𝜙, 𝛽) then 𝑠 |=FO 𝜏 (𝜙 ∧ 𝜏 (𝜙, 𝛽), 𝛼) induction hypothesis

≡ if 𝑠 |=FO 𝜏 (𝜙, 𝛽) → 𝜏 (𝜙 ∧ 𝜏 (𝜙, 𝛽), 𝛼) truth of →

≡ if 𝑠 |=FO 𝜏 (𝜙, [𝛽]𝛼) by definition of 𝜏

Case of quantification ∀𝑥𝐺 · 𝛼 .

([[𝜙]]PVar , 𝑠) |= ∀𝑥𝐺 · 𝛼

≡ iff for all 𝑐 ∈ D, (⋃𝑑∈D{𝑠′ [𝑥𝐺 ↦→ 𝑑] | 𝑠′ ∈ [[𝜙]]PVar }, 𝑠 [𝑥𝐺 ↦→ 𝑐]) |= 𝛼 Def. 2.6 for ∀

≡ iff for all 𝑐 ∈ D, ([[𝜙]]PVar∪{𝑥𝐺 } , 𝑠 [𝑥𝐺 ↦→ 𝑐]) |= 𝛼 since

⋃
𝑑∈D{𝑠′ [𝑥𝐺 ↦→ 𝑑] | 𝑠′ ∈ [[𝜙]]PVar } = [[𝜙]]PVar∪{𝑥𝐺 }

≡ iff for all 𝑐 ∈ D, 𝑠 [𝑥𝐺 ↦→ 𝑐] |=FO 𝜏 (𝜙, 𝛼) induction hypothesis

≡ if 𝑠 |=FO ∀𝑥𝐺 · 𝜏 (𝜙, 𝛼) Def. 2.5 for ∀

≡ if 𝑠 |=FO 𝜏 (𝜙,∀𝑥𝐺 · 𝛼) by definition of 𝜏

■

Now, we can state our main theorem relating the validity of an L𝑚DK formula, and that of its first-order translation.

Theorem 3.3 (Main result). Let 𝜙 ∈ L𝐹𝑂 , and 𝛼 ∈ L𝑚DK , such that 𝐹𝑉 (𝜙) ∪ 𝐹𝑉 (𝛼) ⊆ PVar , then

[[𝜙]] |= 𝛼 iff [[𝜙]] |=FO 𝜏 (𝜙, 𝛼) .

Proof. The proof is done by induction on 𝛼 . The case where 𝛼 ∈ L𝑚K follows directly from Proposition 3.2.

Manuscript submitted to ACM

An SMT-based Approach to the Verification of Knowledge-Based Programs 15

We are left to prove the case of the program operator □𝑃𝛼 . Without loss of generality, we can assume that 𝛼 is

program-operator-free, i.e., 𝛼 ∈ L𝑚K . Indeed, one can show that □𝑃 (□𝑄𝛼 ′) is equivalent to □𝑃 ;𝑄𝛼 ′. We have

[[𝜙]] |= □𝑃𝛼

≡ iff for all 𝑠 in [[𝜙]], ([[𝜙]], 𝑠) |= □𝑃𝛼 by definition of |= for a model

≡ iff for all 𝑠 in [[𝜙]], for all 𝑠′ in 𝑅[[𝜙]] (𝑃, 𝑠), (𝐹 (𝑃, [[𝜙]]), 𝑠′) |= 𝛼 |= for □𝑃

≡ iff for all 𝑠′ in 𝑅∗[[𝜙]] (𝑃, [[𝜙]]), (𝐹 (𝑃, [[𝜙]]), 𝑠
′) |= 𝛼 post-image

≡ iff for all 𝑠′ in 𝐹 (𝑃, [[𝜙]]), (𝐹 (𝑃, [[𝜙]]), 𝑠′) |= 𝛼 𝐹 (𝑃,𝑊) = 𝑅∗
𝑊

(𝑃,𝑊)

≡ 𝐹 (𝑃, [[𝜙]]) |= 𝛼 by definition of |= for a model

≡ [[𝜙]] |= 𝑤𝑝 (𝑃, 𝛼) by Proposition 2.12

≡ [[𝜙]] |=FO 𝜏 (𝜙,𝑤𝑝 (𝑃, 𝛼)) since 𝑤𝑝 (𝑃, 𝛼) ∈ L𝑚
K , the previous case applies.

■

4 IMPLEMENTATION

Our automated verification framework supports proving/falsifying a logical consequence 𝜙 |= 𝛼 for 𝛼 in L𝑚DK and 𝜙 in

L𝐹𝑂 . By Theorem 3.3, the problem becomes the unsatisfiability/satisfiability of first-order formula 𝜙 ∧ ¬𝜏 (𝜙, 𝛼), which
is eventually fed to an SMT solver.

In some cases, notably our second case study, the Cheryl’s Birthday puzzle, computing the translation 𝜏 (𝜙, 𝛼) by
hand is tedious and error-prone. For such cases, we implemented a L𝑚DK -to-L𝐹𝑂 translator to automate the translation.

4.1 Mechanisation of Our L𝑚DK -to-FO Translation

Our translator implements Definition 3.1 of our translation 𝜏 . It is implemented in Haskell, and it is generic, i.e., works

for any given example
3
. The resulting first-order formula is exported as a string parsable by an external SMT solver

API (e.g., Z3py and CVC5.pythonic which we use).

Our Haskell translator and the implementation of our case studies are at https://github.com/sfrajaona/program-

epistemic-model-checker. All the experiments were run on a 6-core 2.6 GHz Intel Core i7 MacBook Pro with 16 GB of

RAM running OS X 11.6. For Haskell, we used GHC 8.8.4. The SMT solvers were Z3 version 4.8.17 and CVC5 version

1.0.0.

4.2 Case Study 1: Dining Cryptographers’ Protocol [10]

Problem Description. This system is described by 𝑛 cryptographers dining round a table. One cryptographer may

have paid for the dinner, or their employer may have done so. They execute a protocol to reveal whether one of the

cryptographers paid, but without revealing which one. Each pair of cryptographers sitting next to each other have an

unbiased coin, which can be observed only by that pair. Each pair tosses its coin. Each cryptographer announces the

result of XORing three Booleans: the two coins they see and the fact of them having paid for the dinner. The XOR of all

announcements is provably equal to the disjunction of whether any agent paid.

3
Inputs are Haskell files.

Manuscript submitted to ACM

https://github.com/sfrajaona/program-epistemic-model-checker
https://github.com/sfrajaona/program-epistemic-model-checker

16 F. Belardinelli, , I. Boureanu, , V. Malvone, and , S. F. Rajaona

Encoding inL𝑚DK &Mechanisation. We consider the domainB = {𝑇, 𝐹 } and the program variables PVar = {𝑥𝐴𝑔}∪
{𝑝𝑖 , 𝑐 {𝑖,𝑖+1} | 0 ≤ 𝑖 < 𝑛}where 𝑥 is the XOR of announcements; 𝑝𝑖 encodes whether agent 𝑖 has paid; and, 𝑐 {𝑖,𝑖+1} encodes

the coin shared between agents 𝑖 and 𝑖 + 1. The observable variables for agent 𝑖 ∈ 𝐴𝑔 are o𝑖 = {𝑥𝐴𝑔, 𝑝𝑖 , 𝑐 {𝑖−1,𝑖 } , 𝑐 {𝑖,𝑖+1} }
4
, and n𝑖 = PVar \ o𝑖 .
We denote 𝜙 the constraint that at most one agent has paid, and 𝑒 the XOR of all announcements, i.e.

