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1. Introduction

Game theory is a powerful mathematical framework to reason about reactive systems [2]. Over the years,
it has been usefully applied in several different domains. In economics, it is used to deal with solution
concepts such as Nash equilibrium [3]. In biology, it is used to reason about the phenotypic evolution [4].
In computer science, it is applied to solve problems in robotics, multi-agent system verification, synthesis,
and planning [5, 6, 7].

In the basic setting, a (finite) game consists of two players, conventionally named Player0 and
Player1, playing a finite number of times, in a turn-based manner, i.e., the moves of the players are
interleaved. Technically, the configurations (states) of the game are partitioned between Player0 and
Player1 and a player moves in a state whenever he owns it. Solving a two-player game amounts to
check whether Player0 has a winning strategy. That is, to check whether he can take a sequence of move
actions (a strategy) that allows him to satisfy the game objective, no matter how his opponent plays.

Depending on the visibility the players have over the action moves performed by their opponents, we
distinguish between perfect and imperfect information games. In the former case, both players have full
knowledge of the evolution of the game, in every moment. This may not be possible in the latter case where
players often have to come to decisions without having all relevant information at hand. Both settings have
been largely investigated in the literature with several real-life applications. A classic approach suitable to
model both is to make use of a relation of indistinguishability on the action moves/configurations of the
arena [8, 9, 10, 11, 12]. In this case, during a play, it may happen that a player cannot tell precisely in
which state he is, but rather he observes a set of states. This means that over indistinguishable scenarios a
player is forced to use the same strategy. Straightforwardly, the perfect information setting corresponds to
just using the identity relation.

In several game settings, it is mandatory to have a more precise (quantitative) information about
how many winning strategies a player has at his disposal. For example, in Nash Equilibrium, such an
information amounts to solve the challenging question of checking whether the equilibrium is unique [13,
14, 15, 16, 17, 18, 19, 20, 21]. This problem impacts on the predictive power of Nash Equilibrium since,
in case there are multiple equilibria, the outcome of the game cannot be uniquely pinned down [22, 23, 24].
As another example, consider the setting of robot rescue planning [25, 26, 27]. It is not hard to imagine
situations in which it is vital to know in advance whether a robot team has more than a winning strategy
from a critical stage, just to have a backup plan in case an execution of a planned winning strategy cannot
be executed anymore. Such a redundancy allows to strengthen the ability of winning the game and,
specifically, the rescue capability.

In this paper, we address the quantitative question of checking whether Player0 has more than a
strategy to win a finite two-player game G. We investigate this problem under the reachability objective,
i.e. some states of the game arena are declared target. We consider both the cases in which the players have
perfect or imperfect information about the moves performed by their opponent. We solve the addressed
problem by using an automata-theoretic approach. Precisely, we build an automaton that accepts only
trees that are witnesses of more than one winning strategy for the designed player over the game G. Hence,
we reduce the addressed quantitative question to the emptiness of this automaton. Our automata solution
mainly consists in extending the classic approaches by further individuating a place where Player0 has
the ability to follow two different ways (i.e., strategies) to reach a target state. While this may look simple
in the perfect information setting, in the imperfect case it requires some careful thoughts. Furthermore, in
support to the technical contribution of our solution we observe the following: (i) it is an use of automata
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and an extension of previous approaches never explored before; (ii) it provides an elegant solution ; (iii) it
is an optimal solution as it gives a tight upper bound, (iv) it is an easy scalable solution, as one can easily
inject more sophisticated solution concepts such as safety, fairness, etc.

By means of the automata-theoretic approach, one can also check for other “forms” of additional
winning conditions. For example one can check whether Player0 can win against all but one Player1
strategies. This is intimately related to the concept of almost surely-winning in probabilistic games [28].
As a practical application, this is useful in game design as it can highlight the presence of a unique
undesired behavior of the adversarial player and possibly suggest a way to prevent it. Similarly, it is
useful in security; for example it can highlight a flow in a firewall (a successful attack coming from the
environment) and suggest a way to correct it. Technically, the solution to the question “Does Player0
beat all Player1 strategies but one?” reduces to first build an automaton that collects all tree strategies
for Player0 that, except for one path, they correspond to winning strategies, and then check for its
non-emptiness.

In a broader vision, the importance of our work resides on the fact that it can be seen as a core engine
and as a first step through the efficient solution of important problems in computer science and AI. Among
the others, we mention checking the uniqueness of Nash Equilibrium under imperfect information for
reachability targets. This field has received much attention recently and some results can be found in
top venues such as [29, 30]. However, all the approaches used in the mentioned papers lead to a non-
elementary complexity, as they are shaped for very reach strategic formalisms to represent the solution
concepts, and thus far beyond the tight complexity we achieve instead in this work.

Along the paper we make use of some cooperative and adversarial game examples that will help to
better explain the specific game setting we are studying and the solution approaches we provide.
Related works. Counting strategies has been deeply exploited in the formal verification of reactive
systems by means of specification logics extended with graded modalities, interpreted over games of
infinite duration [31, 32, 20, 21]. However, our work is the first to consider additional winning strategies
in the imperfect information setting. Also, it is worth recalling that, on the perfect information side,
the solution algorithms present in the literature for graded modalities [20, 21] have been conceived to
address complicated scenarios and, consequently, they usually perform much worse (w.r.t. the asymptotic
complexity) than our algorithm on the restricted setting we consider. Clearly one can express with graded
modalities the existence of additional strategies in a game. To see how this is possible we refer to [21]for
an example in the perfect information setting.

