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Abstract

We investigate the verification of Multi-Agent Systems against strategic properties ex-
pressed in Alternating-time Temporal Logic under the assumptions of imperfect in-
formation and perfect recall. To this end, we develop a three-valued semantics for
concurrent game structures upon which we define an abstraction method. We prove
that concurrent game structures with imperfect information admit perfect information
abstractions that preserve three-valued satisfaction. Furthermore, to deal with cases in
which the value of a specification is undefined, we develop a novel automata-theoretic
technique for the linear-time logic (LTL), then apply it to finding “failure” states. The
latter can then be fed into a refinement procedure, thus providing a sound, albeit incom-
plete, verification method. We illustrate the overall procedure in a variant of the Train
Gate Controller scenario and a simple voting protocol under imperfect information and
perfect recall. We also present an implementation of our procedure and provide pre-
liminary experimental results.

Keywords: Multi-Agent Systems, Strategic Ability, Alternating-time Temporal Logic,
Model Checking, Concurrent Games

1. Introduction

Motivation. Logic-based languages to reason about the strategic abilities of agents
are a thriving area of research in the applications of formal methods to artificial in-
telligence, particularly knowledge reasoning and representation [34, 27]. Over the
years, several logics for reasoning about strategies have been introduced, including
Alternating-time Temporal Logic [3], Coalition Logic [50], Strategy Logic [21, 49].
The analysis of their verification problems, including their complexity, has also con-
tributed to the development of effective model checking tools [2, 48, 43].

A key challenge for the wider adoption of these logics for strategies is represented
by their verification in contexts of imperfect information. Indeed, the model checking
problem for the Alternating-time Temporal LogicATL under the assumption of perfect
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information is well-known to be PTIME-complete [3], and therefore amenable to auto-
mated verification tools. However, under imperfect information it ranges between ∆P

2 -
completeness and undecidability, depending on the underlying assumptions on mem-
ory [35, 25]. Unfortunately, when reasoning about distributed and multi-agent systems
(MAS), where agents might only have partial observations of the surrounding envi-
ronment, the assumption of perfect information is either unrealistic or computationally
costly. Thus, if logics for strategies are to be deployed in real-life MAS, it is crucial
to develop even partial verification methods capable of tackling contexts of imperfect
information. To this end, several methods to retain decidability have been put forward
in recent years, focusing on how the information is shared amongst agents [18, 12],
or developing notions of constructive knowledge [1] and bounded recall [10, 11], or
again approximating strategy operators by using the µ-calculus [20] (see Section 1 for
a detailed comparison with related work).

Contribution. We advance the state of the art in reasoning about strategic abilities of
agents under the assumptions of imperfect information and perfect recall. More pre-
cisely, at the heart of the present contribution is the idea that, under a three-valued
semantics, MAS with imperfect information can be approximated (or abstracted) by
perfect information systems. This enables us to design a sound, albeit incomplete, veri-
fication procedure for the strategy logicsATL andATL∗, under imperfect information
and perfect recall. In more detail, given a concurrent game structure with imperfect in-
formation (iCGS) representing a MAS, we build a perfect information abstraction that
preserves satisfaction for a three-valued variant of ATL∗. As we show, if the ATL∗

specification is true (resp. false) in the (perfect information) abstraction, then it is also
true (resp. false) in the original iCGS with imperfect information. On the other hand, if
the specification is undefined, we can proceed to refining the abstraction in an attempt
to give it a defined truth value. In particular, the intermediate step is to find “failure”
states to refine the abstract model. In [7] such a procedure was provided but only for
the Alternating µ-calculus (AMC) under perfect information. Here we consider the
arguably more complex case of full ATL∗ under imperfect information, whose model
checking problem is undecidable in general, differently from AMC. Moreover, in the
process we prove novel results on automata-theoretic techniques for linear-time tempo-
ral logic (LTL) interpreted on a three-valued semantics, that we deem of independent
interest. To conclude, the original model checking problem is undecidable; so no guar-
antee can be given that by successive refinements, a given property’s truth or falsity can
ever be established in general. However, the procedure provides a constructive method
to partially model check ATL∗ under imperfect information and perfect recall.

Structure of the Paper. In Sec. 2 we present the syntax of ATL∗, as well as its se-
mantics given on concurrent game structures with imperfect information (iCGS), and
define the (undecidable) model checking problem when perfect recall is also assumed.
In Sec. 3 we introduce the novel three-valued semantics for ATL∗ and provide preser-
vation results. In Sec. 4 we define our knowledge-based abstraction procedure, and
prove a preservation result from the three-valued to the two-valued semantics. Then, in
Sec. 5 we develop novel automata-theoretic techniques for three-valued LTL. Specif-
ically, we show how to construct Büchi automata accepting all traces making an LTL
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formula undefined. This result are then used in Sec. 6 to find failure states, which can
then be fed into the abstraction refinement algorithm presented in Sec. 7. In Sec. 8,
we provide a translation to handle verification under the three-valued semantics in the
two-valued model checker MCMAS [48]. Then, in Sec. 9 we present the overall model
checking procedure that makes use of the algorithms developed all along the previous
sections. Finally, in Sec. 10 we describe an implementation of our methodology and
provide experimental results. We conclude in Sec. 11 by summarizing our results and
main limitations, and pointing to future work.

Related work

Recently several approaches to the verification of ATL∗ under imperfect informa-
tion and perfect recall have been put forward. Typically, these contributions assume
restrictions either on the syntax or the semantics of the specification language, or de-
velop abstraction and approximation methods. In the first line, decidability results
have been proved for hierarchical [4, 17] and broadcast systems [12, 13, 14]. In the
second line, techniques to construct syntactic [20, 36] and semantic [10, 11, 28, 29]
approximations, including partial order reduction [39, 47], have been investigated. Our
contribution falls in the second line, specifically semantic approximations, even though
it differs from [10, 11], where memory is abstracted to achieve decidability, as here we
approximate information instead.

(Multi-valued) Abstraction and Refinement. At the heart of the method we describe
is the notion of abstraction and refinement of MAS models, as well as three-valued
semantics for modal languages. An abstraction-refinement framework for the temporal
logic CTL over a three-valued semantics was first studied in [52, 53], with the specific
case of hierarchical systems analyzed in [4]. Further, in [33] an abstraction-refinement
technique for the full µ-calculus is introduced. Here we consider the arguably more
complex case of ATL∗.

As regards contexts of perfect information, an abstraction-refinement procedure for
network games was introduced in [5] and a symbolic abstraction-refinement approach
to the solution of two-player games with reachability or safety goals is shown in [24].
Games with incomplete information are studied in [26] by considering safety goals
only and, as we do in this paper, abstraction and refinement are used to generate from
an imperfect information game, a new one with perfect information.