𝜙 =
∧𝑛−1
𝑖=0

(
𝑝𝑖 ⇒

∧𝑛−1
𝑗=0, 𝑗≠𝑖 ¬𝑝 𝑗

)
𝑒 =

⊕𝑛−1
𝑖=0 𝑝𝑖 ⊕ 𝑐 {𝑖−1,𝑖 } ⊕ 𝑐 {𝑖,𝑖+1} .

The Dining Cryptographers’ protocol is modelled by the program 𝜌 = 𝑥𝐴𝑔 := 𝑒 .

Experiments & Results. We report on checking the validity for:

𝛽1 = □𝜌
(
(¬𝑝0) ⇒

(
𝐾0

(∧𝑛−1
𝑖=1 ¬𝑝𝑖

)
∨∧𝑛−1

𝑖=1 ¬𝐾0𝑝𝑖
))

𝛽3 = □𝜌 (𝐾0𝑝1)

𝛽2 = □𝜌
(
𝐾0

(
𝑥 ⇔ ∨𝑛−1

𝑖=0 𝑝𝑖

))
𝛾 = 𝐾0

(
□𝜌

(
𝑥 ⇔ ∨𝑛−1

𝑖=0 𝑝𝑖

))
.

The formula 𝛽1 states that after the program execution, if cryptographer 0 has not paid then she knows that no

cryptographer paid, or (in case a cryptographer paid) she does not know which one. The formula 𝛽2 reads that after

the program execution, cryptographer 0 knows that 𝑥𝐴𝑔 is true iff one of the cryptographers paid. The formula 𝛽3

reads that after the program execution, cryptographer 0 knows that cryptographer 1 has paid, which is expected to

be false. Formula 𝛾 states cryptographer 0 knows that, at the end of the program execution, 𝑥𝐴𝑔 is true iff one of the

cryptographers paid.

Formulas 𝛽1, 𝛽2, and 𝛽3 were checked in [23] as well. Importantly, formula 𝛾 cannot be expressed or checked by the

framework in [23]. We compare the performance of our translation on this case-study with that of [23]. To fairly compare,

we reimplemented faithfully the SP-based translation in the same environment as ours. We tested our translation

(denoted 𝜏wp) and the reimplementation of the translation in [23] (denoted 𝜏SP) on the same machine.

Note that the performance we got for 𝜏SP differs from what is reported in [23]. This is especially the case for the

most complicated formula 𝛽1. This may be due to the machine specifications, or because we used binary versions of Z3

and CVC5, rather than building them from source, like in [23].

The results of the experiments, using the Z3 solver, are shown in Table 1. CVC5 was less performant than Z3 for this

example, as shown (only) for 𝛽2. Generally, the difference in performance between the two translations were small.

The SP-based translation slightly outperforms our translation for 𝛽2 and 𝛽3, but only for some cases. Our translation

outperforms the SP-based translation for 𝛽1 in these experiments. Again, we note that the performance of the SP-based

translation reported here is different from the performance reported in [23]. Experiments that took more than 600

seconds were timed out.

4.3 Case Study 2: Cheryl’s Birthday Puzzle [18]

This case study involves the nesting of knowledge operators 𝐾 of different agents.

Problem Description. Albert and Bernard just became friends with Cheryl, and they want to know when her

birthday is. Cheryl gives them a list of 10 possible dates: May 15, May 16, May 19, June 17, June 18, July 14, July 16,

August 14, August 15, August 17. Then, Cheryl whispers in Albert’s ear the month and only the month of her birthday.

To Bernard, she whispers the day only. “Can you figure it out now?”, she asks Albert. The next dialogue follows:

4
When we write {𝑖, 𝑖 + 1} and {𝑖 − 1, 𝑖 }, we mean {𝑖, 𝑖 + 1 mod 𝑛} and {𝑖 − 1 mod 𝑛, 𝑖 }.
Manuscript submitted to ACM

An SMT-based Approach to the Verification of Knowledge-Based Programs 17

Formula 𝛽1 Formula 𝛽2 Formula 𝛽3 Formula 𝛾

n 𝜏wp+Z3 𝜏SP+Z3 𝜏wp+CVC5 𝜏wp+Z3 𝜏SP+Z3 𝜏wp+Z3 𝜏SP+Z3 𝜏wp+Z3 𝜏SP+Z3

10 0.05 s 4.86 s 0.01 s 0.01 s 0.01 s 0.01 s 0.01 s 0.01 s N/A

50 31 s t.o. 0.41 s 0.05 s 0.06 s 0.03 s 0.02 s 0.03 s N/A

100 t.o. t.o. 3.59 s 0.15 s 0.16 s 0.07 s 0.06 s 0.07 s N/A

200 t.o. t.o. 41.90 s 1.27 s 0.71 s 0.30 s 0.20 s 0.30 s N/A

Table 1. Performance of our wp-based translation vs. our reimplementation of the [23] SP-based translation for the Dining Cryptog-
raphers. Formula 𝛾 is not supported by the SP-based translation in [23].

- Albert: I don’t know when it is, but I know Bernard doesn’t know either.

- Bernard: I didn’t know originally, but now I do.

- Albert: Well, now I know too!

When is Cheryl’s birthday?

Encoding and Mechanisation. To solve this puzzle, we consider two agents 𝑎 (Albert) and 𝑏 (Bernard) and two

integer program variables PVar = {𝑚𝑎, 𝑑𝑏 }. Then, we constrain the initial states to satisfy the conjunction of all possible

dates announced by Cheryl, i.e., the formula 𝜙 below:

𝜙 (𝑚𝑎, 𝑑𝑏) = (𝑚𝑎 = 5 ∧ 𝑑𝑏 = 15) ∨ (𝑚𝑎 = 5 ∧ 𝑑𝑏 = 16) ∨ · · ·

The puzzle is modelled via public announcements, with the added assumption that participants tell the truth. However,

modelling a satisfiability problem with the public announcement operator [𝛽]𝛼 would return states where 𝛽 cannot be

truthfully announced. Indeed, if 𝛽 is false at 𝑠 , (i.e., (𝜙, 𝑠) |= ¬𝛽), then the announcement [𝛽]𝛼 is true. For that, we use

the dual of the public announcement operator denoted ⟨·⟩ 5
. We use the translation to first-order formula:

𝜏 (𝜙, ⟨𝛽⟩𝛼) = 𝜏 (𝜙, 𝛽) ∧ 𝜏 (𝜙 ∧ 𝜏 (𝜙, 𝛽), 𝛼) .

In both its definition and our translation to first-order, ⟨·⟩ uses a conjunction where [·] uses an implication.