Graded modalities have been first investigated over closed systems, i.e., one-player games, to count
moves and paths in system models. A pioneering work is [33], where these modalities have been studied
in classic modal logic. Successively, they have been exported to the field of knowledge representation,
to allow quantitative bounds on the set of individuals satisfying specific properties, as well as they have
been investigated in first-order logic and description logic. Specifically, they are known as counting
quantifiers in first-order logics [34], number restrictions in description logics [35, 36, 37, 38] and
numerical constraints in query languages [38, 39]

In [40], graded µCALCULUS has been introduced in order to express and evaluate statements about a
given number of immediately accessible worlds. Successively in [41], the notion of graded modalities
have been extended to deal with number of paths. Among the others graded CTL (GCTL, for short) has
been introduced with a suitable axiomatization of counting [41]. That work has been recently extended
in [42] to address GCTL?, a graded extension of CTL?.

In this work we analyze and compare different strategies in two-player games. The comparison
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between strategies is a problematic that has been intensively investigated in other works. Among the
others, we mention [43], where the concept of permissive strategies has been introduced. However, the
aim of that paper is to compare strategies in order to come up with a single strategy that allows to represent
all of them by one.

In multi-player system verification, we also witness several specific approaches to count strategies.
Chronologically, we first mention module checking for graded µCALCULUS [32], where the counting is
restricted to moves in a two-player setting. Then, in [20, 21], motivated by counting Nash equilibria, two
different graded extension of Strategy Logic have been considered.

We finally remark that the automata-theoretic solution we provide takes inspiration from the ones
used in [8, 32, 41, 44, 45]. In details, in [8] such a technique is used to show that the problem is
EXPTIME-complete w.r.t. CTL formulas and 2EXPTIME-complete w.r.t. CTL? formulas. In [32], an
automata-theoretic approach is used to show that the same problem over pushdown structures and graded
µCALCULUS formulas is 2EXPTIME-complete. In [41], automata are used to show that graded CTL
formulas are satisfiable in exponential time. In [44] efficient algorithms for the emptiness problem of
word and tree automata are provided. Finally, in [45], alternating tree automata are used in the imperfect
information case on the synthesis problem. However, our solution is much more efficient since it is
directly constructed for the simpler setting of two-player turn-based games of finite duration, played with
respect to the reachability objective.

Outline. The sequel of the paper is structured as follows. In Section 2 we introduce some preliminary
concepts. In Section 3 we describe two examples that are useful to introduce our game setting. In
Section 4 we introduce the definition of game under perfect information and in Section 5 we solve the
additional winning strategies problem by means of an automata-theoretic approach. In Section 6 we
consider imperfect information and in Section 7 we give some solutions for this game setting. We conclude
with Section 8 in which we report some discussions and suggest some directions for future work.

2. Preliminaries

In this section we introduce some preliminary concepts needed to properly define the game setting under
exam as well as to describe the adopted solution approach. In particular, we introduce trees useful to
represent strategies and automata to collect winning strategies.

Trees. Let Υ be a set. An Υ-tree is a prefix closed subset T ⊆ Υ∗. The elements of T are called nodes
and the empty word ε is the root of T . For v ∈ T , the set of children of v (in T ) is child(T, v) = {v · x ∈
T | x ∈ Υ}. Given a node v = y · x, with y ∈ Υ∗ and x ∈ Υ, we define anc(v) to be y, i.e., the ancestors
of v, and last(v) to be x. We also say that v corresponds to x. The complete Υ-tree is the tree Υ∗. For
v ∈ T , a (full) path π of T from v is a minimal set π ⊆ T such that v ∈ π and for each v′ ∈ π such that
child(T, v′) 6= ∅, there is exactly one node in child(T, v′) belonging to π. Note that every word w ∈ Υ∗

can be thought of as a path in the tree Υ∗, namely the path containing all the prefixes of w. For an alphabet
Σ, a Σ-labeled Υ-tree is a pair <T, V > where T is an Υ−tree and V : T → Σ maps each node of T to a
symbol in Σ.
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Automata Theory. We now recall the definition of alternating tree automata and its special case of
nondeterministic tree automata[46, 47, 48].

Definition 2.1. An alternating tree automaton (ATA, for short) is a tuple A =< Σ, D,Q, q0, δ, F >,
where Σ is the alphabet, D is a finite set of directions, Q is the set of states, q0 ∈ Q is the initial state,
δ : Q× Σ→ B+(D ×Q) is the transition function, where B+(D ×Q) is the set of all positive Boolean
combinations of pairs (d, q) with d direction and q state, and F ⊆ Q is the set of the accepting states.

An ATA A recognizes (finite) trees by means of (finite) runs. For a Σ-labeled tree <T, V >, with
T = D∗, a run is a (D∗×Q)-labeled N -tree <Tr, r> such that the root is labeled with (ε, q0) and the
labels of each node and its successors satisfy the transition relation.

For example, assume that A, being in a state q, is reading a node x of the input tree labeled by
ξ. Assume also that δ(q, ξ) = ((0, q1) ∨ (1, q2)) ∧ (1, q1). Then, there are two ways along which the
construction of the run can proceed. In the first option, one copy of the automaton proceeds in direction 0
to state q1 and one copy proceeds in direction 1 to state q1. In the second option, two copies of A proceed
in direction 1, one to state q1 and the other to state q2. Hence, ∨ and ∧ in δ(q, ξ) represent, respectively,
choice and concurrency. A run is accepting if all its leaves are labeled with accepting states. An input tree
is accepted if there exists a corresponding accepting run. By L(A) we denote the set of trees accepted by
A. We say that A is not empty if L(A) 6= ∅.

As a special case of alternating tree automata, we consider nondeterministic tree automata (NTA, for
short), where the concurrency feature is not allowed. That is, whenever the automaton visits a node x of
the input tree, it sends to each successor (direction) of x at most one copy of itself. More formally, an
NTA is an ATA in which δ is in disjunctive normal form, and in each conjunctive clause every direction
appears at most once.

3. Case Studies

In this section we introduce two different case studies of two-player games. In the first case the players
behave adversarial. In the second one, they are cooperative. These running examples are useful to better
understand some technical parts of our work.

