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Abstract
An attack graph is a concise portrayal of the various paths within an open system that
enable an attacker to reach a prohibited state (such as gaining access to a restricted
resource), despite the system’s preventive measures. The assessment of system vulner-
ability involves examining the presence of such paths. In this work, we analyze attack
graphs using a game-theoretic approach. Specifically, we introduce a well-suited game
model that represents the dynamics between the system and the attacker, and propose an
automata-based solution to demonstrate the absence of vulnerability.

Keywords: Attack Graphs, Game Theory, Automata Theoretic Approach, Imperfect Information

1 Introduction
The inherent complexity of modern systems comes at a cost: as they become more complex
and intelligent, ensuring their security becomes increasingly challenging. When dealing with
security, the motto “Better safe than sorry” holds true. This is because the cost of repairing a
system flaw during maintenance is at least two orders of magnitude higher, compared to fixing
it at an early design stage. Consequently, to develop a secure system, tools that can detect
vulnerabilities and unexpected behaviors at the earliest stages of their life cycle are essential.
Formal methods have been a success story in checking systems’ reliability [1]. They allow
for verifying whether a system is correct by formally checking if a mathematical model of it
meets a formal representation of its desired behavior.

Recently, classic approaches such as model checking and automata-theoretic techniques,
originally developed for monolithic systems [2, 3], have been significantly extended to handle
reactive and multi-agent systems [4–8].These systems encapsulate the behavior of two or
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more rational agents interacting in a cooperative or adversarial manner, aiming at a designed
goal [9].

In system security checking, a malicious attack can be viewed as an attempt by an attacker
to gain unauthorized access to resources or compromise the system’s integrity. In this context,
attack graph [10] is one of the most prominent attack models developed, receiving much
attention in recent years. An attack graph represents a state where each node corresponds to
an attacker at a specific network location, and edges represent state transitions, i.e., attack
actions by the attacker. It is the system’s duty to prevent unauthorized accesses from the
attacker in each state of the graph.
To build attack graphs assumptions must made about the attackers profile (defined by their
motivations, resources, technical abilities, knowledge about the system under attack . . . ).
When considering critical systems with sensible assets, the worst-case scenario is usually
considered, that is the strongest possible attacker profile. In term of game theory modeling, it
means that the corresponding player will have perfect information on the game.
These attack graphs can then be leveraged to design new cybersecurity policies, in particular
cybersecurity reaction policies when facing an ongoing attack. In this latter case, it is crucial
to be able to take into account the uncertainty about the observation of an ongoing attack
progress (it is not always possible to exactly know the state of the attacker in the system).
In term of game theory modeling, it becomes interesting to consider a defender player with
imperfect information on the game.

In this paper, we introduce a novel approach to reasoning about attack graphs using a
game-theoretic approach and an automata-based solution to evaluate system reliability. We
first establish a two-player turn-based reachability game between the system defender and
the potential attacker, where the attacker moves along adjacent states within the attack graph
and the defender takes countermeasures to inhibit attacks. We demonstrate how simple attack
graphs can be reduced to such game models. We then construct a finite tree automaton that
accepts all the walking trees that allow the defender to prevent the attack from reaching des-
ignated states, regardless of the attacker’s behavior. By checking the non-emptiness of the
automaton, we show the system’s robustness, i.e., the absence of bad paths in the attack graph.
Notably, the construction of the automaton and its emptiness check can be performed in linear
time.

Subsequently, we consider a novel and interesting extension of attack-graphs in which
edges convey numerical information. This information expresses the cost for a malicious user
to make an attack. We provide a reduction between this latter class of attack graphs and the
previously introduced game.

Finally, we introduce a notion of imperfect information in attack graphs. Some arcs of the
attack graph will be in an equivalence relation, representing attacks that are indistinguishable
by the defender. We demonstrate a model reduction between attack graphs with imperfect
information and a particular form of two-player turn-based games with imperfect information,
showing how such games can be solved using existing techniques [11].
The novelty and importance of employing an automata-theoretic approach lie in its ability to
provide a rigorous and formal method for security verification[12–14]. Automata-theoretic
techniques enable precise modeling of system behaviors and the interactions between defend-
ers and attackers. This approach allows for the systematic exploration of all possible attack
scenarios and defense strategies, ensuring comprehensive coverage of potential security
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threats. Furthermore, the use of finite tree automata facilitates efficient computation, making
it feasible to apply these techniques to real-world systems. By leveraging automata theory,
we can achieve a higher level of assurance in the security and reliability of complex systems,
addressing challenges that traditional methods may overlook.

Additional material with respect to prior publications. Part of the present work already
appears in [15]. Unlike previous work, we focus on defender strategies instead of attacker
strategies. Additionally, we introduce a quantitative version of the games presented ear-
lier (see Section 4), and games with imperfect information (see Section 5).

Outline. In section 2, we present related works. In section 3 we formally introduce attack
graphs and two-player turn-based games, showing a reduction from the former to the latter.
We also show how to represent defender strategies via trees and a tree automaton accepting
all such trees, which is used to prove whether the defender has a winning strategy. In section 4
we introduce attack graphs with quantitative information and show how to reduce this model
to the same game model introduced in section 3. In section 5 we further extend our attack
graph model by introducing imperfect information and show how such model can be reduced
to a two-player game with imperfect information. Finally, section 6 concludes the paper by
also presenting future directions.

2 Related work

Attack graphs generators
The practical study on attack graphs mainly refers to “non model-based” approaches, with
few exceptions. The authors in [16] introduce A2g2v, a model checker that generates attack
graphs and detects an attack sequence by means of a counterexample. The authors in [17]
introduce a model checker for vulnerability analysis via attack graphs; it uses the verifica-
tion tool SMV [18], so it can only show one attack (counterexample) at the time. Differently,
[19] uses a modified version of the tool NuSMV [20] to represent all possible attacks. The
authors in [21] introduce MulVAL, an attack graph generation and network security-analyzer
tool based on logical programming; it reduces the bottleneck of the state-explosion problem
by making use explicitly of the logical dependencies between attack goals and configu-
ration information. Most of the existing attack-graph tools are brute-force forward-search
based, which is a huge limitation in practice. Conversely, our automata-based approach allows
checking convoluted security properties, including liveness and regular behaviors [22], useful
to specify service guarantees against real malicious activity.

Analysis of attack graphs
Besides the problem of attack graph generation, a large body of works on attack graphs pro-
poses methods to analyze them, as surveyed in [23] and [24]. These methods can be roughly
divided into two groups: the risk assessment methods aiming at analyzing the attacker’s
behavior and the risk treatment methods aiming at deploying new security countermeasures.
For instance, in the first group, [25] considers an hybrid attribute based attack graph (i.e
an attack graph extended with continuous and discrete variables such as clocks), transforms
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it into a timed automata, and checks reachability properties in the Metric Interval Tempo-
ral Logic (MITL). The second type of methods targets a security hardening of the system
by adopting an optimal security policy to improve security. Since repairing all vulnerabili-
ties may be infeasible, these methods propose to remove some appropriate vulnerabilities (or
deploy new security countermeasures) to minimize the impact of attack under a given defense
cost threshold. Several algorithms to find optimal security hardening policies for attack graphs
have been proposed: [26–28]. These works consider a static view of cybersecurity corre-
sponding to a prevention approach. A more dynamic view or reaction approach is needed
when facing attacks: given an action of the attacker, which countermeasure the defender must
deploy in priority to minimize the risk on the system.