Model checking MAS by abstraction in an epistemic context was originally investi-
gated in [9, 23]. Three-valued abstractions for the verification of ATL properties have
also been put forward in [7, 44, 45, 46]. There are, however, considerable differences
between these approaches and the one here pursued. In fact, the methods above fo-
cus on decidable settings. In [7, 52] ATL∗ is interpreted under perfect information;
while [44, 45, 46] considers non-uniform strategies [51]. In both cases the correspond-
ing model checking problem is decidable. Their aim, therefore, is rather to speed-up
the verification task and not, as we do here, to provide a sound approximation to an
otherwise undecidable problem. Moreover, the three-valued semantics for ATL∗ is
different, as formulas of type 〈〈Γ〉〉ψ being false is defined in terms of the strategic abil-
ities of opponent coalition Γ (intuitively, Γ has a strategy to falsify ψ), rather than by
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underapproximating the capabilities of coalition Γ, as we do here. So, the two seman-
tics are really incomparable. Finally, [38, 37] put forward a multi-valued semantics
for ATL∗ that is a conservative extension of the classical two-valued variant. Mainly,
they consider the model checking problem for perfect information games, but they also
refer at the imperfect information case by giving an undecidable result in general and
an exponential-time result for singleton coalitions.

Three-valued Automata. Regarding the three-valued automata technique forLTL used
in this work, the closest related approaches appear in [42, 22, 19]. In particular,
[19] consider a reduction from multi-valued to two-valued LTL, but they do not pro-
vide automata-theoretic techniques. On the other hand, [22] present an automata-
theoretic approach to general multi-valued LTL following the tableau-based construc-
tion in [31]. Also, [42] is devoted to general multi-valued automata. Specifically,
the authors define lattices, deterministic and non-deterministic automata, as well as
their extensions to Büchi acceptance conditions. As an application of their theoreti-
cal results, they provide an automata construction for multi-valued LTL, but only in
passing, without a clear explanation of states and transitions. To sum up, differently
from [42, 22, 19], the approach we propose here modifies minimally the automata-
theoretic construction for two-valued LTL [6] and extends it to a three-valued interpre-
tation. In this sense we claim that our contribution is novel w.r.t. the current literature.
Furthermore, it is not clear how the techniques in [42, 22, 19] could be used in our
construction. As mentioned above, [19] does not really deal with LTL. The approach
in [22] is more suitable for on-the-fly verification. Finally, in [42] the authors only
briefly discuss model checking, and their approach is tailored for multi-valued logics
more generally.

Previous works by the same authors. Some of the material appearing in this paper
has already been published in [16, 15]. In [16] we outlined the abstraction-refinement
method to solve the model checking problem for ATL∗ under imperfect information
and perfect recall. Here we extend the contribution in [16] by adding full details and
proofs. Moreover, we have fixed several other technical points related to the three-
valued semantics, such as the definition of outcome of must- and may-strategies in
the semantics. In [15] we presented an algorithm to find the failure states needed in
the refinement procedure in [16], via the construction of a three-valued automaton for
LTL. In this contribution we use the same example as [15] with slight changes about the
structure of the game, also adding further examples to guide the reader. Moreover, we
have extended the proofs, added examples of three-valued automata (see Examples 3
and 4), and added an additional lemma about the language accepted by our automata
(Lemma 4). Also in this case, we fixed several technical points that were not always
spelled in detail in [15]. Finally, Sec. 8, 9, and 10 are entirely original of the present
submission. In particular, we introduce new algorithms to handle the model checking
problem for three-valued semantics via two-valued satisfaction. Then, in Sec. 10 we
have introduced an implementation of our verification procedure. No experimental
evaluation appears in either [16] or [15].
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2. Classic Imperfect Information

In this section we introduce the standard two-valued semantics for the Alternating-
time Temporal Logic ATL∗ and ATL under imperfect information and perfect recall
[40, 25]. To fix the notation, we assume sets Ag = {1, . . . ,m} of agents and AP =
{a1, a2, . . .} of atomic propositions, or simply atoms. Given a set U , U denotes its
complement. We denote the length of a tuple v as |v|, and its i-th element either as
vi or v.i. Let last(v) = v|v| be the last element in v. For i ≤ |v|, let v≥i be the
suffix vi, . . . , v|v| of v starting at vi and v≤i its prefix v1, . . . , vi. Notice that we start
enumerations with index 1.

2.1. Concurrent Game Structures

We begin by giving a formal account of multi-agent systems by means of concur-
rent game structures with imperfect information [3, 40].

Definition 1 (iCGS). Given sets Ag of agents and AP of atoms, a concurrent game
structure with imperfect information (iCGS) is a tuple M = 〈S, s0, {Acti}i∈Ag, {∼i
}i∈Ag, d, δ, V 〉 such that:

• S is a finite, non-empty set of states, with initial state s0 ∈ S.

• For every i ∈ Ag, Acti is a finite, nonempty set of (individual) actions.

Let Act =
⋃
i∈Ag Acti be the set of all actions, and ACT =

∏
i∈Ag Acti the set

of all joint actions, i.e., tuples of individual actions.

• For every i ∈ Ag, ∼i is a relation of indistinguishability between states, that is,
an equivalence relation on S.

Given states s, s′ ∈ S, s ∼i s′ iff s and s′ are said to be observationally indis-
tinguishable for agent i.

• The protocol function d : Ag×S → (2Act \∅) defines the availability of actions
so that for every i ∈ Ag, s ∈ S, (i) d(i, s) ⊆ Acti and (ii) s ∼i s′ implies
d(i, s) = d(i, s′).

• The (deterministic) transition function δ : S × ACT → S assigns a successor
state s′ = δ(s, ~α) to each state s ∈ S, for every joint action ~α ∈ ACT such that
ai ∈ d(i, s) for every i ∈ Ag, that is, ~α is enabled at s.

• V : S ×AP → {tt,ff} is a two-valued labelling function.

By Def. 1 an iCGS describes the interactions of a group Ag of agents, starting
from the initial state s0 ∈ S, according to the transition function δ. The latter is
constrained by the availability of actions to agents, as specified by the protocol function
d. Further, we assume that every agent i has imperfect information of the exact state
of the system; so in any state s, i considers epistemically possible all states s′ that
are indistinguishable for i from s [27]. When every ∼i is the identity relation, i.e.,
s ∼i s′ iff s = s′, we obtain a standard CGS with perfect information [3]. Hereafter
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we consider both the class iCGS of all iCGS, and its subclass CGS of all CGS with
perfect information.

Given a set Γ ⊆ Ag of agents and a joint action ~α ∈ ACT , let ~αΓ (resp. ~αΓ) be the
tuple comprising only of actions for the agents in Γ (resp. Γ). We also write ~αi and ~αi
for ~α{i} and ~α{i} respectively. Finally, for ~α and ~β in ACT , (~αΓ, ~βΓ) denotes the joint

action where the actions for the agents in Γ (resp. Γ) are taken from ~α (resp. ~β).
A history h ∈ S+ is a finite (non-empty) sequence of states. The indistinguisha-

bility relations are extended to histories in a synchronous, pointwise way, i.e., histories
h, h′ ∈ S+ are indistinguishable for agent i ∈ Ag, or h ∼i h′, iff (i) |h| = |h′| and (ii)
for all j ≤ |h|, hj ∼i h′j .

2.2. Alternating-time Temporal Logic

To reason about the strategic abilities of agents in iCGS with imperfect information,
we use the Alternating-time Temporal Logic ATL∗ [3].