We denote the statement “agent 𝑎 knows the value of 𝑥” by the formula Kv𝑎𝑥 which is common in the literature. We

define it with our logic L𝑚DK making use of existential quantification: Kv𝑎𝑥 = ∃𝑣𝑎 · 𝐾𝑎 (𝑣𝑎 = 𝑥).
Now, to model the communication between Albert and Bernard, let 𝛼𝑎 be Albert’s first announcement, i.e., 𝛼𝑎 =

¬Kv𝑎 (𝑑𝑏) ∧𝐾𝑎 (¬Kv𝑏 (𝑚𝑎)). Then, the succession of announcements by the two participants corresponds to the formula

𝛼 = ⟨(¬Kv𝑏 (𝑚𝑎) ∧ ⟨𝛼𝑎⟩Kv𝑏 (𝑚𝑎))?⟩Kv𝑎𝑑𝑏 .

Cheryl’s birthday is the state 𝑠 that satisfies (𝜙, 𝑠) |= 𝛼 .

4.3.1 Experiments & Results. We computed 𝜏 (𝜙, 𝛼) in 0.10 seconds. The SMT solvers Z3 and CVC5 returned the solution

to the puzzle when fed with 𝜏 (𝜙, 𝛼). CVC5 solved it, in 0.60 seconds, which is twice better than Z3 (1.28 seconds).

4.4 Case Study 3: The Pit Card Game

In this we apply our logic and programming language to describe scenarios and actions in card games. We specifically

treat a simplified version of the Pit game [1], which was also studied in the setting of Epistemic Logics in [15] and [43].

5
The formula ⟨𝛽 ⟩𝛼 reads “after some announcement of 𝛽 , 𝛼 is the case”, i.e., 𝛽 can be truthfully announced and its announcement makes 𝛼 true. Formally,

(𝑊,𝑠) |= ⟨𝛽 ⟩𝛼 iff (𝑊,𝑠) |= 𝛽 and (𝑊|𝛽 , 𝑠) |= 𝛼 .
Manuscript submitted to ACM

18 F. Belardinelli, , I. Boureanu, , V. Malvone, and , S. F. Rajaona

Consider a deck of two Wheat, two Flax, and two Rye cards (𝑤, 𝑥,𝑦). Three players Anne, Bob, and Cath (𝑎, 𝑏, and 𝑐)

draw two cards from the deck. We denote the cards held by the players 𝑎, 𝑏, and 𝑐 respectively by (𝑙𝑎, 𝑟𝑎), (𝑙𝑏, 𝑟𝑏), and
(𝑙𝑐, 𝑟𝑐). Only 𝑎 can see her cards (𝑙𝑎, 𝑟𝑎), etc. The setup is common knowledge to all agents.

The goal of each player is to establish a corner in a commodity, i.e., to have cards of the same suits. We assume that

nobody achieved a corner from the initial deal.

In our implementation, we represent the cards (𝑤, 𝑥,𝑦) by the prime numbers (2, 3, 5). The context 𝜙 is given by

𝜙 :=
∧
𝑐𝑎𝑟𝑑∈{𝑙𝑎,𝑟𝑎,𝑙𝑏,𝑟𝑏,𝑙𝑐,𝑟𝑐 } (𝑐𝑎𝑟𝑑 = 2 ∨ 𝑐𝑎𝑟𝑑 = 3 ∨ 𝑐𝑎𝑟𝑑 = 5)

∧ (𝑙𝑎 × 𝑟𝑎 × 𝑙𝑏 × 𝑟𝑏 × 𝑙𝑐 × 𝑟𝑐 = 900)

∧ (𝑙𝑎 ≠ 𝑟𝑎 ∧ 𝑙𝑏 ≠ 𝑟𝑏 ∧ 𝑙𝑐 ≠ 𝑟𝑐) .

4.4.1 Simple cards swap. For simplicity, we omit the subscript 𝑎 (which indicates the group of observing agents) from

the variable 𝑙𝑎𝑎 . Note also that in our implementation file ExamplePit.hs, variables are labelled with the agents that

cannot observe them, rather than the agents that observe them.

First, we consider the action 𝑠𝑤𝑎𝑝1, in which 𝑎 and 𝑏 swap the card on their left, i.e., 𝑙𝑎 and 𝑙𝑏. To achieve this swap,

𝑎 and 𝑏 both put the required card face down on the table. Then 𝑎 takes 𝑏’s card from the table, and 𝑏’s takes 𝑎’s card.

𝑠𝑤𝑎𝑝1 := new 𝑛{} · new𝑚{} · 𝑛 := 𝑙𝑎;𝑚 := 𝑙𝑏; 𝑙𝑎 :=𝑚; 𝑙𝑏 := 𝑛

Two new variables, unobservable to all, are created to store 𝑙𝑎 and 𝑙𝑏. A more accurate representation of this scenario

would use simultaneous assignments, (𝑙𝑎, 𝑛) := (∅, 𝑙𝑎); (𝑙𝑏,𝑚) := (∅, 𝑙𝑏); . . . (𝑎 would no longer have 𝑙𝑎 by putting it

on the table). However, 𝑠𝑤𝑎𝑝1 is enough for our purpose, as the intermediate value of 𝑙𝑎 and 𝑙𝑏 (nothing) adds no more

information.

We performed the model checking [[𝜙]] |= 𝛼 of several formulas using the validity [[𝜙]] |=FO 𝜏 (𝜙, 𝛼) from our Main

Theorem. We report some of the results as obtained with our tool, more can be found on the implementation file

ExamplePit.hs. For instance,

[[𝜙]] |= □𝑠𝑤𝑎𝑝1Kv𝑎𝑙𝑏 (𝑎 always know the value of 𝑙𝑏 after 𝑠𝑤𝑎𝑝1)

[[𝜙]] ̸|= □𝑠𝑤𝑎𝑝1¬𝐾𝑎 (𝑙𝑏 ≠ 𝑟𝑏) (𝑎 may learn that 𝑙𝑏 ≠ 𝑟𝑏 after 𝑠𝑤𝑎𝑝1, e.g.: (3, 2), (3, 5), (2, 5)))

4.4.2 Nondeterministic swap. Secondly, we consider the action 𝑠𝑤𝑎𝑝2, in which 𝑎 and 𝑏 nondeterministically swap one

of their card by putting their chosen card face down on the table.

Define a function 𝑠𝑤𝑎𝑝 yielding a program that swaps two cards by putting face down on the table first.

𝑠𝑤𝑎𝑝 (𝛾,𝛾 ′) := new 𝑛{} · new𝑚{} · 𝑛 := 𝛾 ;𝑚 := 𝛾 ′;𝛾 :=𝑚;𝛾 ′ := 𝑛

Now, 𝑠𝑤𝑎𝑝2 is given by

𝑠𝑤𝑎𝑝2 = 𝑠𝑤𝑎𝑝 (𝑙𝑎, 𝑙𝑏) ⊔ 𝑠𝑤𝑎𝑝 (𝑙𝑎, 𝑟𝑏) ⊔ 𝑠𝑤𝑎𝑝 (𝑟𝑎, 𝑙𝑏) ⊔ 𝑠𝑤𝑎𝑝 (𝑟𝑎, 𝑟𝑏)

Again, we report some of the results from model checking program-epistemic formulas with 𝑠𝑤𝑎𝑝2

[[𝜙]] ̸|= □𝑠𝑤𝑎𝑝2Kv𝑎𝑙𝑏 (𝑎 may not know the value of 𝑙𝑏 after 𝑠𝑤𝑎𝑝2, as 𝑙𝑏 is not necessarily swapped)

[[𝜙]] |= □𝑠𝑤𝑎𝑝2 (Kv𝑎𝑙𝑏 ∨ Kv𝑎𝑟𝑏) (𝑎 always learn either 𝑙𝑏 or 𝑟𝑏 after 𝑠𝑤𝑎𝑝2)

Manuscript submitted to ACM

An SMT-based Approach to the Verification of Knowledge-Based Programs 19

4.4.3 Nondeterministic visible swap. Lastly, we consider the action 𝑠𝑤𝑎𝑝3, in which 𝑎 and 𝑏 swap one of their card

nondeterministically by putting their chosen card, this time face up on the table. Unlike the two previous swaps, 𝑐 can

see the cards being swapped.