Attack graphs and game theory
To achieve previous goal, several existing works have proposed different game-theoretic solu-
tions for finding an optimal defense policy based on attack graphs. Most of these approaches
do not use formal verification to analyze the game, but rather try to solve them using analytic
and optimization techniques. The goal is to find the Nash equilibrium in order to character-
ize the most promising attacker/defender’s actions. The works in [29, 30] study the problem
of hardening the security of a network by deploying honeypots to the network to deceive the
attacker. They model the problem as a Stackelberg security game in which the attack scenario
is represented using attack graphs. The authors in [31] tackle the problem of allocating limited
security countermeasures to harden security based on attack scenarios modeled by Bayesian
attack graphs using partially observable stochastic games. They provide heuristic strategies
for players and employ a simulation-based methodology to evaluate them. The work in [32]
proposes an approach to select an optimal corrective security portfolio given a probabilistic
attack graph. They define a Bayesian Stackelberg game that they solve by converting it into
Mixed-Integer Conic Programming (MICP) optimization problem.
Notice that, all the approaches mentioned above, are customized by the specific problem
under exam; in other words every problem has its own approach. Conversely, the approach
we propose in this paper, by means of tree automata, is general and can handle any problem
by means of a unique tool. This offer an unified way of analysis for different settings.

Attack graphs and formal methods
The work in [33] shares some ideas with our approach. However, they use a timed-logic
framework and timed games to express and evaluate network security properties, which result
in an EXPTIME-complete procedure. In [34], the authors define an attack / defense stochastic
game under partial observation based on an attack graph. This game is transformed into a
perfect game and uses PRISM-games to analyze the perfect security game, and the properties
to be checked are specified into a subset of the temporal logic rPATL (Probabilistic ATL with
Rewards) [35]. This approach requires to consider a quantitative extension of attack graphs
including a metric to express the probability that a specific node in the attack graph is reached
during an attack. Such metric being difficult to define in an accurate manner, our work focuses
on the symbolic part of attack graphs, leaving quantitative part for future work.
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Formal methods and bounded resources
Resource consumption in games is a well established area of research. Energy games [36],
are two player games played on multi-weighted graphs. In such graphs, the set of states is
partitioned into Player 1 states and Player 2 states, and each transition consumes, or produces,
a finite amount of resources (represented as a finite numerical vector of fixed length). Player 1
wins if, given an initial amount of resources b, he can play forever while keeping b above 0.
In this case, Player 1 has a winning strategy. The problem of determining, given an energy
game and an initial amount of resources b, whether there is a winning Player 1 strategy for
the game, was shown to be decidable in 2EXPTIME in [37]. Games with resource constraints
have also been studied in a logical context. Versions of ATL where models are the concurrent
version of multi-weighted graphs, are also discussed in the literature. These logics model dif-
ferent approaches to resource use. In some of them [38], transitions only consume resources,
while in others transitions consume and produce resources [39]. Resource production can be
bounded or unbounded, i.e., the amount of resources produced by transitions can have a max
or not. To our knowledge, with the only exception of [40], unbounded production of resources
lead to the undecidability of the model checking problem for such logics.

Formal methods and imperfect information
In the above mentioned approaches, it is assumed perfect information of the players/agents.
However, in real-life scenarios it is common to have situations in which agents have to play
without having all relevant information at hand. In computer science these situations occur for
example when some variables of a system are internal/private and not visible to an external
environment [41]. In game models, the imperfect information is usually modelled by setting
an indistinguishability relation over the states of the game [41, 42]. In this case, during a play,
it may happen that some players cannot tell precisely in which state they are, but rather they
observe a set of states. Therefore these players cannot base their strategy on the exact current
situation. This means that over indistinguishable sets they can only use the same move or,
similarly, that some perfect information moves are not valid any more. This feature deeply
impacts on the MC complexity. For example, ATL becomes undecidable in the context of
imperfect information and memoryful strategies [43]. To overcome this problem, some works
have either focused on an approximation to perfect information [44, 45] or developed new
notions on strategies [46–51].

To conclude, as far as we are aware of, none of the papers dealing with attack graphs in the
formal methods literature have used tree automata, in particular, not in the case of imperfect
information.

3 Attack Graphs
Before introducing the concept of attack graph, let us fix some preliminary notions that will
be used along the paper.
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Attack Location Precondition Postcondition Counter
measure

att1 Web Server web server : root
att2 Server web server : root server : root c2

att3 Workstation web server : root password : 1234
att4 Database A server : root databaseA : root c4

att5 Database B server : root∧ databaseB : root c5
password : 1234

Table 1 Atomic attacks and countermeasures over the LAN depicted in Figure 1.

3.1 Preliminaries
A directed graph is given by a finite non-empty set V of states (or vertices) and a finite set
E ⊆ V × V of edges. If (v, v′) ∈ E we say that v is a parent of v′ and that v′ is a child of
v. A vertex v that has no children will be called a leaf. A rooted directed graph is a tuple
G = ⟨V, r, E⟩ such that ⟨V, E⟩ is a directed graph and r is a distinguished vertex called root. A
path is a finite, non-empty sequence of vertices P = v0, . . . , vn such that vi is a parent of vi+1
for any i ∈ {0, . . . , n − 1}. The size (or length) of a path |P| is the number of its elements. We
say that P = v0, . . . , vn is a path from v to v′ if v0 = v and vn = v′. A rooted directed graph is
connected if for any vertex v there is a path from the root r to v. A directed graph is acyclic
(or monotonic) if for each path P = v0, . . . , vn over G we have that v0 = vn implies 0 = n. A
directed tree is a rooted directed graph that is acyclic, connected, and in which each non-root

Fig. 1 An illustrating LAN architecture example.

webserver : root
server : root

webserver : root
server : root
databaseA : root

v2 v4

v0 v1

webserver : root

v3 v5 v6
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webserver : root
password : 1234
server : root

webserver : root
password : 1234
server : root
databaseB : root

att1

att2

att3

att4

att2 att5

att4

Fig. 2 Example of attack graph.
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vertex has exactly one parent. Alternatively, one can define a directed tree as a rooted directed
graph that is acyclic, connected, and in which there is exactly one path from the root to any
vertex of the graph.

Now that we have fixed these preliminaries notions, we expose attack graphs. The term
attack graph has been first introduced by Phillips and Swiler [52]. The general idea is to
represent the possible attack paths in a system as a graph. This graph is generated given a
description of the system architecture (topology, configurations of components, etc.) together
with the list of existing vulnerabilities, the attacker’s profile (his capability, passwords knowl-
edge, privileges, etc.) and attack templates (attacker’s atomic action, including preconditions
and postconditions). An attack path in the graph corresponds to a sequence of atomic attacks.
Several works have developed this approach, see e.g., [21, 53–56], and [57] for a survey.