Definition 2 (ATL∗). The state (ϕ) and path (ψ) formulas in ATL∗ are defined as
follows, where a ∈ AP and Γ ⊆ Ag:

ϕ ::= a | ¬ϕ | ϕ ∧ ϕ | 〈〈Γ〉〉ψ
ψ ::= ϕ | ¬ψ | ψ ∧ ψ | Xψ | (ψUψ)

Formulas in ATL∗ are all and only the state formulas.

As customary, a formula 〈〈Γ〉〉ψ is read as “the agents in coalition Γ have a strategy
to achieve ψ”. The meaning of linear-time operators next X and until U is standard
[6]. Operators unavoidable [[Γ]], release R, finally F , and globally G can be introduced
as usual.

The formulas in theATL fragment ofATL∗ are obtained from Def. 2 by restricting
path formulas ψ as follows, where ϕ is a state formula and R is the release operator:

ψ ::= Xϕ | (ϕUϕ) | (ϕRϕ)

In the rest of the paper we also consider the fragment of Γ-formulas, i.e., formulas
in which the strategic operator 〈〈Γ〉〉 ranges only over some fixed coalition Γ ⊆ Ag.

When giving a semantics to ATL∗ formulas we assume that agents are endowed
with uniform strategies [40], i.e., they perform the same action whenever they have the
same information.

Definition 3 (Perfect Recall Uniform Strategy). A uniform strategy with perfect re-
call for agent i ∈ Ag is a function fi : S+ → Acti such that for all histories
h, h′ ∈ S+, (i) fi(h) ∈ d(i, last(h)); and (ii) h ∼i h′ implies fi(h) = fi(h

′).

By Def. 3 any strategy for agent i has to return actions that are enabled for i. Also,
whenever two histories are indistinguishable for i, then the same action is returned.
Notice that, for the case of (perfect information) CGS, condition (ii) is satisfied by any
function fi : S+ → Acti.
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Given an iCGS M , a path p ∈ Sω is an infinite sequence s1s2 . . . of states such
that, for all j ≥ 1, sj+1 = δ(sj , ~α) for some joint action ~α. Given a joint strategy
FΓ = {fi | i ∈ Γ}, comprising of one strategy for each agent in coalition Γ, a path p is
FΓ-compatible iff for every j ≥ 1, pj+1 = δ(pj , ~α) for some joint action ~α such that
for every i ∈ Γ, αi = fi(p≤j), and for every i ∈ Γ, αi ∈ d(i, pj). Let out(s, FΓ) be
the set of all FΓ-compatible paths from state s.

We can now assign a meaning to ATL∗ formulas on iCGS based on a semantics
with two truth values: ff and tt.

Definition 4 (Satisfaction). The two-valued satisfaction relation |=2 for an iCGS M ,
state s ∈ S, path p ∈ Sω , atom a ∈ AP , state formula ϕ, and path formula ψ is
defined as follows:

(M, s) |=2 a iff V (s, a) = tt
(M, s) |=2 ¬ϕ iff (M, s) 6|=2 ϕ
(M, s) |=2 ϕ ∧ ϕ′ iff (M, s) |=2 ϕ and (M, s) |=2 ϕ′

(M, s) |=2 〈〈Γ〉〉ψ iff for some joint strategy FΓ,
for all paths p ∈ out(s, FΓ), (M,p) |=2 ψ

(M,p) |=2 ϕ iff (M,p1) |=2 ϕ
(M,p) |=2 ¬ψ iff (M,p) 6|=2 ψ
(M,p) |=2 ψ ∧ ψ′ iff (M,p) |=2 ψ and (M,p) |=2 ψ′

(M,p) |=2 Xψ iff (M,p≥2) |=2 ψ
(M,p) |=2 ψUψ′ iff for some k ≥ 1, (M,p≥k) |=2 ψ′, and

for all j, 1 ≤ j < k implies (M,p≥j) |=2 ψ

We say that formula ϕ is true in an iCGS M , or M |=2 ϕ, iff (M, s0) |=2 ϕ.
Notice that the satisfation clause for the release operator R can be derived as fol-

lows, by assuming that ψRψ′ ::= ¬(¬ψU¬ψ′):

(M,p) |=2 ψRψ′ iff for all k ≥ 1, (M,p≥k) |=2 ψ′, or
for some j ≥ 1, (M,p≥j) |=2 ψ, and
for all j′, 1 ≤ j′ ≤ j implies (M,p≥j′) |=2 ψ′

We observe that the semantics considered here corresponds to the objective in-
terpretation of ATL under imperfect information [40], as opposed to the subjective
interpretation, whereby a strategy has to be successful for all states s′ indistinguish-
able from the current state s. Both interpretations have been extensively analysed in
the model theory of logics for strategic reasoning, each of them with its own pros and
cons. We refrain here from an in-depth comparison of these accounts and refer to [40]
for further details. We here adopt the objective interpretation, as it is consistent with
our application scenario and it offers simpler satisfaction clauses, which is helpful, es-
pecially when presenting the three-valued semantics and abstraction procedure. We
remark that the abstraction and refinement technique presented here can be extended to
the subjective interpretation with minor adaptations.

We now state the model checking problem within the two-valued semantics.

Definition 5 (Model Checking). Given an iCGSM and a formula φ, the model check-
ing problem concerns determining whether M |=2 φ.
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Figure 1: The iCGS M for Example 1. Notice that the transitions are generated by triples of actions. To
improve readability, occurrences of the action idle (I) are omitted. Moreover, ∗ denotes any joint action for
which a transition is not given explicitly. Further, dotted lines are used for indistinguishable states, each one
labelled with the relevant agent.

Since the semantics provided in Def. 4 is the standard interpretation of ATL∗ [3,
40], it is well known that model checking ATL, a fortiori ATL∗, against iCGS with
imperfect information and perfect recall is undecidable [25]. In the rest of the paper
we develop methods to obtain partial solutions to this problem; but first we illustrate
the formal machine above with our running example.

Example 1. In Fig. 1 we present a coordination game played by two trains t1 and t2,
and a controller c at a junction. The objective of each train is to cross the junction.
To do this, they need to select the same direction as the controller. In this example
we analyse the t1’s viewpoint. Train t1 (resp. t2) and c need to coordinate and select
the same direction, left (action L) or right (action R), to move from the initial state
sI . After this first step, the controller can still change their mind for safety reasons.
Specifically, they can request a new selection to the trains (action A) if both of them
selected the same direction, or execute it (action O). Further, train t1 cannot observe
the choice of t2, i.e., if t1 plays L (resp. R), then she cannot distinguish whether t2
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selects R or L, and c has partial observability on the choices of t1 and t2: she cannot
distinguish the identities of t1 and t2, that is, she does not distinguish between the
result of joint actions RLR and LRL1. Finally, we use six atoms: b to label the initial
state sI only; l1 (resp. l2) for coordination on the left between c and t1 (resp. t2); r1

(resp. r2) for coordination on the right between c and t1 (resp. t2); and g(oal) to mark
that the players have coordinated.