3.1. Cop and Robber Game.

Assume we have a maze where a cop aims to catch a robber, while the latter, playing adversarial, aims for
the opposite. For simplicity, we assume the maze to be a grid divided in rooms, each of them named by
its coordinates in the plane (see Figure 1). Each room can have one or more doors that allow the robber
and the cop to move from one room to another. Each door has associated a direction along with it can be
crossed. Both the cop and the robber can enter in every room. The cop, being in a room, can physically
block only one of its doors or can move in another room. The robber can move in another room if there is
a non-blocked door he can take, placed between the two rooms, with the right direction. The robber wins
the game if he can reach one of the safe places (EXIT) situated in the four corners of the maze. Otherwise,
the robber is blocked in a room or he can never reach a safe place, and thus the cop wins the game. We
assume that both the cop and the robber are initially siting in the middle of the maze, that is in the room
(1, 1). It important to note that the game is played in a turn-based manner, and the cop is the first player
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Figure 1: Cop and Robber Game.

that can moves. Starting from the maze depicted in Figure 1, one can see that the robber has only one
strategy to win the game. In fact, if the cop blocks the door d7 (resp., d9), the robber can choose the door
d9 (resp., d7), then the cop can go in the room (1, 2) (resp., (2, 1)), and finally the robber can choose the
door d12 (resp., d10) and then wins the game. Consider now two orthogonal variations of the maze. For
the first one, consider flipping the direction of the door d12. In this case, the robber loses the game. As
second variation, consider flipping the direction of the door d6. Then the robber wins the game and he has
now two strategies to accomplish it.

3.2. Escape Game.

Assume we have an arena similar to the one described in the previous example, but now with a cooperative
interaction between two players, a human and a controller, aiming at the same target. Precisely, consider
the arena depicted in Figure 2 representing a building where a fire is occurring. The building consists
of rooms and, as before, each room has one-way doors and its position is determined by its coordinates.
We assume that there is only one exit in the corner (2, 2). One can think of this game as a simplified
version of an automatic control station that starts working after an alarm fire occurs and all doors have
been closed. Accordingly, we assume that the two players play in turn and at the starting moment all
doors are closed. At each control turn, he opens one door of the room in which the human is staying.
The human turn consists of taking one of the doors left open if its direction is in accordance with the
move. We assume that there is no communication between the players. We start the game with the human
siting in the room (0, 0) and the controller moving first. It is not hard to see that the human can reach the
exit trough the doors d1, d4, d7, d10 opened by the controller. Actually, this is the only possible way the
human has to reach the exit. Conversely, if we consider the scenario in which the direction of the door d3
is flipped, then there are two strategies to let the human to reach the exit. Therefore, the latter scenario can
be considered as better (i.e., more robust) than the former. Clearly, this extra information can be used to
improve an exit fire plan at its designing level.
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Figure 2: Escape Game.

4. The Game Model

In this section, we consider two-player turn-based games that are suitable to represent the case studies we
have introduced in the previous section. Precisely, we consider games consisting of an arena and a target.
The arena describes the configurations of the game through a set of states, being partitioned between the
two players. In each state, only the player that owns it can take a move. This kind of interaction is also
known as token-passing. About the target, we consider the reachability objective, that is some states are
declared target. The formal definition of the considered game model follows.

Definition 4.1. A turn-based two-player reachability game (2TRG, for short), played between Player0
and Player1, is a tuple G , <St, sI , Ac, tr, W>, where St , St ∪ St is a finite non-empty set of
states, with Sti being the set of states of Playeri, sI ∈ St is a designated initial state, Ac , Ac0 ∪Ac1
is the set of actions, W is a set of target states, and tr : Sti ×Aci → St−i, for i ∈ {0, 1} is a transition
function mapping a state of a player and its action to a state belonging to the other player.

To give the semantics of 2TRGs, we now introduce some basic concepts such as track, strategy and play.
Intuitively, tracks are legal sequences of reachable states in a game that can be seen as descriptions of
possible outcomes of the game.

Definition 4.2. A track is a finite sequence of states ρ ∈ St∗ such that, for all i ∈ [0, |ρ− 1|[ , if
(ρ)i ∈ St then there exists an action a0 ∈ Ac0 such that (ρ)i+1 = tr((ρ)i, a0), else there exists an action
a1 ∈ Ac1 such that (ρ)i+1 = tr((ρ)i, a1), where (ρ)i denotes the i-st element of ρ. For a track ρ, by
last(ρ) we denote the last element of ρ and by ρ≤i we denote the prefix track (ρ)0 . . . (ρ)i. By Trk ⊆ St∗,
we denote the set of tracks over St. By Trki we denote the set of tracks ρ in which last(ρ) ∈ Sti. For
simplicity, we assume that Trk contains only tracks starting at the initial state sI ∈ St.

A strategy represents a scheme for a player containing a precise choice of actions along an interaction
with the other player. It is given as a function over tracks. The formal definition follows.

Definition 4.3. A strategy for Playeri in a 2TRG G is a function σi : Trki → Aci that maps a track to
an action.
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The composition of strategies, one for each player in the game, induces a computation called play. More
precisely, assume Player0 and Player1 take strategies σ0 and σ1, respectively. Their composition
induces a play ρ such that (ρ)0 = sI and for each i ≥ 0 if (ρ)i ∈ St then (ρ)i+1 = tr((ρ)i, σ0(ρ≤i)),
else (ρ)i+1 = tr((ρ)i, σ1(ρ≤i)).

A strategy is winning for a player if all the plays induced by composing such a strategies with
strategies from the adversarial player will enter a target state. If such a winning strategy exists we say
that the player wins the game. Reachability games under perfect information are know to be zero-sum,
i.e., if Player0 loses the game then Player1 wins it and vice versa. The formal definition of reachability
winning condition follows.