There is no standardized definition of an attack graph: each of the previously cited works
introduced its own attack graph model with its specificity, in particular regarding the seman-
tics of nodes and edges (some works even use hypergraphs and not graphs to have a more
concise representation of attack paths). However, all introduced models can be mapped into
a canonical attack graph as introduced in [58]. It is a labelled oriented graph, where:

• each node represents both the state of the system (including existing vulnerabilities) and
the state of the attacker including constants (attacker skills, financial resources, etc.) and
variables (knowledge of the network topology, privilege level, obtained credentials, etc.);

• each edge represents an action of the attacker (a scan of the network, the execution of an
exploit based on a given vulnerability, access to a device, etc.) that changes the state of the
network or the states of the attacker; an edge is labelled with the name of the action (several
edges of the attack graph may have the same label).

To reduce the complexity of analysis, we will consider in the rest of the paper monotonic
attack graphs, i.e., acyclic graphs. It means that the attacker will never backtrack its attack
steps which is a reasonable assumption in term of cybersecurity risk modeling.

Furthermore, an attack graph is said complete whenever the following condition holds:
for every state q and for every atomic attack att, if the preconditions of the atomic attack hold
in q, then there is an out-coming edge from q labelled with att.

We now give an example of an attack graph that corresponds to the architecture of the
illustrating scenario depicted in Figure 1. Precisely, we consider an enterprise local area net-
work (LAN) featuring a Server, a Workstation, and two databases Database A and Database
B. The LAN also provides a Web Server. Accesses via Internet to the LAN are controlled by
a firewall.

Table 1 gathers all possible atomic attacks an attacker can perform over the LAN. For
instance, att2 specifies that an attacker can exploit a vulnerability related to the Server: as a
precondition the attacker needs to have root access to the Web Server and, as a postcondition,
he will obtain root access to the Server.

An attack graph built from this set of atomic attacks and collecting possible attack paths
is depicted in Figure 2. The attacker’s initial state is a node in the attack graph. Let us suppose
that the attacker is in state v1 and wants to reach state v4. To get to this target, he can perform
the sequences of atomic attacks att2, att4 or att3, att2, att4.

From the defender side, we consider that she is able to dynamically deploy a predefined
set of countermeasures: for instance by reconfiguring the firewall filtering rules, or patching

7



some vulnerabilities, that is by removing one or several preconditions of an atomic attack. A
given countermeasure c will prevent the attacker from longing a given attack att: deploying c
is equivalent to removing all the edges in the attack graph labelled with att. In real situations,
due to budget limitation or technical constraints, the set of available countermeasures may not
cover all atomic attacks. In our previous example, as reported in the last column of Table 1,
we suppose that the defender has at her disposal a countermeasure c2 for attack att2, c4 for
attack att4, and c5 for attack att5, but no one for the attacks att1 and att3.

Along the paper we address attack graphs in the context of attack/response scenarios. We
assume that:

1. The defender always knows the attack graph state reached by the attacker, i.e. the defender
can detect an atomic attack launched by the attacker (using security supervision tools like
the Intrusion Detection System). This is a very strong assumption, that will be relaxed in
section sec:ImperfectInformation

2. At every moment, the attacker is in a unique state of the attack graph.
3. When the attacker launches an attack (if the preconditions are satisfied and the correspond-

ing edge has not been removed by the defender), then the attack always succeeds (i.e. the
attacker reaches the next state).

4. When the defender detects the attacker’s state, she can react by deploying a unique coun-
termeasure, whose effect is to remove all edges in the attack graph labelled with such a
countermeasure.

5. When the defender deploys a new countermeasure, the attacker has the knowledge of its
effect (i.e., the attacker knows which edges have been removed from the attack graph).

Some of these assumptions will be relaxed along the paper. In particular, assumption (1)
will be discharged: has we have anticipated in the introduction, we will consider attack/re-
sponse scenarios in which the defender has imperfect information about the position of the
attacker in the attack graph.

In the LAN example, a possible attacker-defender interaction is the following: the attacker
starts in state v0, performs attack att1 and reaches state v1; then, the defender deploys coun-
termeasure c2, so the attacker cannot perform attack att2 from v1; then, the attacker performs
attack att3 from v1 and reaches state v3; finally, since the defender deploys countermeasure
c2, the attacker is stopped in v3.

3.2 From Attack Graphs to Two-Player Games
We now give a formal definition of attack graph and two-player game. Then we show a model
reduction among them.
Definition 1. An attack graph is a tupleM = ⟨V, v0,E, L, Tr⟩, where:

• ⟨V, v0,E⟩ is a rooted directed graph that is acyclic and connected;
• L : E→ N is a function that labels the elements of E;
• Tr ⊆ V is a set of target states.

We formalize a two-player turn-based game as follows.
Definition 2. A turn-based two-player game (2TG, for short) is a tuple G = ⟨S, s0,R,W⟩
where:
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• ⟨S, s0,R⟩ is a directed tree such that:

1. S = SA ∪ SD and SA ∩ SD = ∅. The set of states SA is the set of state that are owned by
the attacker, while states in SD are owned by the defender. We impose that the root s0 is
an attacker state.

2. R = RA ∪ RD, RA ⊆ SA × SD, RD ⊆ SD × SA and RA ∩ RD = ∅.

• W ⊆ SD is the set of states that are winning for the attacker: while the attacker reach one
of these states, using an edge in RA, he wins the game.

The size of a game G is the cardinality of S. Given a game G, each player moves a token
along the states via the relation R, starting from the initial state, with the attacker moving first.
If the token is in an attacker’s (resp., defender’s) state, then he can move in a subset of states
that belongs to the defender (resp., the attacker). More precisely, a play is a path of ⟨S, s0,R⟩
whose first element is the root s0 of the tree. In the following, we will use the Greek letters ρ
and τ to denote plays.

A strategy for a game G is usually defined as a function. A function that specifies, at
each moment of the game, which move a player must play according to the moves previously
played (the history of the game). A strategy is winning when the player, who is following
the strategy, wins, whatever the strategy of the opponent is. We choose another equivalent
definition, motivated by our approach to solve games. We see a strategy as a tree in which
each node is a state of the game, each path from the root of the tree to a given node is a play
over the game, each play ending in one of the attacker’s (the opponent) states s, has as many
children as there are available RA-reachable state from s and each play ending in one of the
defender’s (the proponent) state s’ has at most one child that is RD-reachable state from s’.
Definition 3. A Defender strategy σ for a game G = ⟨S, s0,R,W⟩ is a finite tree whose root
is s0, whose branches are plays over G and that satisfy the following properties:

1. For each node s of σ: if s ∈ SA then s has as many children as there are nodes s′ ∈ SD

such that (s, s′) ∈ RA;
2. For each node s of σ: if s ∈ SD and s ∈ W then s has no children, otherwise s has one

child s′ ∈ SA such that (s, s′) ∈ RD.