More formally, the iCGS M is comprised of the agents in Ag = {t1, t2, c}, atoms
in AP = {b, l1, l2, r1, r2, g}, states in S = {sI , s1, s2, s3, s4, s5, s6, s7} with initial
state sI , actions in Actt1 = Actt2 = {L,R, I}, Actc = {A,O, I, L,R}. Transitions
are given as in Fig. 1, and we have the following indistinguishability relations between
different states (indistinguishability is reflexive as well): s1 ∼t1 s2, s3 ∼t1 s4, and
s2 ∼c s3. The transitions of the iCGS M are depicted in Fig. 1.

As an example of specification inATL∗, consider formula ϕ = 〈〈Γ〉〉F (l1∧¬bUg),
for Γ = {t1, c}, which can be read as: t1 and c have a joint strategy such that even-
tually they tentatively coordinate on the left, but then an agreement has to be reached
before visiting the initial state again. Notice that ϕ is true in M by the joint strategy
whereby t1 chooses L in sI and I in all other states, and c chooses L in sI and O in
all other states. However, we want to be able to model check such specifications in
general.

3. Three-valued Imperfect Information

In this section we introduce a generalisation of iCGS in terms of over- and under-
approximations. Then, we develop a three-valued semantics for ATL∗, and show that
it conservatively extends the two-valued semantics in the previous section. In the rest
of the paper, for x = may (resp. must), we set x = must (resp. may).

Definition 6 (Generalized iCGS). Given setsAg of agents andAP of atoms, a gener-
alized iCGS is a tupleM = 〈S, s0, {Acti}i∈Ag, {∼i}i∈Ag, dmay , dmust , δmay , δmust , V 〉
such that:

1. S, s0, {Acti}i∈Ag , {∼i}i∈Ag are defined as in Def. 1.

2. dmay and dmust are protocol functions from Ag × S to 2Act \ ∅ such that for
every i ∈ Ag and s ∈ S, (i) dmust(i, s) ⊆ dmay(i, s) ⊆ Acti and (ii) s ∼i s′
implies dx(i, s) = dx(i, s′).

3. δmay and δmust are transition relations on S×ACT ×S such that s′ ∈ δx(s, ~α)
is defined for some s′ ∈ S only if ai ∈ dx(i, s) for every i ∈ Ag. Moreover,
δmust(s, ~α) ⊆ δmay(s, ~α).

4. V : S ×AP → {tt,ff,uu} is a three-valued labelling function.

1Note that, for simplicity, we considered imperfect information only on the side of the coordination
between t1 and c. To make the iCGS in Fig. 1 symmetric we only need to add s1 ∼t2 s6, s4 ∼t2 s7, and
s6 ∼c s7, as well as reflexive points.
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Intuitively, must-components are more restrictive than may-components: must-
transitions can be interpreted as under-approximations of the actual transitions in the
iCGS, while may-transitions can be thought of as over-approximations. The undefined
value uu can be interpreted in various ways, for instance, unknown, unspecified, or
inconsistent, depending on the application at hand. These interpretations all appear in
multi-valued abstraction-based methods [52, 7], we do not discuss this point further.
We say that the truth value τ is defined whenever τ 6= uu. In the case that under- and
over-approximations coincide, i.e., dmay = dmust and δmay = δmust , and the truth
value of every atom is defined, then we have a standard iCGS as per Def. 1. On the
other hand, if each equivalence relation ∼i is the identity, then we have a generalized
CGS (with perfect information).

Next, we introduce must- and may-strategies.

Definition 7 (Perfect Recall Uniform x-Strategy). For x ∈ {may ,must}, a uniform
x-strategy with perfect recall for agent i ∈ Ag is a function fxi : S+ → Acti such that
for every history h, h′ ∈ S+, (i) fxi (h) ∈ dx(i, last(h)); and (ii) h ∼i h′ implies
fxi (h) = fxi (h′).

Here we distinguish between may and must strategies to over- and under-approximate
the strategic abilities of agents. Again, the distinction collapses in the case of standard
(two-valued) iCGS.

For x ∈ {may ,must} and a joint strategy F xΓ = {fxi | i ∈ Γ}, a path p ∈ Sω is
F xΓ -compatible iff for every j ≥ 1, pj+1 = δx(pj , ~α) for some joint action ~α such that
for every i ∈ Γ, αi = fxi (p≤j), and for every i /∈ Γ, αi ∈ dx(i, pj). Then, out(s, F xΓ )
is the set of all F xΓ -compatible paths starting from s, that is:

out(s, F xΓ ) = {p ∈ Sω | for all j ≥ 0, pj+1 ∈ δx(pj , (F
x
Γ (p≤j), ~αΓ)) and

for all i ∈ Γ, αi ∈ dx(i, pj)}

Intuitively, when computing the outcomes of a joint strategy Fmust
Γ from state s,

we adopt a “conservative” stance with respect to the abilities of agents in Γ, by con-
sidering only actions enabled according to the under-approximated protocol dmust , as
well as an “optimistic” stance about the capabilities of agents in Γ, as given by the
over-approximated protocol dmay and transition δmay . For out(s, Fmay

Γ ) the reason-
ing is reversed. However, since Fmay

Γ returns may-actions and paths in out(s, Fmay
Γ )

are generated by considering the δmust -transitions, out(s, Fmay
Γ ) may be empty. By

the definition of the semantics below, in such cases the formula will be undefined. This
modelling choice is in line with similar three-valued semantics for logics of strategies
[7, 46].

Formally we define the three-valued semantics for ATL∗ as follows.

Definition 8 (Satisfaction). The three-valued satisfaction relation |=3 for an iCGSM ,
state s ∈ S, path p ∈ Sω , atom a ∈ AP , v ∈ {tt,ff}, state formula ϕ, and path
formula ψ is defined as follows:

((M, s) |=3 a) = v iff V (s, a) = v
((M, s) |=3 ¬ϕ) = v iff ((M, s) |=3 ϕ) = ¬v
((M, s) |=3 ϕ ∧ ϕ′) = tt iff ((M, s) |=3 ϕ) = tt and ((M, s) |=3 ϕ′) = tt
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((M, s) |=3 ϕ ∧ ϕ′) = ff iff ((M, s) |=3 ϕ) = ff or ((M, s) |=3 ϕ′) = ff
((M, s) |=3 〈〈Γ〉〉ψ) = tt iff for some joint strategy Fmust

Γ ,
for all paths p ∈ out(s, Fmust

Γ ), ((M,p) |=3 ψ) = tt
((M, s) |=3 〈〈Γ〉〉ψ) = ff iff for every joint strategy Fmay

Γ ,
for some path p ∈ out(s, Fmay

Γ ), ((M,p) |=3 ψ) = ff
((M,p) |=3 ϕ) = v iff ((M,p1) |=3 ϕ) = v
((M,p) |=3 ¬ψ) = v iff ((M,p) |=3 ψ) = ¬v
((M,p) |=3 ψ ∧ ψ′) = tt iff ((M,p) |=3 ψ) = tt and ((M,p) |=3 ψ′) = tt
((M,p) |=3 ψ ∧ ψ′) = ff iff ((M,p) |=3 ψ) = ff or ((M,p) |=3 ψ′) = ff
((M,p) |=3 Xψ) = v iff ((M,p≥2) |=3 ψ) = v
((M,p) |=3 ψUψ′) = tt iff for some k ≥ 1, ((M,p≥k) |=3 ψ′) = tt, and

for all j, 1 ≤ j < k ⇒ ((M,p≥j) |=3 ψ) = tt
((M,p) |=3 ψUψ′) = ff iff for all k ≥ 1, ((M,p≥k) |=3 ψ′) = ff , or

for some j ≥ 1, ((M,p≥j) |=3 ψ) = ff , and
for all j′, 1 ≤ j′ ≤ j implies ((M,p≥j′) |=3 ψ′) = ff

In all other cases the value of φ is uu.