As for 𝑠𝑤𝑎𝑝2, we define a function 𝑠𝑤𝑎𝑝
′
for swapping two cards, with the difference that the new variables are

observed by all.

𝑠𝑤𝑎𝑝′ (𝛾,𝛾 ′) := new 𝑛{𝑎,𝑏,𝑐 } · new𝑚{𝑎,𝑏,𝑐 } · 𝑛 := 𝛾 ;𝑚 := 𝛾 ′;𝛾 :=𝑚;𝛾 ′ := 𝑛

Now, we define 𝑠𝑤𝑎𝑝3 by

𝑠𝑤𝑎𝑝3 = 𝑠𝑤𝑎𝑝
′ (𝑙𝑎, 𝑙𝑏) ⊔ 𝑠𝑤𝑎𝑝′ (𝑙𝑎, 𝑟𝑏) ⊔ 𝑠𝑤𝑎𝑝′ (𝑟𝑎, 𝑙𝑏) ⊔ 𝑠𝑤𝑎𝑝′ (𝑟𝑎, 𝑟𝑏)

Again, we report some of the results from model checking program-epistemic formulas with 𝑠𝑤𝑎𝑝3.

[[𝜙]] |= □𝑠𝑤𝑎𝑝3Kv𝑐𝑙𝑏 ∨ Kv𝑐𝑟𝑏 (𝑐 always learns either 𝑙𝑏 or 𝑟𝑏 after 𝑠𝑤𝑎𝑝3)

[[𝜙]] ̸|= □𝑠𝑤𝑎𝑝3¬𝐾𝑐 (𝑙𝑏 = 𝑟𝑏) (𝑐 may know 𝑏 has a corner after 𝑠𝑤𝑎𝑝3, e.g., (2, 3), (5, 2), (3, 5))

[[𝜙]] ̸|= □𝑠𝑤𝑎𝑝3¬𝐾𝑐 (𝑙𝑏 ≠ 𝑟𝑏) (𝑐 may know that 𝑏 does not have a corner after 𝑠𝑤𝑎𝑝3, e.g., (5, 2), (3, 2), (3, 5))

4.4.4 Experiments & Results. All the formulas that we tested for the three programs 𝑠𝑤𝑎𝑝1, 𝑠𝑤𝑎𝑝2, and 𝑠𝑤𝑎𝑝3 were

solved under 0.2 seconds.

5 RELATEDWORK

5.1 On SMT-Based Verification of Epistemic Properties of Programs.

We compare with the work of Gorogiannis et al. [23] which we extend, as well as a very recent work, in [5], which also

improves on [23]. We discuss several aspects, comparing us and these two works.

General Logic-based Approach and Expressivity. Gorogiannis et al. [23] gave a “program-epistemic” logic, which is a

dynamic logic with concrete programs (e.g., programs with assignments on variables over first-order domains such

as integer, reals, or strings), and having an epistemic predicate logic as its base logic. Interestingly, à la [35, 40, 45],

the epistemic model in [23] relies on partial observability of the programs’ variables by agents. Gorogiannis et al.

translated program-epistemic validity into a first-order validity, and this outperformed the then state-of-the-art tools in

epistemic properties verification. Whilst an interesting breakthrough, Gorogiannis et al. present several limitations.

Firstly, the verification mechanisation in [23] only supports “classical” programs; this means that [23] cannot support

tests on agents’ knowledge. Yet, such tests are clearly in AI-centric programs: e.g., in epistemic puzzles [31], in the

so-called “knowledge-based” programs in [21], etc. Secondly, the logic in [23] allows only for knowledge reasoning

after a program 𝑃 executed, not before its run (e.g., not 𝐾𝑎𝑙𝑖𝑐𝑒 (□𝑃𝜙), only □𝑃 (𝐾𝑎𝑙𝑖𝑐𝑒𝜙)); this is arguably insufficient

for verification of decision-making with “look ahead" into future states-of-affair. Thirdly, the framework in [23] does

not allow for reasoning about nested knowledges operators (e.g., 𝐾𝑎𝑙𝑖𝑐𝑒 (𝐾𝑏𝑜𝑏𝜙)).
Belardinelli et al., in [5], defined a program-epistemic logic LPK that is strictly more expressive than the program-

epistemic logicL□K in [23]: i.e., inLPK, the epistemic and the knowledge operators can commute. [5]’s program-epistemic

logic LPK is more general than the logic in [23]: our relational semantics is not dependent on programs’ predicate

transformers, and our programs are fully mapped to logic operators. In that sense, [5]’s logic LPK can be seen as an

extension of star-free linear dynamic logic (LDL) [12] with epistemic operators, or equivalently dynamic logic (DL) [26]

Manuscript submitted to ACM

20 F. Belardinelli, , I. Boureanu, , V. Malvone, and , S. F. Rajaona

[5] [23] this work
1. 𝐾 possible before□𝑃 , only one agent 𝐾 possible only after□𝑃 , only one agent 𝐾 possible before□𝑃 , multiple agents, using disjoint choice

2. unknown if program is public unknown if program is public program is public

3. no announcements no announcements public announcements

4. multiple assignments via substitutions multiple assignments single assignment

5. asymptotic complexity drop into𝑂 (2𝑥) , due to 𝐾 possible before□𝑃 asymptotic complexity in𝑂 (𝑥) asymptotic complexity kept in𝑂 (𝑥) , via single assignment

,

Table 2. This work vs. [5] & [23]: Main Comparisons (where 𝑥 is the size of the translated formula)

extended with an epistemic operator. In [5], since the logic is more aligned to “standard” logics (such as linear dynamic

logic – LDL [12] and dynamic logic – DL [26]), the translation (unlike in [23]) is entirely recursive, without the need to

leverage special cases separately and/or Hoare-style predicate transformers. Also, the AAAI-2023 paper [5] includes

formulas that [23] could not treat: i.e., 𝐾𝑎□𝑃𝜑 – expressing that agent 𝑎 knows fact 𝜑 about the execution of 𝑃 .

Program Models. The program models in Gorogiannis et al. [23] follow a classical program semantics (e.g., modelling

nondeterministic choice as union, overwriting a variable in reassignment). This has been shown [35, 40] to correspond

to systems where agents have no memory, and cannot see how nondeterministic choices are resolved. Our program

models assume perfect recall, and that agents can see how nondeterministic choices are resolved. Belardinelli et al [5]

do not have perfect recall, and agents cannot see how nondeterministic choices are resolved.