Definition 4.4. Let G be a 2TRG and W ⊆ St a set of target states. Player0 wins the game G, under
the reachability condition, if he has a strategy such that for all strategies of Player1 the resulting induced
play will enter a state in W.

It is folklore that turn-based two-player reachability games are positional [44]. We recall that a strategy
is positional if the moves of a player over a play only depends of the last state and a game is positional
if positional strategies suffices to decide weather Player0 wins the game. Directly from this result, the
following corollary holds.

Corollary 4.5. Given a 2TRG G, a strategy σ0 for Player0, and a strategy σ1 for Player1, the induced
play ρ is winning for Player0 if there is (ρ)i ∈W with 0 ≤ i ≤ |St| − 1.

Hence, the corollary above just states that given a 2TRG game, Player0 wins the game if he can
reach a winning state in a number of steps bounded by the size of the set of states of the game.

Example 4.6. The two case studies that we have analyzed in Section 3 can be easily modeled using a
2TRG. We now give some details. As set of states we use all the rooms in the maze, together with the
status of their doors.

In the Escape Game the state ((0, 0), {dc1, dc3}) is the initial state, where dci means that the door di is
closed. For an open door, instead, we will use the label o in place of c. Formally, letDi,j be the set of doors
(up to four) belonging to the room (i, j), which can be flagged either with c (closed) or o (open), then we
set St ⊆ {((i, j), Di,j) | 0 ≤ i, j ≤ 2}. The set of actions for the controller are Accon = {opendi | 0 ≤
i ≤ 12}, i.e. he chooses a door to open. The set of actions for the human are Achum = {takedi | 0 ≤
i ≤ 12}, i.e. he chooses a door to take. Transitions are taken by the human in order to change the room
(coordinates) or by the controller to change the status of doors. These moves are taken in accordance
with the shape of the maze. The partitioning of the states between the players follows immediately,
as well as the definition of the target states. A possible track in which the human reaches the exit is
ρ = ((0, 0), {dc1, dc3})((0, 0), {do1, dc3})((0, 1), {do1, dc2, dc4})((0, 1), {do1, dc2, do4})((1, 1), {do4, dc6, dc7, dc9})
((1, 1), {do4, dc6, do7, dc9})((1, 2), {dc5, do7, dc10})((1, 2), {dc5, do7, do10})((2, 2), {do10, dc12}).

In the same way, in Cop and Robber Game the initial state is ((1, 1), ∅), where ∅ means that all doors
are open. The set of actions for the cop are Accop = {blockdi | 0 ≤ i ≤ 12}, i.e. he chooses a door to
block. The set of actions for the robber are Acrob = {takedi | 0 ≤ i ≤ 12}, i.e. he chooses a door to take.
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5. Searching for Additional Winning Strategies

To check whether Player0 has a winning strategy in a 2TRG G one can use a classic backward algorithm.
We briefly recall it. Let succ : St→ 2St be the function that for each state s ∈ St in G gives the set of its
successors. The algorithm starts from a set S equal to W. Iteratively, it tries to increase S by adding all
states s ∈ St that satisfy the following conditions: (i) s ∈ St and succ(s) ∩ S 6= ∅; or, (ii) s ∈ St and
succ(s) ⊆ S. If S contains at a certain point the initial state, then Player0 wins the game.

In case one wants to ensure that more than a winning strategy exists, the above algorithm becomes
less appropriate. For this reason, we use instead a top-down automata-theoretic approach. To properly
introduce this solution we first need to provide some auxiliary notation. Precisely, we introduce the
concepts of decision tree, strategy tree, and additional strategy tree.

A decision tree simply collects all the tracks that come out from the interplays between the players. In
other words, a decision tree can be seen as an unwinding of the game structure along with all possible
combinations of players actions. The formal definition follows.

Definition 5.1. Given a 2TRG G, a decision tree is an St-labeled Ac-tree <T, V >, where ε is the root
of T , V (ε) = sI , and for all v ∈ T we have that:

• if last(v) ∈ Ac0 then last(anc(v)) ∈ Ac1, otherwise last(v) ∈ Ac1;

• V (v) = tr(V (anc(v)), last(v)).

We now introduce strategy trees that allow to collect, for each fixed strategy for Playeri, all possible
responding strategies for Player1−i, with i ∈ {0, 1}. Therefore, the strategy tree is a tree where each
node labeled with s ∈ Sti has an unique successor determined by the strategy for Playeri and each node
labeled with s ∈ St−i has |Ac1−i| successors. Thus, a strategy tree is an opportune projection of the
decision tree. The formal definition follows.

Definition 5.2. Given a 2TRG and a strategy σ for Playeri, a strategy tree for Playeri is an St-labeled
Ac-tree <T, V >, where ε is the root of T , V (ε) = sI , and for all v ∈ T we have that:

• if last(v) ∈ Ac0 then last(anc(v)) ∈ Ac1, otherwise last(v) ∈ Ac1;

• if V (anc(v)) ∈ Sti then V (v) = tr(V (anc(v)), σ(ρ)), otherwise V (v) = tr(V (anc(v)), last(v));

where ρ = (ρ)0 . . . (ρ)|v|−1 is a track from sI , with (ρ)k = V (v≤k) for each 0 ≤ k ≤ |v| − 1.

Following the above definition and Definition 4.4, given a 2TRG G with a set of target states W , if G
is determined then Player0 wins the game and Player1 loses it by simply checking the existence of a
strategy tree for Player0, that is a tree such that each path enters a state belonging to W . Such a tree is
called a winning-strategy tree for Player0.

In case we want to ensure that at least two winning strategies exist then, at a certain point along the
tree, Player0 must take two successors. We build a tree automaton that accepts exactly this kind of trees.
We now give a definition of additional strategy trees and then we define the desired tree automata.