Observe that, in the clauses for ATL∗ operators must-strategies are used to check
the truth of formulas, while may-strategies appear in the clauses for falsehood. Specifi-
cally, to check whether ((M, s) |=3 〈〈Γ〉〉ψ) = tt we consider all paths in out(s, Fmust

Γ ),
which are defined by δmay -transitions. This restricts the choices available to coalition
Γ, while increasing the number of paths in which the formula needs to be satisfied.
Similarly, to verify whether ((M, s) |=3 〈〈Γ〉〉ψ) = ff we need to use δmust -transitions
over the paths in out(s, Fmay

Γ ), so as to decrease the number of candidates witness-
ing the falsehood of the formula. Notice also that, as regards Boolean operators, our
semantics correspond to Kleene’s three-valued logic [41]. Further, for ATL, the truth
value of path formulas ϕ1Rϕ2 can be derived as follows:

((M,p) |=3 ψRψ′) = tt iff for all k ≥ 1, ((M,p≥k) |=3 ψ′) = tt, or
for some j ≥ 1, ((M,p≥j) |=3 ψ) = tt, and
for all j′, 1 ≤ j′ ≤ j implies ((M,p≥j′) |=3 ψ′) = tt

((M,p) |=3 ψRψ′) = ff iff for some k ≥ 1, ((M,p≥k) |=3 ψ′) = ff , and
for all j, 1 ≤ j < k implies ((M,p≥j) |=3 ψ) = ff

Also, in what follows we will use the following (equivalent) clause for the until
operator U :

((M,p) |=3 ψUψ′) = ff iff for all k ≥ 1, either ((M,p≥k) |=3 ψ′) = ff ,
or for some j < k, ((M,p≥j) |=3 ψ) = ff .

Finally, (M |=3 ϕ) = tt (resp. ff) iff ((M, s0) |=3 ϕ) = tt (resp. ff). Otherwise,
(M |=3 ϕ) = uu.

We conclude this section by proving some auxiliary results on conservative exten-
sions and the model checking problem.

Lemma 1 (Conservativeness). Let M be a standard iCGS, that is, dmay = dmust ,
δmay = δmust are functions, and the truth value of every atom is defined (i.e., it is
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equal to either tt or ff). Then, for every formula φ in ATL∗,

((M, s) |=3 φ) = tt ⇔ (M, s) |=2 φ (1)
((M, s) |=3 φ) = ff ⇔ (M, s) 6|=2 φ (2)

Proof. The result is proved by induction on the structure of formula φ. The base
case for atoms and the inductive cases for Boolean operators are immediate. The case
for formulas of type 〈〈Γ〉〉ψ follows directly from the fact that sets Fmay

Γ and Fmust
Γ of

strategies coincide in M , whenever M is a (two-valued) iCGS, and therefore the two-
and three-valued semantics collapse.

By Lemma 1 the three-valued semantics forATL∗ is a conservative extension of its
two-valued semantics, as the two coincide whenever we consider standard iCGS with
defined atoms. Thus, from the results in the previous section it immediately follows
that model checking ATL∗ formulas under the three-valued semantics, with imperfect
information and perfect recall is also undecidable. However, for perfect information
we can show the following.

Theorem 1. The model checking problem for generalized CGS (with perfect informa-
tion) is 2EXPTIME-complete for ATL∗ and PTIME-complete for ATL.

Proof. The lower bounds follow immediately from the corresponding complexity
results for two-valued CGS, of which these problems are particular instances, as shown
in Lemma 1.

As regards the upper bound for ATL, consider a generalised iCGS M and an ATL
formula ϕ. Similarly to standard labelling algorithms for model checking two-valued
ATL, we label each state s in M with pairs (ψ, v), where ψ is a subformulas of ϕ
and v ∈ {tt,ff,uu}. We do this in a bottom-up fashion, starting from the innermost
state subformulas of ϕ. For the base case of atoms and the inductive case of Boolean
operators, the labeling procedure is immediate. The interesting cases are the strategy
operators. Suppose that we are given a subformula of type 〈〈A〉〉(ϕ1Uϕ2) and assume
that the states in M have already been labelled with ϕ1, ϕ2. Then, we can use the
model checking procedure in [3] for 〈〈A〉〉(ϕ1Uϕ2), if v = tt. For v = ff , we use
the procedure to check formulas of type 〈〈A〉〉(ϕ1Rϕ2), while considering the sets of
states where ϕ1 and ϕ2 are false. Since we have determined the set Sϕ=tt of states
that satisfy formula ϕ, and the set Sϕ=ff of those that do not, then the states where the
formula is undefined (uu) are those in S\(Sϕ=tt∪Sϕ=ff). Since we invoke polynomial
procedures at most O(|ϕ|) times, the complexity remains in PTIME.

As for the upper bound for ATL∗, again we use a labelling algorithm working
bottom-up on the structure of formula ϕ to be checked over a model M . The inductive
cases for Boolean operators are immediate. As regards the inductive case of strat-
egy subformulas ϕ′ = 〈〈Γ〉〉ψ, we adapt the algorithm for model checking two-valued
ATL∗ [3] as follows. For ϕ′ = 〈〈Γ〉〉ψ, we can assume that ψ is a formula in LTL, as
the satisfaction of all state subformulas of ψ has already been determined. To check for
v = tt, we construct a Rabin tree automaton Aψ that accepts precisely the trees that
satisfy the CTL∗ formula Aψ, and for each state s in M , we construct a Büchi tree
automaton AM,s,Γ that accepts precisely the (s,Γ)-execution trees, that is, the trees in
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M that correspond to some must-strategy for coalition Γ, executed from state s. The
product of the two automataAψ andAM,s,Γ is a Rabin tree automaton that accepts pre-
cisely the (s,Γ)-execution trees that satisfy Aψ. Now, recall that ((M, s) |= ϕ′) = tt
iff there is a joint strategy Fmust

Γ for the agents in Γ so that all s-paths in M that
are outcomes of Fmust

Γ satisfy ψ. Since each (s,Γ)-execution tree corresponds to a
joint strategy Fmust

Γ , it follows that ((M, s) |= ϕ′) = tt iff the product automaton is
nonempty.
As for v = ff , we construct a Rabin tree automaton Aψ that accepts precisely the trees
for which the CTL∗ formula Aψ is false. Then we consider the complement Streett
tree automaton, which then accepts the trees for which Aψ is either true or undefined.
Further, for each state s in M , we construct a Büchi tree automaton AM,s,Γ that ac-
cepts precisely the (s,Γ)-execution trees. The product of the two automata Aψ and
AM,s,Γ is a Streett tree automaton that accepts precisely the (s,Γ)-execution trees that
make Aψ either true or undefined. Now, recall that ((M, s) |= ϕ′) = ff iff for every
joint strategy Fmay

Γ for the agents in Γ, there is some s-path in M that is an outcome
of Fmay

Γ falsifying ψ. Since each (s,Γ)-execution tree corresponds to a joint strategy
Fmay

Γ , it follows that ((M, s) |= ϕ′) = ff iff the product automaton is empty.
For v = uu, we combine the cases for v = tt and v = ff . The different procedures

are all in 2EXPTIME.