Program Expressiveness. Gorogiannis et al. [23] have results of approximations for programs with loops, although

there were no use cases of that. [5] and this work are focused on a loop-free programming language. We believe our

approach can be extended similarly. The main advantage of our programs is the support for tests on knowledge which

allows us to model public communication of knowledge.

Mechanisation & Efficiency.We implemented the translation which include an automated computation of weakest

preconditions (and strongest postconditions as well). The implementation in [23] requires the strongest postcondition be

computed manually. Like [23], we test for the satisfiability of the resulting first-order formula with Z3. The performance

is generally similar, although sometimes it depends on the form of the formulas (see Table 1).

In Table 2, we give a summary of the main differences between this work and the closest two other works:

Let us discuss Table 2. Row 1 refers to whether, in various works of this type, the program operator□𝑃 and epistemic

operators 𝐾 can commute, but also if there’s one or more agents and therefore epistemic operators. Row 4 is concerned

with whether different methods operate under a model where the assignments of variables introduce new, duplicate

variables with each assignation, a.k.a. the single static assignment (SSA) assumption [41]. If this is the case, then

–intuitively– the treatment of epistemic interpretations across program domains may be more easily handled. An

alternative, as row 4 says, is to carefully introduce and use substitutions over variables inside program-epistemic formula

to correspond or emulate variable assignments inside the actual programs. Row 5 shows that, in fact, these trade-offs

mentioned in rows 1 and 4 lead, naturally, to different efficiency when it comes to program-epistemic formulae being

translated into first-order ones in such a way, as here, where model checking of the former can be reduced to satisfaction

of the latter. We also see in row 5, that this work uses single static assignment (SSA) to have both expressivity (i.e.,

commuting program operators □𝑃 and epistemic operators 𝐾 , multiple agents), whilst maintaining the efficiency of

less expressive formalisms. In the conference version of this paper [39] and in [5], we actually compare numerically in

efficiency across these different methods and formalisms. Row 2 may also have an impact in the asymptotic complexity

of these validity-checking reductions, but this aspect is less studied and we still cannot quantify the exact role it plays

in the efficiency of these translations; this is a good avenue for future work. Of course, in Table 2, we could add more

comparison criteria, but we selected what we deemed to be the defining one.

Manuscript submitted to ACM

An SMT-based Approach to the Verification of Knowledge-Based Programs 21

5.2 On Verification of Information Flow with Program Algebra.

Verifying epistemic properties of programs with program algebra was done in [33, 35, 40]. Instead of using a dynamic

logic, they reason about epistemic properties of programs with an ignorance-preserving refinement. Like here, their

notion of knowledge is based on observability of arbitrary domain program variables. Akin to how our relational

semantics is shown to coincide with weakest-precondition semantics, [40] proves the laws of refinement sound w.r.t.

Morgan’s relational Shadow model [34], which also has its corresponding weakest-precondition semantics. The work

in [40] also consider a multi-agent logics and nested 𝐾 operators and their program also allows for knowledge tests.

Finally, our model for epistemic programs can be seen as inspired by [40]. That said, all these works have no relation

with first-order satisfaction nor translations of validity of program-epistemic logics to that, nor their implementation.

5.3 On Dynamic Epistemic Logics

Dynamic epistemic logic (DEL, [4, 17, 37]) is a family of logics that extend epistemic logic with dynamic operators.

Logics’ Expressivity. DEL originates from public announcement logic [37], and the public announcement operator

is one of its basic dynamic operator. On the one hand, DEL logics are mostly propositional, and their extensions

with assignment only considered propositional assignment (e.g., [16]); contrarily, we support assignment on variables

on arbitrary domains. Also, we have a denotational semantics of programs (via weakest preconditions), whereas

DEL operates on more abstract semantics. On the other hand, action models in DEL can describe complex private

communications that cannot be encoded with our current programming language.

Verification. Current DEL model checkers include DEMO [19] and SMCDEL [42]. We are not aware of the verification of

DEL fragments being reduced to satisfiability problems. In this space, an online report [44] discusses –at some high

level– the translation SMCDEL knowledge structures into QBF and the use of YICES.

A line of research in DEL, the so called semi-public environments, also builds agents’ indistinguishability relations

from the observability of propositional variables [9, 25, 45]. The work of Grossi [24] explores the interaction between

knowledge dynamics and non-deterministic choice/sequential composition. They note that PDLs assumes memory-less

agents and totally private nondeterministic choice, whilst DELs’ epistemic actions assume agents with perfect recall

and publicly made nondeterministic choice. This is the same duality that we observed earlier between the program

epistemic logic in [23] and ours.

5.4 On Other Aspects.

Gorogiannis et al. [23] discussed more tenuously related work, such as on general verification of temporal-epistemic

properties of systems which are not programs in tools like MCMAS [32], MCK [22], VERICS [30], or one line of epistemic

verification of models specifically of JAVA programs [3]. [23] also discussed some incomplete method of SMT-based

epistemic model checking [11], or even bounded model checking techniques, e.g., [29]. All of those are loosely related

to us too, but there is little reason to reiterate.

6 CONCLUSIONS

We advanced a multi-agent epistemic logic for programs L𝑚DK , in which each agent has visibility over some program

variables but not others. This logic allows to reason on agents’ knowledge of a program after its run, as well as before

its execution. Assuming agents’ perfect recall, we provided a weakest-precondition epistemic predicate transformer

semantics that is sound with respect to its relational counterpart. Leveraging the natural correspondence between the

Manuscript submitted to ACM

22 F. Belardinelli, , I. Boureanu, , V. Malvone, and , S. F. Rajaona

weakest precondition𝑤𝑝 (𝑃, 𝛼) and the dynamic formula □𝑃𝛼 , we were able to give a sound reduction of the validity of

L𝑚DK formulas to first-order satisfaction.

Based on this reduction anL𝑚DK formula into a first-order, we implemented a tool that fully mechanise the verification,

calling an SMT solver for the final decision procedure. Our method is inspired from [23], but applies to a significantly

larger class of program-epistemic formulas in the multi-agent setting.

The multi-agent nature of the logic, the expressiveness of it with respect to knowledge evaluation before and after

program execution, as well as a complete verification method for this are all novelties in the field. In future work, we

will look at a meet-in-the-middle between the memoryless semantics in [23] and the memoryful semantics here, and

methods of verifying logics like L𝑚DK but with such less “absolutist" semantics.