Definition 5.3. Given a 2TRG G and two strategies σ1 and σ2 for Playeri, an additional strategy tree
for Playeri is an St-labeled Ac-tree <T, V > that satisfies the following properties:
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• the root node is labeled with the initial state sI of G;

• for each x ∈ T that is not a leaf and it is labeled with state s of Player0, it holds that x has as
children a non-empty subset of succ(s);

• for each x ∈ T that is not a leaf and it is labeled with state s of Player1, it holds that x has as
children the set of succ(s);

• each leaf of T corresponds to a target state in G;

• there exists at least one leaf in T that has an ancestor node x that corresponds to a Player0 state in
G and it has at least two children.

The above definition, but the last item, is the classical characterization of strategy tree. The last
property further ensures that Player0 has the ability to enforce at least two winning strategies no matter
how Player1 acts.

We now give the main result of this section, i.e. we show that it is possible to decide in linear time
whether, in a 2TRG, Player0 has more than a winning strategy. We later report on the application of this
result along the case studies.

Theorem 5.4. For a 2TRG game G it is possible to decide in linear time whether Player0 has more than
a strategy to win the game.

Proof:
Consider a 2TRG game G. We build an NTA A that accepts all trees that are witnesses of more than a
winning strategy for Player0 over G. We describe the automaton. It uses Q = St× {ok, split} as set of
states where ok and split are flags and the latter is used to remember that along the tree Player0 has to
ensure the existence of two winning strategies by opportunely choosing a point where to "split". We set as
alphabet Σ = St and initial state q0 = (sI , split). For the transitions, starting from a state q = (s, flag)
and reading the symbol a, we have that:

δ(q, a) =



(s′, ok) if s = a and s ∈ St and flag = ok;

((s′, ok) ∧ (s′′, ok)) ∨ (s′, split) if s = a and s ∈ St and flag = split;

(s1, ok) ∧ · · · ∧ (sn, ok) if s = a and s ∈ St and flag = ok;

(s1, f1) ∧ · · · ∧ (sn, fn) if s = a and s ∈ St and flag = split;

∅ otherwise.

where s′, s′′ ∈ succ(s) with s′ 6= s′′, {s1, . . . , sn} = succ(s), and f1, . . . , fn are flags in which there
exists 1 ≤ i ≤ n such that fi = split and for all j 6= i, we have fj = ok. Informally, given a state q, if
q belongs to Player0 and its flag is split then there are one successor with flag split or two successors
with flag ok. Instead, if the flag is ok then there is only one successor with flag ok. In the case in which
the state belongs to Player1 and its flag is ok then there are n successors with flag ok. Finally, if the flag
is split then there are n− 1 successors with flag ok and one successor with flag split.
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The set of accepting states is W × {ok}. A tree is accepted by A if all the branches lead to a target
state and there is a node labeled with a state in St that has at least two successors. By Corollary 4.5, we
have that A considers only trees with depth until the number of states, so if no state in W is reached in
|St| steps, then there is a loop over the states in the game model that forbids to reach states in W.

The size of the automaton is just linear in the size of the game. Moreover, by using the fact that,
from [44], checking the emptiness of an NTA can be performed in linear time, the desired complexity
result follows. ut

Example 5.5. Consider the Escape Game example. By applying the above construction, the automaton
A accepts an empty language. Indeed, for each input tree, A always leads to a leaf containing either
a state with a non-target component (i.e., the tree is a witness of a losing strategy) or with a flag split
(i.e., Player0 cannot select two winning strategies). Conversely, consider the same game, but flipping
the direction of the door d3 in the maze. In this case, A is not empty. Indeed, starting from the initial
state (((0, 0), {dc1, dc3}), split), A proceeds in two different direction with states (((0, 0), {do1, dc3}), ok)
and (((0, 0), {dc1, do3}), ok), that refer to two distinct winning strategies for the controller.

A similar reasoning can be exploited with the Cop and Robber Game example. Indeed, by applying
our solution technique, we end in an automaton that accepts an empty language. Conversely, by flipping
the door d4, the automaton accepts a tree that is witnessing of two different winning strategies each of
them going through one of the two doors left unblocked by the cop.

For the sake of completeness, we report that in case of one-player games the problem of checking
whether more than a winning strategy exists can be checked in NLOGSPACE. Indeed, it is enough to
extend the classic path reachability algorithm in a way that we search for two paths leading to the target
state. This can be done by just doubling the used logarithmic working space [49].

By means of the automata-theoretic approach, one can also check for other and more sophisticated
“forms” of additional winning conditions. For example one can check whether Player0 can win the game
in case the opponent player is restricted to use all but one strategy. This check can be accomplished by
first using a classic backward algorithm, introduced at the beginning of this section, for Player1 and then
the automaton introduced in the proof of Theorem 5.4, but used to collect all additional strategy trees
for Player1. Precisely, if the backward algorithm says that Player1 wins the game and the automaton
is empty, then the result holds. Indeed, the satisfaction of both these conditions says that Player1 has
one and only one strategy to beat all strategies of Player0. Therefore, by removing this specific strategy,
Player0 wins the game. So, the explanation of the concept of all but one strategy derives.

Theorem 5.6. For a 2TRG game G it is possible to decide in linear time whether Player0 can win G
against all but one strategies of Player1.

6. Games with Imperfect Information

In this section, we provide the setting of two-player turn-based finite games with imperfect information.
As for the perfect information case, we consider here games along the reachability objective. The main
difference with respect to the perfect case is that both players may not have full information about the
moves performed by their opponents. Therefore, there could be cases in which a player has to come to
a decision (which move to perform) without knowing exactly in which state he is. More precisely, we
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assume that the players act uniformly, so they use the same moves over states that are indistinguishable to
them. The formal definition of these games follows.

Definition 6.1. A turn-based two-player reachability game with imperfect information (2TRGI , for
short), played between Player0 and Player1, is a tuple G , <St, sI , Ac, tr, W, ∼=0 ,∼=1>, where
St, sI , Ac, tr, and W are as in 2TRG. Moreover, ∼=0 and ∼=1 are two equivalence relations over Ac.