A Defender strategy σ is winning whenever no leaf of the strategy belongs to W.
LetM = ⟨V, v0,E, L, Tr⟩ be an attack graph, we denote by Actd the set of actions of the

defender inM. If v ∈ V we define E(v) = {(v, v′) ∈ E}. If e = (v, v′) ∈ E , πi(e) for i ∈ {1, 2}
denote the i-projection of e. If E′ ⊆ E is a set of edges Πi(E′) = {v ∈ V | v = πi(e) for e ∈ E′}.
We let nil denote the empty list.

Now, we have all the ingredients to present our reduction.
In Algorithm 1 we devise a procedure to reduce an attack graphM to a two-player turn-

based game G. The algorithm proceeds as follows. For every state of G the procedure keeps
track of the edges disabled by the defender along the path from the initial state to the current
one. In detail, we initialize a token that determines the turn (line 2), a list to handle the edges
disabled by the defender in the initial state (line 3), the set of states in G (line 4), and a queue
to keep track of the states that have not yet been explored (line 5). Then, there is a loop (lines
6-23) that is divided in two different parts w.r.t. the token value. If token = 1, i.e., it is the
turn of the attacker, then given the state (v, rmv) from the queue (line 8), for each state v′

in accordance with the adjacent states of v that are not disabled by the defender, we add a
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Algorithm 1 From AG to Two-Player Game
1: procedure REDUCETOGAME(M, Actd)
2: token = 1
3: rmv0 = nil
4: SA = {(v0, rmv0 )}
5: queue = [(v0, rmv0 )]
6: while queue , ∅ do
7: for i = 1 to size(queue) do
8: (v, rmv) = dequeue(queue)
9: if token = 1 then

10: for v′ ∈ Π2(E(v) \ rmv) do
11: enqueue(queue, (v′, rmv))
12: SD = SD ∪ {(v′, rmv)}
13: RA = RA ∪ {((v, rmv, ), (v′, rmv))}
14: if v′ ∈ Tr then
15: W = W ∪ {(v′, rmv)}
16: end if
17: end for
18: token = 2
19: else
20: for a ∈ Actd do
21: rm′v = UPDATE(a,M)
22: enqueue(queue, (v, (rmv ∪ rm′v)))
23: SA = SA ∪ {(v, (rmv ∪ rm′v))}
24: RD = RD ∪ ((v, rmv), (v, (rmv ∪ rm′v))
25: end for
26: token = 1
27: end if
28: end for
29: end while
30: end procedure
31: return ⟨SA ∪ SD, v0,RA ∪ RD,W⟩
32: procedure UPDATE(a,M)
33: temp = ∅
34: for e ∈ E do
35: if L(e) = a then
36: temp = temp ∪ {e}
37: end if
38: end for
39: return (temp)
40: end procedure

new state in SD, a new transition, and add it in the queue (lines 9-13). Then (lines 14-15) we
check whether the edge belongs to the set of target states of the attack graph. If so, we add
it to the set of winning states of the game. Otherwise, if it is the defender’s turn, we analyze
each possible action for the defender (defined with the set Actd) and create a new state in
SA, the correspondent transition, add it in the queue. In this second case, we use an auxiliary
procedure called UPDATE, to update the list rmv′ (line 19) by adding edges in accordance
with the action a of the defender (lines 27-28).

Note that, for every state v, we associate a list of removed edges rmv to memorize the
actions selected by the defender along the current computation from the initial state. To con-
clude, since the attack graph is monotonic, i.e. it is acyclic, it is easy to see that the algorithm
terminates. Now, we have all the ingredients to provide the following result.
Theorem 1. Algorithm 1 is sound and complete.
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Attacker v0 ⟨0, 0⟩

Defender v1 ⟨0, 0⟩

Attacker v1 (v5 , v6) v1
(v2 , v4)
(v5 , v4) v1

(v1 , v2)
(v3 , v5)

Defender v3 (v5 , v6) v2 (v5 , v6) v3
(v2 , v4)
(v5 , v4) v2

(v2 , v4)
(v5 , v4) v3

(v1 , v2)
(v3 , v5)

Attacker v2 (v5 , v6) v2
(v5 , v6)
(v2 , v4)
(v5 , v4)

v2
(v5 , v6)
(v1 , v2)
(v3 , v5)

Defender v4 (v5 , v6) v4
(v5 , v6)
(v1 , v2)
(v3 , v5)

Fig. 3 Part of the 2TG generated from the AT in Figure 2. Blue dotted vertex are those that have a successor that is
not showed. Red vertex are winning

Proof. For completeness, note that the algorithm generates a two-player turn-based game for
any given input attack graph. Correctness follows trivially by construction. In fact, we ensure
that the attacker can navigate the model according to the defender’s choices equivalently to
what is allowed in an attack graph. To guarantee the correctness of the game execution, the
defender’s choices (i.e. the eliminated edges) are saved within the states and the winning
states are labeled following those of the attack graph. □

Figure 3 shows an application of Algorithm 1 for the attack graph depicted in Figure 2 by
considering Actd = {c2, c4, c5} and initial state for the attacker v0.

3.3 Automata-Based Approach for Solving 2TG

We now present a top-down automata-theoretic approach to solve our game. According to def-
inition 3, a strategy for the defender is a tree that takes for each node corresponding to a state
s in the game, one successor if s belongs to the defender, or all successors, otherwise. If a
strategy is winning, then no leaf of this tree is a winning state for the attacker in G.

Now, we define the automaton that accepts all the trees that are winning strategies for the
defender.
Definition 4. A nondeterministic tree automaton (NTA, for short) is a tuple A =

⟨Q,Σ, q0, δ, F⟩, where: Q is a set of states, q0 ∈ Q is an initial state, δ : Q×Σ→ 2Q is a tran-
sition function mapping pairs of states and symbols to a set of tuples of states, and F ⊆ Q is
a set of the accepting states.

A NTA A recognizes trees and works as follows. For a node tree labelled by a and A
being in a state q, it sends different copies of itself to successors in accordance with δ. By

11



L(A) we denote the set of trees accepted byA. The automaton is not empty if L(A) , ∅. We
now give the main result of this section.
Theorem 2. Given an attack graphM and its 2TG G, it is possible to decide in linear time
w.r.t the size of G whether the Defender has a winning strategy over G.