REFERENCES
[1] Pit game rules. https://www.hasbro.com/common/instruct/pit.pdf, accessed: 2024-08-17

[2] Baier, C., Katoen, J.: Principles of model checking. MIT Press (2008)

[3] Balliu, M., Dam, M., Guernic, G.L.: ENCoVer: Symbolic exploration for information flow security. In: 25th IEEE Computer Security Foundations

Symposium (CSF 2012),. pp. 30–44. IEEE Computer Society (2012). https://doi.org/10.1109/CSF.2012.24

[4] Baltag, A., Moss, L.S., Solecki, S.: The logic of public announcements, common knowledge, and private suspicions. In: Proceedings of the 7th

Conference on Theoretical Aspects of Rationality and Knowledge (TARK 98). p. 43–56. Morgan Kaufmann Publishers Inc. (1998)

[5] Belardinelli, F., Boureanu, I., Malvone, V., Rajaona, F.: Automatically verifying expressive epistemic properties of programs. In: Williams, B., Chen, Y.,

Neville, J. (eds.) Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI 2023, Thirty-Fifth Conference on Innovative Applications of

Artificial Intelligence, IAAI 2023, Thirteenth Symposium on Educational Advances in Artificial Intelligence, EAAI 2023, Washington, DC, USA,

February 7-14, 2023. pp. 6245–6252. AAAI Press (2023). https://doi.org/10.1609/AAAI.V37I5.25769, https://doi.org/10.1609/aaai.v37i5.25769

[6] Blackburn, P., van Benthem, J.F., Wolter, F.: Handbook of modal logic. Elsevier (2006)

[7] Blackburn, P., de Rijke, M., Venema, Y.: Modal logic. Cambridge University Press, New York (2001)

[8] Boureanu, I., Jones, A.V., Lomuscio, A.: Automatic verification of epistemic specifications under convergent equational theories. In: Proceedings of

the 11th International Conference on Autonomous Agents and Multiagent Systems - Volume 2. pp. 1141–1148. AAMAS ’12, International Foundation

for Autonomous Agents and Multiagent Systems, Richland, SC (2012)

[9] Charrier, T., Herzig, A., Lorini, E., Maffre, F., Schwarzentruber, F.: Building epistemic logic from observations and public announcements. In:

Principles of Knowledge Representation and Reasoning: Proceedings of the Fifteenth International Conference, KR 2016. pp. 268–277. AAAI Press

(2016)

[10] Chaum, D.: The dining cryptographers problem: Unconditional sender and recipient untraceability. Journal of Cryptology 1(1), 65–75 (1988)
[11] Cimatti, A., Gario, M., Tonetta, S.: A lazy approach to temporal epistemic logic model checking. In: Proc. of AAMAS-38. pp. 1218–1226. IFAAMAS

(2016)

[12] De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on finite traces. In: Proceedings of the Twenty-Third International Joint

Conference on Artificial Intelligence. pp. 854–860. IJCAI ’13, AAAI Press (2013)

[13] De Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Proc. of TACAS-14. pp. 337–340. Springer-Verlag (2008)

[14] Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall (1976)

[15] van Ditmarsch, H.P., van der Hoek, W., Kooi, B.P.: Dynamic epistemic logic with assignment. In: Proceedings of the Fourth International Joint

Conference on Autonomous Agents and Multiagent Systems. p. 141–148. AAMAS ’05, Association for Computing Machinery, New York, NY, USA

(2005), https://doi.org/10.1145/1082473.1082495

[16] van Ditmarsch, H.P., van der Hoek, W., Kooi, B.P.: Dynamic epistemic logic with assignment. In: Proceedings of the Fourth International Joint

Conference on Autonomous Agents and Multiagent Systems. p. 141–148. AAMAS ’05, Association for Computing Machinery (2005)

[17] van Ditmarsch, H.P., Hoek, W.v.d., Kooi, B.: Dynamic Epistemic Logic. Synthese Library, Springer (2007)

[18] van Ditmarsch, H.P., Hartley, M.I., Kooi, B., Welton, J., Yeo, J.B.: Cheryl’s birthday. arXiv preprint arXiv:1708.02654 (2017)

[19] van Eijck, J.: A demo of epistemic modelling. Interactive Logic p. 303 (2007)

[20] Ezekiel, J., Lomuscio, A., Molnar, L., Veres, S., Pebody, M.: Verifying fault tolerance and self-diagnosability of an autonomous underwater vehicle. In:

Proc. of IJCAI-22. pp. 1659–1664. AAAI Press (2011)

[21] Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Knowledge-Based Programs. In: Symposium on Principles of Distributed Computing. pp. 153–163

(1995)

[22] Gammie, P., van der Meyden, R.: MCK: model checking the logic of knowledge. In: Computer Aided Verification. Lecture Notes in Computer Science,

vol. 3114, pp. 479–483. Springer (2004). https://doi.org/10.1007/978-3-540-27813-9_41

[23] Gorogiannis, N., Raimondi, F., Boureanu, I.: A Novel Symbolic Approach to Verifying Epistemic Properties of Programs. In: Proceedings of the

Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI-17. pp. 206–212 (2017). https://doi.org/10.24963/ijcai.2017/30

Manuscript submitted to ACM

https://www.hasbro.com/common/instruct/pit.pdf
https://doi.org/10.1609/aaai.v37i5.25769
https://doi.org/10.1145/1082473.1082495

An SMT-based Approach to the Verification of Knowledge-Based Programs 23

[24] Grossi, D., Herzig, A., van der Hoek, W., Moyzes, C.: Non-determinism and the dynamics of knowledge. In: Proceedings of the Twenty-Sixth

International Joint Conference on Artificial Intelligence (2017)

[25] Grossi, D., van der Hoek, W., Moyzes, C., Wooldridge, M.: Program models and semi-public environments. Journal of Logic and Computation 29(7),
1071–1097 (01 2016). https://doi.org/10.1093/logcom/exv086

[26] Harel, D.: Dynamic Logic, pp. 497–604. Springer Netherlands, Dordrecht (1984). https://doi.org/10.1007/978-94-009-6259-0_10

[27] Hintikka, J.: Knowledge and Belief. Cornell University Press (1962)

[28] Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM 12(10), 576–580 (Oct 1969). https://doi.org/10.1145/363235.363259,
https://doi.org/10.1145/363235.363259

[29] Kacprzak, M., Lomuscio, A., Niewiadomski, A., Penczek, W., Raimondi, F., Szreter, M.: Comparing BDD and SAT based techniques for model checking

Chaum’s dining cryptographers protocol. Fundamenta Informaticae 72(1-3), 215–234 (2006)
[30] Kacprzak, M., Nabiałek, W., Niewiadomski, A., Penczek, W., Półrola, A., Szreter, M., Woźna, B., Zbrzezny, A.: VerICS 2007 – a model checker for

knowledge and real-time. Fundamenta Informaticae 85(1-4), 313–328 (2008)
[31] Lehman, D.: Knowledge, common knowledge, and related puzzles. In: Proc. of the 3rd ACM Symposium on Principles of Distributed Computing. pp.

62–67 (1984)

[32] Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: an open-source model checker for the verification of multi-agent systems. Int. Journal on Software

Tools for Technology Transfer 19(1), 9–30 (2015). https://doi.org/10.1007/s10009-015-0378-x
[33] McIver, A.K.: The secret art of computer programming. In: Theoretical Aspects of Computing. Lecture Notes in Computer Science, vol. 5684, pp.