Let i ∈ {0, 1}. The intuitive meaning of the equivalence relations is that two actions a, a′ ∈ Ac−i such
that a ∼=i a

′ cannot be distinguished by Playeri. For this reason, we say that a and a′ are indistinguishable
to Playeri. By [Aci] ⊆ Aci we denote the subset of actions that are distinguishable for Player1−i. If
two actions are indistinguishable then also the reached states are so 1. A relation ∼=i is said an identity
equivalence if it holds that a ∼=i a

′ iff a = a′. Note that, a 2TRGI has perfect information if the
equivalence relations contain only identity relations.

To give the semantics of 2TRGIs, we now introduce the concept of uniform strategy. A strategy is
uniform if it adheres on the visibility of the players. To formally define it, we first give the notion of
indistinguishability over tracks.

For a Playeri and two tracks ρ, ρ′ ∈ Trk, we say that ρ and ρ′ are indistinguishable to Playeri iff
|ρ| = |ρ′| = m and for each k ∈ {0, . . . ,m − 1} we have that tr((ρ)k, (ρ)k+1) ∼=i tr((ρ

′)k, (ρ
′)k+1),

where tr is the function that given two states s and s′ returns the action a such that s′ = tr(s, a). Note
that tr is well defined since it takes as input successive states coming from real tracks and it returns just
one unique action due to the specific definition of tr.

Definition 6.2. A strategy σi is uniform iff for every ρ, ρ′ ∈ Trk that are indistinguishable for Playeri
we have that σ(ρ) = σ(ρ′).

Thus uniform strategies are based on observable actions. In the rest of the paper we only refer to uniform
strategies. We continue by giving the definition of the the semantics of 2TRGI , i.e. how Player0 wins
the game.

Definition 6.3. Let G be a 2TRGI and W ⊆ St a set of target states. Player0 wins the game G, under
the reachability condition, if he has a uniform strategy such that for all uniform strategies of Player1 the
resulting induced play has at least one state in W.

Technically, a uniform strategy can be seen as an opportune mapping, over the decision tree, of a
player’s "strategy schema" built over the visibility part of the decision tree itself. In other words, the
player first makes a decision over a set S of indistinguishable states and then this unique choice is used
in the decision tree for each state in S. This makes the decision tree to become uniform. It is important
to observe, however, that we use memoryfull strategies. This means that in a decision tree, the set S of
indistinguishable states resides at the same level. To make this idea more precise, we now formalize the
concept of schema strategy tree and uniform strategy tree.

Definition 6.4. Given a 2TRGI and a uniform strategy σ for Playeri, a schema strategy tree for Playeri
is a {>,⊥}-labeled (Aci ∪ [Ac−i])-tree <T, V >, where ε is the root of T , V (ε) = sI , and for all v ∈ T
we have that:
1For technical reasons, the indistinguishability over states follows from that one over actions. Thanks to this, the construction of
the 2TRGI easily follows.
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• if last(v) ∈ Aci then last(anc(v)) ∈ [Ac−i], otherwise last(v) ∈ [Ac−i];

• if last(v) ∈ [Ac−i] then V (v)=> else if last(v) = σ(ρ) then V (v)=>, otherwise V (v)=⊥;

where ρ=(ρ)0 . . . (ρ)|v|−1 is a track from sI , with (ρ)k = tr((ρ)k−1, last(v≤k)) for each 0≤k≤|v|− 1.

Thus, in a schema strategy tree the > label indicates that Playeri selects the corresponding set of
visible states in the decision tree and the ⊥ is used conversely 2. In particular, the starting node of the
game is the root of the schema strategy tree and it is always enabled; all nodes belonging to the adversarial
player are always enabled; and one of the successors of Playeri nodes is enabled in accordance with the
uniform strategy σ. Straightforwardly, a uniform strategy tree is a projection of the decision tree along the
schema strategy tree. In the next example we consider an extension of the Cop and Robber Game with
imperfect information.

Example 6.5. Consider again the Cop and Robber Game example given in Section 3. Assume now,
that we change the set of actions for the robber in Acrob = {l, r, t, b}, where l, r, t, and b represent
left, right, top, and bottom, respectively, and that the cop can always choose between two doors to enter,
namely d1 and d2. Assume also that the cop can only recognize whether the robber moves horizontally or
vertically. In other words, it holds that l ∼=cop r and t ∼=cop b. Accordingly, the cop has only two uniform
moves to perform, one for the first pair and one for the second. This is clearly different from the perfect
information case where the cop has instead four moves to possibly catch the robber. More formally, in the
imperfect information case, assuming that the robber moves first, we have four possible evolutions of the
schema strategy tree. In all schema the root is labeled with > and it has two successors x and y, both
labeled with > and corresponding to the actions l and r, and, t and b, possibly performed by the robber,
respectively. Moreover, x and y have both two children. The four schema evolve by respectively placing
to the children of x and y the following four combination of > and ⊥: ((>,⊥)(>,⊥)), ((>,⊥)(⊥,>)),
((⊥,>)(>,⊥)), and ((⊥,>)(⊥,>)). For example, the second tuple corresponds to choose action d1 in
response to actions l and r and d2 in response to t and b; similarly, the mining of the other tuple follows.
Directly from this explanation it is no hard to build the corresponding uniform strategy trees.

7. Looking for Additional Winning Strategies in 2TRGI

In this section, we introduce an automaton-theoretic approach to solve 2TRGI , taking as inspiration
those introduced in [8, 32, 41, 44]. We start by analyzing the basic case of looking for a winning strategy.
We recall that this problem is already investigated and solved in the case in which there is imperfect
information over states [9, 50]. By these considerations, we show how to solve the case in which the
imperfect information is over the actions. Subsequently, we extend the latter case to check whether the
game also admits additional winning strategies.