In the following section we leverage on the decidable model checking problem
for the three-valued semantics under perfect information to develop a sound, albeit
incomplete, abstraction-based method to verify imperfect information.

4. Abstraction

We now define perfect information, three-valued abstractions for iCGS. Then, we
show that defined truth values forATL∗ formulas transfer from such abstractions to the
original iCGS with imperfect information. Since the model checking problem on the
former is decidable (as per Theorem 1), this preservation result can be used to define
a sound, albeit partial, verification procedure under imperfect information and perfect
recall.

To begin with, given a coalition Γ ⊆ Ag of agents, we define the common knowl-
edge relation ∼CΓ as the reflexive and transitive closure (

⋃
i∈Γ ∼i)∗ of the union of

indistinguishability relations ∼i for i ∈ Γ [27]. That is, s ∼CΓ s′ iff s′ is reachable
from s by a sequence s1, . . . , sn of states such that (i) s1 = s, (ii) sn = s′, and (iii)
for every j < n, sj ∼i sj+1 for some i ∈ Γ. Clearly, ∼CΓ is an equivalence relation.
Now, let [s]Γ = {s′ ∈ S | s′ ∼Γ s} be the equivalence class of s according to ∼Γ.
The relation ∼CΓ is extended to histories in a synchronous, pointwise way, i.e., given
h, h′ ∈ S+, h ∼CΓ h′ iff (i) |h| = |h′| and (ii) for all j ≤ |h|, hj ∼CΓ h′j . So, we
introduce the notation [h]Γ = {h′ ∈ S+ | h′ ∼CΓ h}.

Definition 9 (Abstract CGS). Given an iCGSM = 〈S, s0, {Acti}i∈Ag, {∼i}i∈Ag, d, δ,
V 〉 and a coalition Γ ⊆ Ag, the abstract (generalized) CGSMΓ = 〈SΓ, [s0]Γ, {Acti}i∈Ag,
dmay

Γ , dmust
Γ , δmay

Γ , δmust
Γ , VΓ〉 is defined such that:
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1. SΓ = {[s]Γ | s ∈ S} is the set of equivalence classes for all states s ∈ S, with
initial state [s0]Γ;

2. for every t, t′ ∈ SΓ and joint action ~α, t′ ∈ δmay
Γ (t, ~α) iff for some s ∈ t and

s′ ∈ t′, δ(s, ~α) = s′;

3. for every t, t′ ∈ SΓ and joint action ~α, t′ ∈ δmust
Γ (t, ~α) iff for all s ∈ t there is

s′ ∈ t′ such that δ(s, ~α) = s′;

4. for x ∈ {may ,must}, t ∈ SΓ, and i ∈ Ag, dxΓ(i, t) = {αi ∈ Acti | δxΓ(t, (αi, ~αi))
is defined for some tuple of actions ~αi};

5. for v ∈ {tt,ff}, p ∈ AP , and t ∈ SΓ, VΓ(t, p) = v iff V (s, p) = v for all s ∈ t;
otherwise, VΓ(t, p) = uu.

We now show that the abstraction of an iCGS is indeed a generalized CGS as de-
fined in Def. 6. In particular, the indistinguishability relation for every i ∈ Ag is
assumed to be the identity relation.

Lemma 2. For every coalition Γ ⊆ Ag, any abstraction MΓ of an iCGS M is a gen-
eralized CGS.

Proof. We consider items 1-4 in Def. 6.

1. SΓ is a non-empty set of states, with initial state [s0]Γ. Each Acti is a non-
empty set of actions, and ∼i is assumed to be the identity relation for every
agent i ∈ Ag.

2. For every i ∈ Ag and t ∈ SΓ, dmust
Γ (i, t) ⊆ dmayΓ (i, t) ⊆ Acti, as α ∈

dmust
Γ (i, t) iff by Def. 9.4, δmust

Γ (t, (α, ~αi)) is defined for some tuple of ac-
tions ~αi. Then, δmay

Γ (t, (α, ~αi)) is also defined (see below), and therefore α ∈
dmay

Γ (i, t).

3. For x ∈ {may ,must}, if δxΓ(t, ~α) is defined, then for every i ∈ Ag, δxΓ(t, (α, ~αi))
is defined for some ~αi, that is, α ∈ dxΓ(i, t).

Further, for every t ∈ SΓ and ~α ∈ ACT , δmust
Γ (t, ~α) ⊆ δmay

Γ (t, ~α), as by
Def. 9.2-3, if for all s ∈ t there is s′ ∈ t′ such that δ(s, ~α) = s′, then in
particular there exist s ∈ t, s′ ∈ t′ such that δ(s, ~α) = s′.

4. Clearly, VΓ : SΓ ×AP → {tt,ff,uu} is a (three-valued) labelling function.

In the rest of the paper we will also consider the restrictions of abstract CGSs over
must and may components only. We refer to them as Mx, for x ∈ {must ,may}.
Specifically, in Mmust (resp. Mmay ) there only appears the protocol function dmust

(resp. dmay ) and the transition function δmust (resp. δmay ). As such, Mmust and
Mmay can be thought of as standard (two-valued) CGSs.

We can now state the main theoretical result in this section. First recall that a Γ-
formula is a formula in which the strategic operator 〈〈Γ〉〉 ranges only over some fixed
coalition Γ ⊆ Ag. By next result, if a Γ-formula has a defined truth value in an abstract
CGS MΓ, built on an iCGS M , then the Γ-formula has the same truth value in M .
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Theorem 2. Given an iCGS M , state s, and coalition Γ ⊆ Ag, for every Γ-formula φ
in ATL∗, we have that

((MΓ, [s]Γ) |=3 φ) = tt ⇒ (M, s) |=2 φ (3)
((MΓ, [s]Γ) |=3 φ) = ff ⇒ (M, s) 6|=2 φ (4)

Proof. The proofs for (3) and (4) are by mutual induction on the structure of the
formula (needed for the case of negation). We consider the cases in which the main
operator is the strategic modality. The other cases are immediate and thus omitted.