61–78. Springer (2009)

[34] Morgan, C.: Programming from Specifications. Prentice Hall International Series in Computer Science, Prentice Hall, 2 edn. (1994)

[35] Morgan, C.: The Shadow Knows: Refinement of ignorance in sequential programs. In: Mathematics of Program Construction, Lecture Notes in

Computer Science, vol. 4014, pp. 359–378. Springer (2006)

[36] Parikh, R., Ramanujam, R.: Distributed processing and the logic of knowledge. Lecture Notes in Computer Science 193, 256–268 (1985)
[37] Plaza, J.A.: Logics of public communications. Proceedings of the 4th International Symposium on Methodologies for Intelligent Systems (1989)

[38] Pratt, V.R.: Semantical considerations on Floyd-Hoare logic. In: 17th Annual Symposium on Foundations of Computer Science. pp. 109–121. IEEE

(1976)

[39] Rajaona, S.F., Boureanu, I., Malvone, V., Belardinelli, F.: Program semantics and verification technique for ai-centred programs. In: Chechik, M.,

Katoen, J., Leucker, M. (eds.) Formal Methods - 25th International Symposium, FM 2023, Lübeck, Germany, March 6-10, 2023, Proceedings. Lecture

Notes in Computer Science, vol. 14000, pp. 473–491. Springer (2023). https://doi.org/10.1007/978-3-031-27481-7_27, https://doi.org/10.1007/978-3-

031-27481-7_27

[40] Rajaona, S.F.: An algebraic framework for reasoning about privacy. Ph.D. thesis, Stellenbosch: University of Stellenbosch (2016)

[41] Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Global value numbers and redundant computations. In: Proceedings of the 15th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages. p. 12–27. POPL ’88, Association for Computing Machinery, New York, NY, USA (1988).

https://doi.org/10.1145/73560.73562, https://doi.org/10.1145/73560.73562

[42] Van Benthem, J., Van Eijck, J., Gattinger, M., Su, K.: Symbolic model checking for dynamic epistemic logic. In: International Workshop on Logic,

Rationality and Interaction. pp. 366–378. Springer (2015)

[43] Van Ditmarsch, H., Kooi, B.: Semantic results for ontic and epistemic change. Logic and the foundations of game and decision theory (LOFT 7) 3,
87–117 (2008)

[44] Wang, S.: Dynamic epistemic model checking with Yices. https://github.com/airobert/DEL/blob/master/report.pdf (2016), accessed 28/06/2022

[45] Wooldridge, M., Lomuscio, A.: A computationally grounded logic of visibility, perception, and knowledge. Logic Journal of IGPL 9(2), 257–272 (2001)

A LEMMAS

Lemma A.1. Consider an epistemic model𝑊 , variables 𝑥𝐺 and 𝑘𝐺 such that 𝑘𝐺 is not in the domain of any state in𝑊 .

Let𝑊𝑥𝐺 \𝑘𝐺 be the model that renames 𝑥𝐺 into 𝑘𝐺 in the states of𝑊 , then

(𝑊, 𝑠) |= 𝛼 iff (𝑊𝑥𝐺 \𝑘𝐺 , 𝑠 [𝑘𝐺 ↦→ 𝑠 (𝑥𝐺)]) |= 𝛼 [𝑥𝐺\𝑘𝐺] .

Proof. The proof is by induction on the structure of 𝛼 , starting from the base case 𝛼 = 𝜋 :

(𝑊, 𝑠) |= 𝜋 iff 𝑠 |=𝑄𝐹 𝜋

iff 𝑠 [𝑘𝐺 ↦→ 𝑠 (𝑥𝐺)] |=𝑄𝐹 𝜋 [𝑥𝐺\𝑘𝐺]

iff (𝑊𝑥𝐺 \𝑘𝐺 , 𝑠 [𝑘𝐺 ↦→ 𝑠 (𝑥𝐺)]) |= 𝛼 [𝑥𝐺\𝑘𝐺] .

The inductive cases for Boolean connectives are immediate.

Manuscript submitted to ACM

https://doi.org/10.1145/363235.363259
https://doi.org/10.1007/978-3-031-27481-7_27
https://doi.org/10.1007/978-3-031-27481-7_27
https://doi.org/10.1145/73560.73562
https://github.com/airobert/DEL/blob/master/report.pdf

24 F. Belardinelli, , I. Boureanu, , V. Malvone, and , S. F. Rajaona

For 𝛼 = 𝐾𝑎𝛽 :

(𝑊, 𝑠) |= 𝛼 iff for all 𝑠′ ∈𝑊, 𝑠′ ≈𝑎 𝑠 implies (𝑊, 𝑠′) |= 𝛽

Notice that 𝑠′ ≈𝑎 𝑠 iff 𝑠′ [𝑘𝐺 ↦→ 𝑠 (𝑥𝐺)] ≈𝑎 𝑠 [𝑘𝐺 ↦→ 𝑠 (𝑥𝐺)]. Hence, by induction hypothesis,

(𝑊, 𝑠) |= 𝛼 iff for all 𝑠′′ ∈𝑊𝑥𝐺 \𝑘𝐺 , 𝑠
′′ ≈𝑎 𝑠 [𝑘𝐺 ↦→ 𝑠 (𝑥𝐺)] implies (𝑊𝑥𝐺 \𝑘𝐺 , 𝑠

′′) |= 𝛽 [𝑥𝐺\𝑘𝐺]

iff (𝑊𝑥𝐺 \𝑘𝐺 , 𝑠 [𝑘𝐺 ↦→ 𝑠 (𝑥𝐺)]) |= 𝐾𝑎𝛽 [𝑥𝐺\𝑘𝐺] = 𝛼 [𝑥𝐺\𝑘𝐺] .

For 𝛼 = [𝛽′]𝛽 :

(𝑊, 𝑠) |= 𝛼 iff (𝑊, 𝑠) |= 𝛽′ implies (𝑊 |𝛽 ′ , 𝑠) |= 𝛽

By induction hypothesis,

(𝑊, 𝑠) |= 𝛼 iff (𝑊𝑥𝐺 \𝑘𝐺 , 𝑠 [𝑘𝐺 ↦→ 𝑠 (𝑥𝐺)]) |= 𝛽′ [𝑥𝐺\𝑘𝐺] implies ((𝑊 |𝛽 ′)𝑥𝐺 \𝑘𝐺 , 𝑠 [𝑘𝐺 ↦→ 𝑠 (𝑥𝐺)]) |= 𝛽 [𝑥𝐺\𝑘𝐺]

Now notice that (𝑊 |𝛽 ′)𝑥𝐺 \𝑘𝐺 = (𝑊𝑥𝐺 \𝑘𝐺) |𝛽 ′ [𝑥𝐺 \𝑘𝐺] . Hence,

(𝑊, 𝑠) |= 𝛼 iff (𝑊𝑥𝐺 \𝑘𝐺 , 𝑠 [𝑘𝐺 ↦→ 𝑠 (𝑥𝐺)]) |= 𝛽′ [𝑥𝐺\𝑘𝐺] implies ((𝑊𝑥𝐺 \𝑘𝐺) |𝛽 ′ [𝑥𝐺 \𝑘𝐺] , 𝑠 [𝑘𝐺 ↦→ 𝑠 (𝑥𝐺)]) |= 𝛽 [𝑥𝐺\𝑘𝐺]

iff (𝑊𝑥𝐺 \𝑘𝐺 , 𝑠 [𝑘𝐺 ↦→ 𝑠 (𝑥𝐺)]) |= [𝛽′ [𝑥𝐺\𝑘𝐺]]𝛽 [𝑥𝐺\𝑘𝐺] = 𝛼 [𝑥𝐺\𝑘𝐺]

For 𝛼 = □𝑃 𝛽 :

(𝑊, 𝑠) |= 𝛼 iff for all 𝑠′ ∈ 𝑅𝑃 (𝑊, 𝑠), (𝑅∗𝑃 (𝑊,𝑊), 𝑠′) |= 𝛽

Notice that 𝑠′ ∈ 𝑅𝑃 (𝑊, 𝑠) iff 𝑠′ [𝑘𝐺 ↦→ 𝑠 (𝑥𝐺)]] ∈ 𝑅𝑃 (𝑊𝑥𝐺 \𝑘𝐺 , 𝑠 [𝑘𝐺 ↦→ 𝑠 (𝑥𝐺)]) and𝑅∗𝑃 (𝑊,𝑊)𝑥𝐺 \𝑘𝐺 = 𝑅∗
𝑃
(𝑊𝑥𝐺 \𝑘𝐺 ,𝑊𝑥𝐺 \𝑘𝐺).