Before starting we recall that positional strategies do not suffice to decide a game with imperfect
information. Indeed, it is well known that Player0 needs exponential memory w.r.t. the size of the states
of the game in order to come up with a winning strategy in case it exists [50]. Therefore, we cannot
use directly the approach exploited in Section 5. A possible direction to solve a game G with imperfect

2The use of > and ⊥ is a classical solution in the automata theoretic approach to disable/enable successors, as it has been done
in Module Checking [7] and the like.
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information is to convert it, by means of a subset construction, in a game Ḡ with perfect information
and solve it by using Theorem 5.4 (see for example [50]). With this translation one can individuate
along the game Ḡ exponential strategies necessary to Player0 for winning the game. As the subset
construction involves an exponential blow-up and Theorem 5.4 provides a polynomial-time solution we
get an overall exponential procedure. In this paper, however, we present a different and more elegant
way to solve games with imperfect information. Precisely, we introduce a machinery that in polynomial
time can represent exponential strategies. With more details, given a game with imperfect information
G we construct an alternating tree automaton that accepts trees that represent uniform strategies under
imperfect information. This is done by sending the same copy of the automaton (same direction) to
all states that are indistinguishable to Player0. Then, the automaton checks that in all these common
directions Player0 behaves the same and satisfies the reachability condition. Precisely, the automaton
takes in input trees corresponding to Player0’s strategies over the unwinding of the game by replacing
nodes by the equivalence classes. The run instead is as usual, that is a Player0 strategy over the total
unwinding of the game. The beauty ot this approach resides on the fact that we do not make explicit the
exponential strategies required to win the game but rather consider a polynomial compact representation
of them by means of the automaton. Clearly, as the emptiness of alternating tree automata is exponential,
we get the same overall exponential complexity as in the subset construction approach.

7.1. Solution 2TRGI

To solve 2TRGI , we use an automata-approach via alternating tree automata. The idea is to read a
{>,⊥}-labeled (Ac ∪ [Ac])-tree such that more copies of the automaton are sent to the same directions
along the class of equivalence over [Ac1].

Theorem 7.1. Given a 2TRGI G played by Player0 and Player1, the problem of deciding whether
Player0 wins the game is EXPTIME-COMPLETE.

Proof:
Let G be a 2TRGI . For the lower bound, we recall that deciding the winner in a 2-player turn-based
games with imperfect information is EXPTIME-HARD [9, 50].

For the upper bound, we use an automata-theoretic approach. Precisely, we build an ATA A that
accepts all schema strategy trees for Player0 over G. The automaton, therefore will send more copies
on the same direction of the input tree when they correspond to hidden actions. Then it will check the
consistency with the states on the fly by taking in consideration the information stored in the node of the
tree. This can be simply checked by means of a binary counter along with the states of the automaton. For
the sake of readability we omit this.

The automaton uses as set of states Q = St× St× {>,⊥}× {0, 1} and alphabet Σ = {>,⊥}. Note
that, we use in Q a duplication of game states as we want to remember the game state associated to the
parent node while traversing the tree. For the initial state we set q0 = (sI , sI ,>, 0), i.e., for simplicity the
parent game state associated to the root of the tree is the game state itself. The flag f ∈ {0, 1} indicates
whether along a path we have entered a target state, in that case we move f from 0 to 1. Given a state
q = (s, s′, t, f), the transition relation is defined as:
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δ(q, t′) =



∧
a0∈Ac0

(d, (s′, s′′,>, f ′)) if s′ ∈ St and t′ = > and t = >;∧
a1∈Ac1

(d, (s′, s′′,>, f ′)) if s′ ∈ St and t′ = > and t = >;

false if t′ = > and t = ⊥;

true if t′ = ⊥.

where if s′ ∈ St then s′′ = tr(s′, a0) and d is in accordance with |Ac1|, else s′′ = tr(s′, a1) and
d is in accordance with |Ac0|; if q′ ∈ W then f ′ = 1 otherwise f ′ = f . Informally, given a state q,
if q belongs to Player0 (resp., Player1) and it is enabled then there are |Ac0| (resp., |Ac1| ) enabled
successors. Instead, if q is disabled then the automaton returns false. Finally, if the automaton reads the
symbol ⊥ then it returns true.

The set of accepted states is F = {(s, s′, t, f) : s, s′ ∈ St ∧ t = > ∧ f = 1}. Recall that an input
tree is accepted if there exists a run whose leaves are all labeled with accepting states. In our setting this
means that an input tree simulates a schema strategy tree for Player0. So, if the automaton is not empty
then Player0 wins the game, i.e., there exists a uniform strategy for him.

The required computational complexity of the solution follows by considering that: (i) the size of
the automaton is polynomial in the size of the game, (ii) to check its emptiness can be performed in
exponential time [51, 47]. ut

7.2. Additional Winning Strategies for 2TRGI

In this section we describe the main result of this work, i.e., we show an elementary solution to ensure
that more than a winning strategy exists in 2TRGIs. As we have anticipated earlier we use an opportune
extension of the automata-theoretic approach we have introduced in the previous sections.

First of all, we formalize the concept of schema additional strategy tree.

Definition 7.2. Given a 2TRGI and two uniform strategies σ and σ′ for Playeri, a schema additional
strategy tree for Playeri is a {>,⊥}-labeled (Aci ∪ [Ac−i])-tree <T, V >, where ε is the root of T ,
V (ε) = sI , and for all v ∈ T we have that:

• if last(v) ∈ Aci then last(anc(v)) ∈ [Ac−i], otherwise last(v) ∈ [Ac−i];

• if last(v) ∈ [Ac−i] then V (v) => else if last(v) = σ(ρ) or last(v) = σ′(ρ) then V (v) =>,
otherwise V (v)=⊥;

where ρ=(ρ)0 . . . (ρ)|v|−1 is a track from sI , with (ρ)k = tr((ρ)k−1, last(v≤k)) for each 0≤k≤|v|− 1.