Proof. We build a NTAA that accepts all the winning strategies for the Defender over G. We
briefly describe the automaton. The set of states Q is the set of states S of the game. We use
the alphabet Σ = S. For the initial state, we set q0 = s0. For the transitions, starting from a
state q = s, we have the following cases:

δ(q, a) =


(s′1) ∨ · · · ∨ (s′n) if s ∈ SD and q = a
(s′1, . . . , s

′
n) if s ∈ SA and q = a

∅ otherwise

where s′i ∈ S and (s, s′i) ∈ R, for all 1 ≤ i ≤ n. Note that, n = |{s′ ∈ S | (s, s′) ∈ R}|.
Finally, the set of accepting states is equal to the set of leafs of the tree ⟨S, s0,R⟩ that are not
in W. The size of the automaton is linear in the size of the game, and from [59] we know that
checking the emptiness of a NTA can be done in linear time. So, the desired complexity result
follows. Note that, completeness comes from the fact that for each attack graph we generate
an NTA, while correctness directly derives from the construction of the automaton. In fact,
the accepting trees are those where for a defender’s node it is sufficient to consider only one
successor of the automaton (disjunction of the transition function), while for the attacker’s
nodes, all possible successors must be considered. These types of trees are by definition a
strategy for the defender. The strategy becomes winning if every path of the tree does not visit
winning states for the attacker. □

4 Quantitative attack graphs
As initially suggested by Bruce Schneier in the case of attack trees1, attack graphs have
also been extended to incorporate some attributes such as costs of atomic attacks in order to
deduce the cheapest attack scenarios, but also other types of attributes such as probability of
attack success, severity, impact (see for instance [60]). Usually the values of these attributes
are inferred from vulnerability metrics and databases such as the NIST Common Vulnera-
bility Scoring System / Network Vulnerability Database (CVSS/ CNVD)2. In this section, we
introduce a quantitative extension of attack graphs that we call energy attack graph (or EAG
for short). We use such attack graphs to model situations in which an attacker spends a finite
(possibly null) amount of resources to move from one state to another in the graph. These
resources can be heterogeneous in nature. For example: a monetary cost, units of time, units
of computation, etc. We thus associate to each edge of the attack graph a finite vector of nat-
ural numbers. Each vector’s component represents the amount of resources of a certain type
needed to go from the vertex-source of the edge to its vertex-target. The attacker has an initial
amount of resources. His goal is to find a path in the attack graph reaching one of the target
states that does not have a cost that exceeds his initial amount of resources. Consequently, the
defender’s goal is to prevent the attacker from doing so. The cost of a path v0, . . . , vn being
the sum of the resources associated to the edges going from vi to vi+1 for 0 ≤ i ≤ n − 1.

1See https://www.schneier.com/academic/archives/1999/12/attack trees.html
2See https://nvd.nist.gov/
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Algorithm 2 From EAG to Two-Player Game
1: procedure REDUCETOGAME(M, Actd)
2: token = 1
3: rmv0 = nil
4: cv0 = [01, . . . , 0r]
5: SA = {(v0, rmv0 )}
6: queue = [(v0, rmv0 )] ▷ Initialize the counter
7: while queue , ∅ do
8: for i = 1 to size(queue) do
9: (v, rmv) = dequeue(queue)

10: if token = 1 then
11: for v′ ∈ Π2(E(v) \ rmv) do
12: enqueue(queue, (v′, rmv))
13: cv′ = cv + $(v, v′) ▷ Update the counter for the node v′
14: SD = SD ∪ {(v′, rmv)}
15: RA = RA ∪ {((v, rmv, ), (v′, rmv))}
16: if v′ ∈ Tr then
17: if c′v ≤ m⃗ then ▷ Check the value of the counter w.r.t. the initial amount
18: W = W ∪ {(v′, rmv)}
19: end if
20: end if
21: end for
22: token = 2
23: else
24: for a ∈ Actd do
25: rm′v = UPDATE(a,M)
26: enqueue(queue, (v, (rmv ∪ rm′v)))
27: SA = SA ∪ {(v, (rmv ∪ rm′v))}
28: RD = RD ∪ ((v, rmv), (v, (rmv ∪ rm′v))
29: end for
30: token = 1
31: end if
32: end for
33: end while
34: end procedure
35: return ⟨SA ∪ SD, v0,RA ∪ RD,W⟩

4.1 From Quantitative Attack Graphs to Two-Player Games
We now formally define EAG and then reduce them to our simple two-player game model.
Definition 5. An energy attack graph is a tupleM = ⟨V, v0,E, L,Tr, r, m⃗, $⟩, such that:

• ⟨V, v0,E, L,Tr⟩ is an attack graph;
• m⃗ is a vector of natural numbers of length r;
• r is a positive natural number;
• $ : E→ Nr is a function that assigns to each edge a vector n⃗ of natural numbers such that
|⃗n| = r.

The natural number r represents the number of different types of resources that are needed
to make an attack, e.g., money, time, energy, etc. The vector m⃗ represents the initial amount
of resources that are given to an attacker: each component of the vector represents the amount
of a different type of resource. The function $ assigns to each transition e ∈ E the cost of the
transition. Such cost is represented as a vector of natural numbers of length r.

To reduce an EAG to a 2TG one natural option would be to extend our game model. In
particular, we could opt for energy games. In such games, each transition from one state to
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Attack Cost
att1 ⟨0, 0⟩
att2 ⟨2, 1⟩
att3 ⟨4, 1⟩
att4 ⟨3, 2⟩
att5 ⟨2, 5⟩

Table 2 Cost of each attack for the
attack graph of Figure 2

another consumes a finite amount of resources. Although this extension seems natural, we
opt for another solution that allows us not to modify our game model in any way. In fact,
given an EAGM, we can transform it in a 2TG G of definition 2, by a slight modification of
Algorithm 1.

To obtain such solution (displayed in Algorithm 2), we add a counter cv (a vector of length
r) for each node v (the counter for the initial node v0 has value 0 in each of its coordinates).
Such counter keeps track of the resources used to reach the node v along the path of the attack
graph starting at the initial node. The counter is updated using the function $ of the EAG. To
check whether a node v ∈ SD belongs to the set of winning states W, we check if it belongs
to the set of target states of the EAG and if the counter is not bigger than the initial amount of
resources m⃗ given to the attacker in the EAG.
Now, we can provide the following result.
Theorem 3. Algorithm 2 is sound and complete.

Proof. For completeness, note that the algorithm generates a two-player turn-based game
for any given input attack graph. Correctness follows trivially by construction. In fact, by
Algorithm 1, given an attack graph we can generate a turn-based game. For the quantitative
part, we have added a counter for each path of the turn-based model that guarantees us a
condition on the energy threshold provided to the attacker. In this way, if the attacker’s energy
is sufficient for an attack, the attack is successful, whereas if the energy is not sufficient, the
attack fails. We model this last part by considering that if an attacker has exhausted their
resources, they will never be able to reach a winning state. □

For instance, consider again the attack graph of Figure 2. Suppose that, m⃗ = ⟨5, 2⟩ and
that the cost of each attack is specified as in Table 2. Part of the 2TGobtained from this EAG
is displayed in Figure 4

Remark that given an EAG, the corresponding game G produced by algorithm 2 is a 2TG.
Thus, it is possible to use theorem 2 and check, in linear time, if a winning strategy for G
exists.
Corollary 1. Given an energy attack graphM and its 2TG G, it is possible to decide in linear
time w.r.t the size of G whether the Defender has a winning strategy over G.