Hence, by induction hypothesis,

(𝑊, 𝑠) |= 𝛼 iff for all 𝑠′′ ∈ 𝑅𝑃 (𝑊𝑥𝐺 \𝑘𝐺 , 𝑠 [𝑘𝐺 ↦→ 𝑠 (𝑥𝐺)]), (𝑅∗𝑃 (𝑊𝑥𝐺 \𝑘𝐺 ,𝑊𝑥𝐺 \𝑘𝐺), 𝑠
′′) |= 𝛽 [𝑥𝐺\𝑘𝐺]

iff (𝑊𝑥𝐺 \𝑘𝐺 , 𝑠 [𝑘𝐺 ↦→ 𝑠 (𝑥𝐺)]) |= □𝑃 𝛽 [𝑥𝐺\𝑘𝐺] = 𝛼 [𝑥𝐺\𝑘𝐺]

For 𝛼 = ∀𝑥𝐺 · 𝛽 :

(𝑊, 𝑠) |= 𝛼 iff for all 𝑐 ∈ 𝐷, (
⋃
𝑑∈𝐷

{𝑠′ [𝑥𝐺 ↦→ 𝑑] | 𝑠′ ∈𝑊 }, 𝑠 [𝑥𝐺 ↦→ 𝑐]) |= 𝛽

Now observe that 𝑠′ ∈ 𝑊 iff 𝑠′ [𝑘𝐺 ↦→ 𝑠 (𝑥𝐺)] ∈ 𝑊𝑥𝐺 \𝑘𝐺 , and 𝑠 [𝑘𝐺 ↦→ 𝑐] = 𝑠 [𝑥𝐺 ↦→ 𝑐] [𝑘𝐺 ↦→ 𝑠 (𝑥𝐺)]. Hence, by
induction hypothesis,

(𝑊, 𝑠) |= 𝛼 iff for all 𝑐 ∈ 𝐷, (
⋃
𝑑∈𝐷

{𝑠′ [𝑥𝐺 ↦→ 𝑑] [𝑘𝐺 ↦→ 𝑠 (𝑥𝐺)] | 𝑠′ [𝑘𝐺 ↦→ 𝑠 (𝑥𝐺)] ∈𝑊𝑥𝐺 \𝑘𝐺 }, 𝑠 [𝑥𝐺 ↦→ 𝑐] [𝑘𝐺 ↦→ 𝑠 (𝑥𝐺)]) |= 𝛽 [𝑥𝐺\𝑘𝐺]

iff for all 𝑐 ∈ 𝐷, (
⋃
𝑑∈𝐷

{𝑠′ [𝑘𝐺 ↦→ 𝑑] | 𝑠′ ∈𝑊𝑥𝐺 \𝑘𝐺 }, 𝑠 [𝑘𝐺 ↦→ 𝑐]) |= 𝛽 [𝑥𝐺\𝑘𝐺]

iff (𝑊𝑥𝐺 \𝑘𝐺 , 𝑠 [𝑘𝐺 ↦→ 𝑠 (𝑥𝐺)]) |= ∀𝑥𝐺 · 𝛽 [𝑥𝐺\𝑘𝐺] = 𝛼 [𝑥𝐺\𝑘𝐺]

Manuscript submitted to ACM

An SMT-based Approach to the Verification of Knowledge-Based Programs 25

This completes the proof. ■

B EQUIVALENCE BETWEEN THE RELATIONAL SEMANTICS

Proposition B.1. For any program 𝑃 ∈ PL and𝑊 ∈ P(U), we have

𝐹 (𝑃,𝑊) = 𝑅∗𝑃 (𝑊,𝑊).

Proof. The proof is done by induction on the structure of 𝑃 . The difficult case is that of 𝑃 ;𝑄 . We have

𝑅∗𝑃 ;𝑄 (𝑊,𝑊) = ⋃
𝑠∈𝑊

{⋃
𝑠′∈𝑅𝑃(𝑊,𝑠) {𝑅𝑄 (𝑅∗

𝑃
(𝑊,𝑊), 𝑠′)}

}
def of 𝑅𝑃 ;𝑄 (𝑊, ·)

=
⋃
𝑠∈𝑊

{⋃
𝑠′∈𝑅𝑃 (𝑊,𝑠) {𝑅𝑄 (𝐹 (𝑃,𝑊), 𝑠′)}

}
𝐹 (𝑃,𝑊) = 𝑅∗

𝑃
(𝑊,𝑊)

=
⋃
𝑠∈𝑊

{
𝑅∗
𝑄
(𝐹 (𝑃,𝑊), 𝑅𝑃 (𝑊, 𝑠))

}
by induction hypothesis on 𝑃

= 𝑅∗
𝑄
(𝐹 (𝑃,𝑊), 𝑅∗

𝑃
(𝑊,𝑊)) definition of post-image

= 𝑅∗
𝑄
(𝐹 (𝑃,𝑊), 𝐹 (𝑃,𝑊)) 𝐹 (𝑃,𝑊) = 𝑅∗

𝑃
(𝑊,𝑊)

= 𝐹 (𝑄, 𝐹 (𝑃,𝑊)) by induction hypothesis on𝑄 .

■

Manuscript submitted to ACM

	Abstract
	1 Introduction & Preliminaries
	1.1 Our Contributions
	1.2 Presenting These Results.
	1.3 Preliminaries & Background

	2 Program-Epistemic Languages
	2.1 Logics syntax
	2.2 Programs syntax
	2.3 Logics semantics
	2.4 Programs relational semantics
	2.5 Programs weakest precondition semantics
	2.6 Equivalence between program relational semantics and weakest semantics

	3 Reduction to First-Order Validity
	4 Implementation
	4.1 Mechanisation of Our LmDK-to-FO Translation
	4.2 Case Study 1: Dining Cryptographers' Protocol Chaum1988
	4.3 Case Study 2: Cheryl's Birthday Puzzle van2017cheryl
	4.4 Case Study 3: The Pit Card Game

	5 Related Work
	5.1 On SMT-Based Verification of Epistemic Properties of Programs.
	5.2 On Verification of Information Flow with Program Algebra.
	5.3 On Dynamic Epistemic Logics
	5.4 On Other Aspects.

	6 Conclusions
	References
	A Lemmas
	B Equivalence between the relational semantics