Informally, a schema additional strategy tree is a schema strategy tree in which at a certain point along
the tree, a state of Player0 has to two successors. We build a tree automaton that accepts exactly this
kind of trees. Now, we have all ingredients to give the following result.

Theorem 7.3. Given a 2TRGI G played by Player0 and Player1, the problem of deciding whether
Player0 has more than a uniform strategy to win the game is in EXPTIME-COMPLETE.
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Proof:
Let G be a 2TRGI . For the lower bound, we recall that deciding the winner in a 2-player turn-based
games with imperfect information is EXPTIME-HARD [9, 50].

For the upper bound, we use an automata-theoretic approach. Precisely, we build an ATA A that
accepts all schema additional strategy trees for Player0 over G. Since the automaton sends more copies
on the same direction of the input tree when they correspond to hidden actions, then it checks the
consistency with the states on the fly by taking in consideration the information stored in the node of
the tree. In detail, the automaton uses as set of states Q = St × St × {>,⊥} × {0, 1} × {ok, split},
where given a state q = (s, s′, t, f, f̄) we have that s is the parent of s′, s′ is the actual state, t is used to
disable/enable the state, f is a flag indicating whether along the path we have entered in a target state,
and f̄ is a flag indicating whether along the path there was a state of Player0 with two successors. The
alphabet is Σ = {>,⊥} and the initial state is q0 = (sI , sI ,>, 0, split). Given a state q = (s, s′, t, f, f̄),
the transition relation is defined as follows:

δ(q, t′) =



∧
a0∈Ac0

(d, (s′, s′′,>, f ′, ok)) if s′ ∈ St and t′ = > and t = > and f̄ = ok;∧
a0∈Ac0

∨
f̄ ′∈{ok,split}(d, (s′, s′′,>, f ′, f̄ ′)) if s′ ∈ St and t′ = > and t = > and f̄ = split;∧

a1∈Ac1
(d, (s′, s′′,>, f ′, ok)) if s′ ∈ St and t′ = > and t = > and f̄ = ok;∧

a1∈Ac1

∨
f̄ ′∈{ok,split}(d, (s′, s′′,>, f ′, f̄ ′)) if s′ ∈ St and t′ = > and t = > and f̄ = split;

false if t′ = > and t = ⊥;

true if t′ = ⊥.

where it holds that if s′ ∈ St then s′′ = tr(s′, a0) and d is in accordance with |Ac1|, otherwise
s′′ = tr(s′, a1) and d is in accordance with |Ac0|; if q′ ∈W then f ′ = 1 otherwise f ′ = f . Informally,
given a state q, if q belongs to Player0, it is enabled, and its flag is split so there are |Ac0| enabled
successors, such that it holds that either all of them have split has flag, or at least two of them have ok
as flag . Instead, if the state q is enabled and its flag is ok then there are |Ac0| enabled successors and
all of them have the flag ok. If the state q belongs to Player1, it is enabled, and its flag is ok, thus there
are |Ac1| enabled successors such that all of them have the flag ok. Instead, if the state is enabled and its
flag is split then there are |Ac1| enabled successors such that at least one successor has flag split. In the
case in which the state q is disabled then the automaton returns false. Finally, if the automaton reads the
symbol ⊥ then it returns true.

The set of accepted states is F = {(s, s′, t, f, f̄) : s, s′ ∈ St ∧ t = > ∧ f = 1 ∧ f̄ = ok}. Recall that
an input tree is accepted if there exists a run whose leaves are all labeled with accepting states. In our
setting this means that an input tree simulates a schema additional strategy tree for Player0. So, if the
automaton is not empty then Player0 wins the game, i.e., there exists a schema additional strategy tree
for him. The required computational complexity of the solution follows by considering that: (i) the size
of the automaton is polynomial in the size of the game, (ii) to check its emptiness can be performed in
exponential time [51, 47]. ut

Finally, also in the imperfect information case one can repeat the same reasoning done in Section 5
about “all but one” strategies. Indeed, it is sufficient to use the automata in the proofs of Theorem 7.1 and
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Theorem 7.3 from the viewpoint of Player1. Indeed, the result follows by checking whether the former
automaton is not empty and the latter automaton is empty. Consequently, the following result holds.

Theorem 7.4. For a 2TRGI game G it is possible to decide in EXPTIME-COMPLETE whether Player0
has a uniform strategy against all but one uniform strategies of Player1.

8. Conclusion and Future Work

In this paper we have introduced a simple but effective automata-based methodology to check whether
a player has more than a winning strategy in a two-player game under the reachability objective. Our
approach works with optimal asymptotic complexity both in the case the players have perfect information
about the moves performed by their adversarial or not. Overall, this is the first work dealing with the
counting of strategies in the imperfect information setting we are aware of.

We have showed how our approach can be applied in practice by reporting on its use over two different
game scenarios, one cooperative and one adversarial. We believe that the solution algorithm we have
conceived in this paper can be used as core engine to count strategies in more involved game scenarios and
in many solution concepts reasoning. For example, it can be used to solve the Unique Nash Equilibrium
problem, in an extensive game form.

This work opens to several interesting questions and extensions. An interesting direction is to consider
the counting of strategies in multi-agent concurrent games. This kind of games have several interesting
applications in artificial intelligence [6]. Some works along this line have been done, but not for finite
games, nor in the imperfect information setting. As another direction of work, one can consider some kind
of hybrid game, where one can opportunely combine teams of players working concurrently with some
others playing in a turn-based manner as in [52, 53, 54]. Last but not least, it would be worth investigating
infinite-state games. These games arise for example in case the interaction among the players behaves in a
recursive way [55, 56].
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