(3) By Def. 8 ((MΓ, [s]Γ) |=3 〈〈Γ〉〉ψ) = tt iff for some joint strategy Fmust
Γ , for

all paths p ∈ out([s]Γ, Fmust
Γ ), ((MΓ, p) |=3

I ψ) = tt. Given Fmust
Γ we construct a

joint uniform strategy F ′Γ in M as follows: for every agent i ∈ Γ and history h ∈ S+,
define f ′i(h) = fmust

i (k), where (i) |h| = |k| and (ii) for all j ≤ |h|, hj ∈ kj . Notice
that each f ′i so defined is uniform, as h ∼i h′ implies h ∼CΓ h′ by definition of ∼CΓ ,
and therefore there is a unique k ∈ S+

Γ such that both h and h′ belong to k, that is,
f ′i(h) = fmust

i (k) = f ′i(h
′). Given such F ′Γ, observe that if p′ ∈ out(s, F ′Γ), then

[p′]Γ = [p′1]Γ, [p
′
2]Γ . . . belongs to out([s]Γ, Fmust

Γ ). Since ((MΓ, [p
′]Γ) |=3 ψ) = tt

by assumption, we obtain that (M,p′) |=2 ψ by induction hypothesis, and therefore
(M, s) |=2 〈〈Γ〉〉ψ.

(4) By Def. 8 ((MΓ, [s]Γ) |=3 〈〈Γ〉〉ψ) = ff iff for every Fmay
Γ , for some p ∈

out([s]Γ, F
may
Γ ), ((MΓ, p) |=3 ψ) = ff . Now every joint (uniform) strategy F ′Γ in M

induces several joint strategies Fmay
Γ in MΓ: for every k ∈ S+

Γ , i ∈ Ag, fmay
i (k) =

f ′i(h) for some h ∈ S+ such that |h| = |k| and hj ∈ kj for every j ≤ |h|. In
particular, for every p ∈ out([s]Γ, Fmay

Γ ) there exists p′ ∈ out(s, F ′Γ) such that p′j ∈ pj
for every j ≥ 0, and therefore (M,p′) 6|=2 ψ by induction hypothesis. As a result,
(M, s) 6|=2 〈〈Γ〉〉ψ.

By Theorem 2 a defined answer to the model checking problem w.r.t. abstract,
generalized CGS, which is decidable, can be transferred to the concrete, two-valued
iCGS, whose model checking problem is undecidable in general. Obviously, if the
returned value is undefined (uu), then no conclusive answer can be drawn.

In what follows we will provide a procedure to refine the abstraction in a conser-
vative way. This refinement procedure assumes the existence of a “failure” state in
which the truth value of the relevant formula is undefined. In Sec. 6 we describe the
algorithm to find failure states, but first we prove some general results on automata for
three-valued LTL in Sec. 5.

To conclude, we illustrate the abstraction procedure with our Train Gate Controller
scenario in Example 1.

Example 2. In Fig. 2 we show the abstract CGS obtained from the iCGS in Example 1
by considering formula ϕ = 〈〈Γ〉〉F (l1 ∧ ¬bUg) for Γ = {t1, c}. Specifically, abstrac-
tion MΓ includes five abstract states according to the equivalence relation ∼C{t1,c}.
Notice that formula ϕ is undefined in MΓ due to the undefined value of atom l1 in state
a2.
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Figure 2: The abstract CGS for the iCGS in Example 1, where # ∈ {LLL,LRL,RLR,RRR}, ∗ repre-
sents any action, must-transitions are depicted with continuous lines, and may-transitions are the continu-
ous and dashed lines.

5. Automata for Three-valued LTL

In this section we introduce an automata-theoretic approach to the verification of
the three-valued linear-time logic LTL. We refer to [6] for a detailed presentation of
LTL; here we observe that the syntax of LTL can be obtained from Def. 2 by con-
sidering as state formulas only atoms (i.e., ϕ ::= a). Then, the three-valued semantics
for LTL follows from Def. 8 by considering only the clauses concerning the operators
in the syntax of LTL. The results in this section will be used in Sec. 6 to find failure
states.

We first recall the definition of generalized non-deterministic Büchi automaton.

Definition 10 (GNBA). A generalized non-deterministic Büchi automaton is a tuple
A = 〈Q,Q0,Σ, π,F〉 where

• Q is a finite set of states with Q0 ⊆ Q as the set of initial states;

• Σ is an alphabet;

• π : Q× Σ→ 2Q is the (non-deterministic) transition relation;

• F is a (possibly empty) subset of 2Q, whose elements are called acceptance sets.

Given an infinite run ρ = q0q1q2 . . . ∈ Qω , let Inf(ρ) be the set of states q for
which there are infinitely many indices i with q = qi, that is, q appears infinitely often
in ρ. Then, run ρ is accepting if for each acceptance set F ∈ F , Inf(ρ) ∩ F 6= ∅, that
is, there are infinitely many indices i in ρ with qi∈F. The accepted language L(A) of
automaton A consists of all infinite words w ∈ Σω for which there exists at least one
accepting run ρ = q0q1q2 . . . ∈ Qω such that for all i ≥ 0, qi+1 ∈ π(qi, wi).

We now show that for every LTL formula ψ, there exists an automaton Aψ,uu that
accepts exactly the infinite paths that evaluate ψ to undefined (uu). We first provide
some definitions necessary for the construction.
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Definition 11 (Closure and Elementarity). The closure cl(ψ) of an LTL formula ψ
is the set consisting of all subformulas φ of ψ as well as their negation ¬φ.

A set B ⊆ cl(ψ) is consistent w.r.t. propositional logic iff for all ψ1 ∧ ψ2,¬¬φ ∈
cl(ψ): (i) ψ1 ∧ ψ2 ∈ B iff ψ1 ∈ B and ψ2 ∈ B; (ii) ¬(ψ1 ∧ ψ2) ∈ B iff ¬ψ1 ∈ B or
¬ψ2 ∈ B; (iii) if φ ∈ B then ¬φ 6∈ B; (iv) ¬¬φ ∈ B iff φ ∈ B.

Further, B is locally consistent w.r.t. the until operator iff for all ψ1Uψ2 ∈ cl(ψ):
(i) if ψ2 ∈ B then ψ1Uψ2 ∈ B; (ii) if ¬(ψ1Uψ2) ∈ B then ¬ψ2 ∈ B; (iii) if
ψ1Uψ2 ∈ B and ψ2 6∈ B then ψ1 ∈ B; (iv) if ¬ψ1,¬ψ2 ∈ B, then ¬(ψ1Uψ2) ∈ B.

Finally, B is elementary iff it is both consistent and locally consistent.

Notice that, differently from the standard construction for two-valued LTL [6],
here we do not require elementary sets to be maximal (i.e., either φ ∈ B or ¬φ ∈ B),
but we do require extra conditions (ii) and (iv) on consistency, and (ii) and (iv) on
local consistency. Basically, these extra conditions reflect the satisfaction clauses for
false (ff) in the three-valued semantics. E.g., as regards (ii), (ψ1 ∧ ψ2) is false iff
either ψ1 or ψ2 is false. While such conditions can be derived in the standard two-
valued semantics by considering maximality, here they need to be assumed. Hereafter
Lit = AP ∪ {¬a | a ∈ AP} is the set of litterals.