5 Imperfect Information
In this section, we introduce a notion of imperfect information for the defender. We consider
that in some situations, the defender cannot tell which attack has been made by the attacker.
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Attacker v0 ⟨0, 0⟩

Defender v1 ⟨0, 0⟩

Attacker v1 (v5 , v6) v1
(v2 , v4)
(v5 , v4) v1

(v1 , v2)
(v3 , v5)

Defender v3
(v5 , v6)
⟨4, 1⟩ v2

(v5 , v6)
⟨2, 1⟩ v3

(v2 , v4)
(v5 , v4)
⟨4, 1⟩

v2
(v2 , v4)
(v5 , v4)
⟨2, 1⟩

v3
(v1 , v2)
(v3 , v5)
⟨4, 1⟩

Attacker v2 (v5 , v6) v2
(v5 , v6)
(v2 , v4)
(v5 , v4)

v2
(v5 , v6)
(v1 , v2)
(v3 , v5)

Defender v4
(v5 , v6)
⟨5, 3⟩ v4

(v5 , v6)
(v1 , v2)
(v3 , v5)
⟨5, 3⟩

Fig. 4 Part of the 2TG generated from the AT in Figure 2 provided with the costs of Table 2. Blue dotted vertex are
those that have a successor that is not showed. The value of the counter for Defender’s node is the red array.

Following this intuition, we consider that some edges of the attack graph are in an equiva-
lence relation. Intuitively, this equivalence relation represents the fact that a defender cannot
distinguish two attacks that belong to this class. Since, in the game model, edges of the attack
graph corresponds to attacker’s actions, the equivalence relation on attack’s graph edge will
induce an equivalence relation on attacker’s edge in the game. Using these latter relation, we
can define plays over the game that are indistinguishable from the defender’s point of view.

5.1 From Quantitative Attack Graphs with Imperfect information to
Two-Player Games with Imperfect information

We now formally define attack graphs with imperfect information and show a reduction to
turn-based games with imperfect information.
Definition 6. An energy attack graph with imperfect information (EAGI for short) is a tuple
M = ⟨V, v0,E, L,Tr,$, r, m⃗, $,∼d⟩ such that ⟨V, v0, m⃗,E, L,Tr, $, r, m⃗, $⟩ is an EAG and ∼d ⊆

E × E is an equivalence relations over the set of edges.
We reduce an EAGI to 2TG with imperfect information. We define such games as follows.

Definition 7. Given LA and LD two sets of any symbols, a 2TG with imperfect information
is a tuple G = ⟨S, s0,R,W, fA, fD,∼

d
RA
⟩ where: ⟨S, s0,R,W⟩ is a 2TG, fA : RA → LA and

fD : RD → LD are two labelling functions such that LA ∩ LD = ∅ and ∼d
RA
⊆ RA × RA is an

equivalence relation on edges.
If ρ and τ are two plays over a 2TG with imperfect information, we say that ρ and τ

are equivalent for the defender (denoted ρ ∼ τ) whenever |ρ| = |τ| and for all i < |ρ| either
fD((ρi, ρi+1)) = fD((τi, τi+1)) or ((ρi, ρi+1), (τi, τi+1)) ∈∼d

RA
.
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Attacker v0 ⟨0, 0⟩

Defender v1 ⟨0, 0⟩

Attacker v1 (v5 , v6) v1
(v2 , v4)
(v5 , v4) v1

(v1 , v2)
(v3 , v5)

Defender v3
(v5 , v6)
⟨4, 1⟩ v2

(v5 , v6)
⟨2, 1⟩ v3

(v1 , v2)
(v3 , v5)
⟨4, 1⟩

v2
(v2 , v4)
(v5 , v4)
⟨2, 1⟩

v3
(v2 , v4)
(v5 , v4)
⟨4, 1⟩

Attacker v2 (v5 , v6) v2
(v5 , v6)
(v2 , v4)
(v5 , v4)

v2
(v5 , v6)
(v1 , v2)
(v3 , v5)

Defender v4
(v5 , v6)
⟨5, 3⟩ v4

(v5 , v6)
(v1 , v2)
(v3 , v5)
⟨5, 3⟩

Fig. 5 Part of the 2TG generated from the AT in Figure 2 provided with the costs of Table 2 and with the equivalence
relation {(v1, v2), (v1, v3)}. Blue dotted vertex are those that have a successor that is not showed. The value of the
counter for Defender’s node is the red array. Equivalent edges are the red dotted ones. The labeling of edges is not
showed

Given an EAGIM, it is easy to obtain a 2TG with imperfect information through some
modifications of the algorithm described in subsection 4.1. Such a procedure is given in Algo-
rithm 3. In the algorithm L is the labelling function given in the definition of the attack graph.
Remark that we label edges of the 2TG that belongs to the given EAGI with the same label
that they have in the EAGI (line 18) while we label an edge ((v, rmv), (v, (rmv ∪ rm′v))) ∈ RD

with rmv ∪ rm′v (line 39).

Theorem 4. Algorithm 3 is sound and complete.

Proof. The key point of this transformation is the equivalence relation. Here, we transparently
propagate the equivalence relation on the edges of the attack graph to the equivalence relation
of the defender, thanks to line 22 of Algorithm 3. Then, the result follows by Algorithm 1 and
Algorithm 2. □

As an example, consider again the attack graph of Figure 2. Suppose that the cost of the
edges of the attack graph is specified according to Table 2, that the initial amount of resources
given to the Attacker is, as before, ⟨5, 2⟩. Moreover, suppose that for the Defender, the two
edges (v1, v2) and (v1, v3) are indistinguishable, that is ((v1, v2), (v1, v3)) ∈∼d

RA
. Figure 5 shows

a partial output of Algorithm 3 given this latter attack graph.
We now define the defender’s strategies taking into account the imperfect information.

Definition 8. A defender uniform strategy for a 2TG with imperfect information G =
⟨S, s0,R,W, fA, fD,R∼d ⟩ is a defender strategy σ such that for any two paths ρ, s and τ, s′ of
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Algorithm 3 From EAGI to Two-Player Game
1: procedure REDUCETOGAME(M, ActMd )
2: token = 1
3: rmv0 = nil
4: fA = ∅
5: ∼d

RA
= ∅

6: cv0 = [01, . . . , 0r]
7: SA = {(v0, rmv0 )}
8: queue = [(v0, rmv0 )]
9: while queue , ∅ do

10: for i = 1 to size(queue) do
11: (v, rmv) = dequeue(queue)
12: if token = 1 then
13: for v′ ∈ Π2(E(v) \ rmv) do
14: enqueue(queue, (v′, rmv))
15: cv′ = cv + $(v, v′)
16: SD = SD ∪ {(v′, rmv)}
17: RA = RA ∪ {((v, rmv, ), (v′, rmv))}
18: fA = fA ∪ {(((v, rmv, ), (v′, rmv)), L((v, v′)))}
19: for ((v, rmv), (v′, rmv′ )) ∈ RA do
20: for ((v1, rmv1 ), (v2, rmv2 )) ∈ RA do
21: if ((v, v′), (v1, v2)) ∈∼d then
22: ∼d

RA
=∼d

RA
∪(((v, rmv), (v′, rmv′ )), ((v1, rmv1 ), (v2, rmv2 ))) ▷ Update

the eq.relation
23: end if
24: end for
25: end for
26: if v′ ∈ Tr then
27: if c

′

v ≤ m⃗ then
28: W ∪ {(v′, rmv)}
29: end if
30: end if
31: end for
32: end if
33: token = 2
34: for a ∈ ActMd do
35: rm′v = UPDATE(a,M)
36: enqueue(queue, (v, (rmv ∪ rm′v)))
37: SA = SA ∪ {(v, (rmv ∪ rm′v))}
38: RD = RD ∪ ((v, rmv), (v, (rmv ∪ rm′v))
39: fD = fD ∪ {((v, rmv), (v, (rmv ∪ rm′v)), rmv ∪ rm′v)}
40: end for
41: token = 1
42: end for
43: end while
44: end procedure
45: return ⟨SA ∪ SD, v0,RA ∪ RD,W, fA, fD,∼d

RA
⟩

σ if s and s′ are in SA and ρ ∼ τ, then fD((x, s)) = fD((x′, s′)) where x is the parent of s and
x′ is the parent of s′.

To conclude this section, we need to provide a solution for 2TG with imperfect informa-
tion, i.e. the structures that encapsulate the behavior of EAGI. Given the nature of the 2TG
with imperfect information, we can use again a tree automata to check whether the attacker
has a winning strategy. However, games with imperfect information over the actions of the
agents have already been solved in [11]. In particular, the authors have proposed a solution
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on Concurrent Games Structures with imperfect information about the actions (ICGS). So,
what we need to do is to provide a reduction from 2TGwith imperfect information to ICGS
and then to use the automata theoretic approach used in [11]. In what follows, we recall the
definition of ICGS with imperfect information about actions.
Definition 9. A concurrent (two player) game structure with imperfect information about
actions (ICGS for short) is a tupleM = ⟨Ag,S′, s′0, {Acti}i∈Ag, d, δ,W′, {∼}⟩ where:

– Ag = {1, 2} is the set of agents;
– S′ is a finite, non-empty set of states, with initial state s′0 ∈ S;
– Acti = Act1 ∪ Act2 is a finite non-empty set of actions;
– d is the protocol function mapping an agent i and a state to a non-empty subset of Acti;
– δ : S′ × Act1 × Act2 → S′ is the transition function;
– W′ ⊆ S′ is a set of target states.
– ∼⊆ Act1 × Act1 is an equivalence relation;

Without loss of generality, we can assume that for each pair of states s and s′ there is at
most one pair of actions that lets to transit from s to s′. The following definitions are taken
from [11]. A track τ is a finite3 sequence of states τ0, . . . , τn such that for all i, 0 ≤ i ≤
n − 1 there exists two action a1 ∈ Act1, a2 ∈ Act2 such that τi+1 = δ(τi, a1, a2). Let tr be
a partial function that given two states s and s′ returns the pair of actions a1, a2 such that
s′ = δ(s, a1, a2) if such pair exists.
Definition 10. If M = ⟨Ag,S′, s′0, {Acti}i∈Ag, d, δ,W′, {∼}⟩ is an ICGS with imperfect infor-
mation about actions, then we say that two tracks τ and τ′ are indistinguishable for Player 2
whenever they have the same length n and, for each i ≤ n − 1, tr(τi, τi+1) ∼ tr(τ′i , τ

′
i+1).

We denote the indistinguishability relation between tracks by τ ∼ τ′. A strategy σi for
Player i is a function mapping each track to an action of Player i. A strategy is uniform
iff for any two tracks τ, τ′ such that τ ∼ τ′, we have that σi(τ) = σi(τ′). Assume that
Player 1 and Player 2 choose two strategies σ1 and σ2. Their composition induces a play,
i.e., a finite sequence of states ρ0, . . . ρn such that ρ0 = s′0 and for all 1 ≤ i ≤ n − 1,
ρi+1 = σ(ρi, σ1(ρ≤i), σ2(ρ≤i )) where ρ≤i is the prefix of ρ ending at ρi. Finally, we say that a
strategy ρ is winning for Player 2, iff for any Player 1 strategy the resulting induced play ends
in a state that is not in W.
Theorem 5. Given a 2TG with imperfect information G = ⟨S, s0,R,W, fA, fD,∼

d
RA
⟩, there is

an Exp-time algorithm deciding whether there is a uniform, winning strategy in G.

Proof. In [11] the authors show that the problem of determining whether there exists a win-
ning strategy in an ICGS with imperfect information about actions is Exp-time complete.
Thus, it suffices to reduce our game model to an ICGS. Given a 2TG with imperfect informa-
tion, ⟨S, s0,R,W, fA, fD,∼

d
RA
⟩, ,we define an ICGS M = ⟨Ag,S′, s′0, {Acti}i∈Ag, d, δ,W′, {∼}⟩

as follows:

– Ag = {A,D};
– S′ = S;
– s′0 = s0;
– ActA = RA ∪ {⋆} and ActD = { fD(x) | x ∈ RD} ∪ {⋆} where ⋆ is the idle action;

3in [11] the authors considers infinite tracks. However, in the case of reachability games we can restrict ourselves to finite ones.
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– for the attacker, we set d(A, s) = {e ∈ RA | e = (s, s′) for some s′ ∈ SD} if s ∈ SA,
d(A, s) = {⋆} otherwise. For the defender we set d(D, s) = { fD((s, s′)) | (s, s′) ∈ RD} if
s ∈ S D and d(D, s) = {⋆} otherwise;

– remark that by the previous point given i, j ∈ {A,D} such that i , j, if s ∈ Si then d( j, s) =
{⋆}. Thus, we can define the function δ as follows: {(s, (s, s′), ⋆, s′) | s ∈ SA, s′ ∈ SD, } ∪
{(s, ⋆, fD((s, s′)), s′) | s ∈ SD, s′ ∈ SA};

• the set of winning states of the ICGS is W.
– ∼= {(e, e′) | (e, e′) ∈∼d

RA
};

Remark that the size of the so obtained IGCS is linear in the size of the 2TG.
For the completeness of this approach, it is sufficient to note that for every two-player game
with imperfect information, we generate an ICGS. As for correctness, to transition from a
turn-based game to a concurrent game, it is enough to explicitly associate a distinct action
with each transition of a turn-based game to the ICGS and make only one player ’active’
in each state. To accomplish this latter operation, we have inserted the idle action in each
state, which makes a player ’inactive’ and leaves the decision-making power to determine a
successor to the other player. Given these assumptions, the correctness follows. □

6 Conclusion
In this paper, we restated the attack graph framework by means of a two-player turn-based
game, defender vs attacker: the defender deactivates resource accesses while the attacker
chooses adjacent states along which to move. We have first considered games with perfect
information, we have then included quantitative constraint for the attacker, and we have finally
extended our framework to take into account imperfect information for the defender.

We provided an automata solution to these games, which amounts to show that the
defender can always prevent the attacker to enter forbidden states. Since the automata solu-
tion requires linear-time, we justify the introduction of an ad-hoc game model instead of using
more expensive existing frameworks [4, 5, 61].

We plan to continue the work in a number of directions. First, we want to extend our
procedure to attack graphs with cycles. Second, we aim to add weights that represent the
resources available for the attacker and the defender. Furthermore, we want to investigate
more complex situations, involving multiple attackers. In this setting, we also plan to exploit
resilient solutions with the aim of reducing a damage when an attack cannot be stopped. In
addition, we can consider to study formal logics to gain expressive power to define the attack-
ers’ objectives and check more intricate solution concepts. On this respect, an approach to
Sabotage Logic [62] is proposed in [63]. Following this line, we can study logics for the
strategic reasoning such as ATL [5] and Strategy Logic [7] to capture the features on attackers
vs. defenders games. Furthermore, in this context, we can also study if an attacker has some
backup strategies to achieve his objectives by following the line on graded modalities as done
in [64, 65]. Finally, beyond theoretical aspects to improve the expressiveness of our frame-
work, we would also like to analyze purely practical aspects and implement our foundational
results in verification tools such as VITAMIN [66].

To the best of our knowledge, this is the first work providing a game-theoretic approach
with an automata solution to attack graphs. We hope that this will serve as a fertilization for
new solutions to challenging question in attack graphs.

19



Acknowledgments
This research has been supported by the EU Horizon 2020 Marie Sklodowska-Curie project
with grant agreement NO 101105549, ANR project AGAPE ANR-18-CE23-0013, the PNRR
MUR projects PE0000013 and the ECS0000037-MUSA-INFANT, and the PRIN 2020
project-RIPER

References
[1] Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cambridge,

Massachusetts (1999)

[2] Clarke, E.M., Emerson, E.A.: Design and Synthesis of Synchronization Skeletons Using
Branching-Time Temporal Logic. In: LP’81. LNCS 131, pp. 52–71. Springer, (1981)

[3] Kupferman, O., Vardi, M.Y., Wolper, P.: An Automata Theoretic Approach to
Branching-Time ModelChecking. Journal of the ACM 47(2), 312–360 (2000)

[4] Kupferman, O., Vardi, M.Y., Wolper, P.: Module Checking. Information and Computa-
tion 164(2), 322–344 (2001)

[5] Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-Time Temporal Logic. Journal
of the ACM 49(5), 672–713 (2002)

[6] Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: A model checker for the verification of
multi-agent systems. In: Proceedings of the 21th International Conference on Computer
Aided Verification (CAV09). Lecture Notes in Computer Science, vol. 5643, pp. 682–
688. Springer, (2009)

[7] Mogavero, F., Murano, A., Perelli, G., Vardi, M.Y.: Reasoning about strategies: On the
model-checking problem. ACM Transactions in Computational Logic 15(4), 34–13447
(2014) https://doi.org/10.1145/2631917

[8] Jamroga, W., Murano, A.: Module checking of strategic ability. In: AAMAS 2015, pp.
227–235 (2015)

[9] Jennings, N.R., Wooldridge, M.: Application of intelligent agents. In: Agent Technol-
ogy: Foundations, Applications, and Markets. Springer, (1998)

[10] Lippmann, R.P., Ingols, K.W.: An annotated review of past papers on attack graphs
(2005)

[11] Malvone, V., Murano, A., Sorrentino, L.: Hiding actions in multi-player games. In:
Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems,
AAMAS 2017, São Paulo, Brazil, May 8-12, 2017, pp. 1205–1213 (2017)

[12] Malvone, V.: Strategic reasoning in game theory. PhD thesis, University of Naples
Federico II, Italy (2018)

20

https://doi.org/10.1145/2631917


[13] Ma, J., Zhang, D., Xu, G., Yang, Y.: Model checking based security policy verifica-
tion and validation. In: 2010 2nd International Workshop on Intelligent Systems and
Applications, pp. 1–4 (2010). https://doi.org/10.1109/IWISA.2010.5473291

[14] Baliosian, J., Serrat, J.: Finite state transducers for policy evaluation and conflict reso-
lution. In: Proceedings. Fifth IEEE International Workshop on Policies for Distributed
Systems and Networks, 2004. POLICY 2004., pp. 250–259 (2004). IEEE

[15] Catta, D., Stasio, A.D., Leneutre, J., Malvone, V., Murano, A.: A Game Theoretic
Approach to Attack Graphs. In: Rocha, A.P., Steels, L., Herik, H.J. (eds.) Pro-
ceedings of the 15th International Conference on Agents and Artificial Intelligence,
ICAART 2023, Volume 1, Lisbon, Portugal, February 22-24, 2023, pp. 347–354.
SCITEPRESS, (2023). https://doi.org/10.5220/0011776900003393 . https://doi.org/10.
5220/0011776900003393

[16] Al Ghazo, A.T., Ibrahim, M., Ren, H., Kumar, R.: A2g2v: Automatic attack graph gen-
eration and visualization and its applications to computer and scada networks. IEEE
Transactions on Systems, Man, and Cybernetics: Systems 50(10), 3488–3498 (2020)
https://doi.org/10.1109/TSMC.2019.2915940

[17] Ritchey, R.W., Ammann, P.: Using model checking to analyze network vulnerabilities.
In: Proceeding 2000 IEEE Symposium on Security and Privacy. S&P 2000, pp. 156–165
(2000). IEEE

[18] McMillan, K.L.: Symbolic model checking. In: Symbolic Model Checking, pp. 25–60.
Springer, (1993)

[19] Jha, S., Sheyner, O., Wing, J.: Two formal analyses of attack graphs. In: Proceedings
15th IEEE Computer Security Foundations Workshop. CSFW-15, pp. 49–63 (2002).
IEEE

[20] Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: Nusmv: A new symbolic model ver-
ifier. In: International Conference on Computer Aided Verification, pp. 495–499 (1999).
Springer

[21] Ou, X., Boyer, W.F., McQueen, M.A.: A scalable approach to attack graph genera-
tion. In: Proceedings of the 13th ACM Conference on Computer and Communications
Security, pp. 336–345 (2006)

[22] Vardi, M.Y.: The rise and fall of ltl. GandALF 54 (2011)

[23] Zeng, J., Wu, S., Chen, Y., Zeng, R., Wu, C., Caballero-Gil, P.: Survey of attack graph
analysis methods from the perspective of data and knowledge processing. Sec. and
Commun. Netw. 2019 (2019) https://doi.org/10.1155/2019/2031063

[24] Zenitani, K.: Attack graph analysis: An explanatory guide. Computers Security 126,
103081 (2023)

21

https://doi.org/10.1109/IWISA.2010.5473291
https://doi.org/10.5220/0011776900003393
https://doi.org/10.5220/0011776900003393
https://doi.org/10.5220/0011776900003393
https://doi.org/10.1109/TSMC.2019.2915940
https://doi.org/10.1155/2019/2031063


[25] Ge, Y., Shen, X., Xu, B., He, G.: A hybrid attack graph analysis method based on model
checking. In: 2022 Tenth International Conference on Advanced Cloud and Big Data
(CBD), pp. 258–263 (2022)

[26] Noel, S., Jajodia, S., O’Berry, B., Jacobs, M.: Efficient minimum-cost network hard-
ening via exploit dependency graphs. In: 19th Annual Computer Security Applications
Conference, 2003. Proceedings., pp. 86–95 (2003)

[27] Wang, L., Noel, S., Jajodia, S.: Minimum-cost network hardening using attack graphs.
Comput. Commun. 29(18), 3812–3824 (2006)

[28] Albanese, M., Jajodia, S., Noel, S.: Time-efficient and cost-effective network hardening
using attack graphs. In: IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN 2012), pp. 1–12 (2012)
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