Definition 12 (Automaton Aψ,uu). Let ψ be a formula in LTL. We define the au-
tomaton Aψ,uu = 〈Q,Q0, 2

Lit, π,F〉 as follows:

• Q is the set of all elementary sets B ⊆ cl(ψ) with Q0 = {B ∈ Q | ψ 6∈
B and ¬ψ 6∈ B}.

• The transition relation π is given by: let A ⊆ Lit. If A 6= B ∩ Lit, then
π(B,A) = ∅; otherwise π(B,A) is the set of all elementary sets B′ of formulas
such that for every Xφ,ψ1Uψ2 ∈ cl(ψ): (i) Xφ ∈ B iff φ ∈ B′; (ii) ¬Xφ ∈ B
iff ¬φ ∈ B′; (iii) ψ1Uψ2 ∈ B iff ψ2 ∈ B or, ψ1 ∈ B and ψ1Uψ2 ∈ B′; (iv)
¬(ψ1Uψ2) ∈ B iff ¬ψ2 ∈ B and, ¬ψ1 ∈ B or ¬(ψ1Uψ2) ∈ B′.

• F = {Fψ1Uψ2 | ψ1Uψ2 ∈ cl(ψ)}∪{Q}, where Fψ1Uψ2 = {B ∈ Q | ψ1Uψ2 ∈
B implies ψ2 ∈ B and ¬ψ2 ∈ B implies ¬(ψ1Uψ2) ∈ B}.

By Def. 12 the transition relation works as follows: if the automaton reads a set A
of literals that do not appear in the state, then the transition is not defined. Otherwise,
the automaton checks the transitions enabled w.r.t. the semantics of the LTL operators.
Notice that in Def. 12 we need to provide conditions on negated formulas as well, as
elementary sets are not necessarily maximal. Furthermore, set F of accepting sets
always includes set Q of all states. This guarantees that, whenever there are no until
subformulas, any run in Q is accepting. This is convenient for the implementation
described in Sec. 10. Finally, we can define automataAψ,tt andAψ,ff accepting exactly
the infinite paths that evaluate ψ to true (resp. false), by setting Qtt

0 = {B ∈ Q | ψ ∈
B} and Qff

0 = {B ∈ Q | ¬ψ ∈ B} respectively. For both automata we can prove
results similar to Theorem 3 below.

To illustrate the automaton construction, we present two examples of automata for
the next and the until operators.
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Figure 3: The automaton Aψ,uu for formula ψ = Xa. Initial states are marked in yellow.

Example 3. Consider ψ = Xa. The GNBA Aψ,uu in Fig. 3 is obtained as indicated in
Def. 12. Namely, the state spaceQ consists of all elementary sets of formulas contained
in cl(ψ) = {a,¬a,Xa,¬Xa}: B1 = ∅, B2 = {a}, B3 = {¬a}, B4 = {Xa},
B5 = {¬Xa}, B6 = {a,Xa}, B7 = {a,¬Xa}, B8 = {¬a,Xa}, B9 = {¬a,¬Xa}.
The initial states of Aψ,uu are the elementary sets B ∈ Q with ψ,¬ψ 6∈ B. That is,
Q0 = {B1, B2, B3}. The transitions are depicted in Fig. 3. The set F is equal to
{Q} as ψ does not contain the until operator. Hence, every infinite run in Aψ,uu is
accepting.

Example 4. Consider the formula ψ = aUb. The GNBAAψ,uu in Fig. 4 is obtained as
indicated in Def. 12. Namely, the state space Q of Aψ,uu consists of all the elementary
sets of formulas contained in cl(ψ) = {a, b,¬a,¬b, aUb,¬(aUb)}: B1 = ∅, B2 =
{a}, B3 = {¬a}, B4 = {aUb, a}, B5 = {aUb, b}, B6 = {¬(aUb),¬b}, B7 =
{aUb, a, b}, B8 = {aUb,¬a, b}, B9 = {aUb, a,¬b}, B10 = {¬(aUb), a,¬b}, B11 =
{¬(aUb),¬a,¬b}. The initial states of Aψ,uu are the elementary sets B ∈ Q with
ψ,¬ψ 6∈ B. Thus, Q0 = {B1, B2, B3}. The transitions are depicted in Fig.4. Finally,
F = {Fψ, Q}, where Fψ = {B1, B2, B3, B5, B6, B7, B8, B10, B11}.

We now prove that the paths that evaluate ψ as undefined are exactly those included
in the language of Aψ,uu. To prove this result, we make use of the following lemma.
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B2
a

B1

∅

B3¬a

B5

{aUb, b}
B4

{aUb, a}
B6

{¬(aUb),¬b}

B8

{aUb,¬a, b}
B7

{aUb, a, b}
B9

{aUb, a,¬b}

B10

{¬(aUb), a,¬b}

B11

{¬(aUb),¬a,¬b}

Figure 4: The automaton Aψ,uu for formula ψ = aUb. Initial states are marked in yellow and the labelling
of transitions is omitted for clarity.

Lemma 3. Let run ρ = B1B2 . . . in Aψ,uu and path p = p1p2 . . . in (2Lit)ω be such
that

(i) for all i ≥ 0, Bi+1 ∈ π(Bi, pi);

(ii) ρ is accepting.

Then, for all φ ∈ cl(ψ),

(a) φ ∈ B1 iff (p |=3 φ) = tt;

(b) ¬φ ∈ B1 iff (p |=3 φ) = ff .

Proof. The proof is by induction on the structure of φ, where the induction hy-
pothesis is that for all i ≥ 0, φ ∈ Bi iff (pipi+1 . . . |=3 φ) = tt and ¬φ ∈ Bi
iff (pipi+1 . . . |=3 φ) = ff . Notice that by construction, π(Bi, pi) is defined iff
pi = Bi ∩ Lit.

Base case: The statement for φ = a ∈ AP follows directly from the fact that
(pipi+1 . . . |=3 φ) = tt iff a ∈ pi = Bi ∩ Lit, iff a ∈ Bi. Similarly, (pipi+1 . . . |=3

φ) = ff iff ¬a ∈ pi = Bi ∩ Lit, iff ¬a ∈ Bi.
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Inductive steps: based on the induction hypothesis that the claim holds for formulas
ψ1, ψ2 ∈ cl(ψ), we need to prove that it also holds for φ = Xψ1, φ = ψ1 ∧ ψ2, and
φ = ψ1Uψ2 in cl(ψ).

As regards φ = ψ1 ∧ ψ2, (pipi+1 . . . |=3 φ) = tt iff (pi, pi+1 . . . |=3 ψ1) = tt
and (pi, pi+1 . . . |=3 ψ1) = tt, iff ψ1, ψ2 ∈ Bi by induction hypothesis, iff φ ∈ Bi
by consistency. Similarly, (pipi+1 . . . |=3 φ) = ff iff (pi, pi+1 . . . |=3 ψ1) = ff or
(pi, pi+1 . . . |=3 ψ2) = ff , iff ¬ψ1 ∈ Bi or ¬ψ2 ∈ Bi by induction hypothesis, iff
¬φ ∈ Bi by consistency.

As for φ = Xψ1, (pipi+1 . . . |=3 φ) = tt iff (pi+1, pi+2 . . . |=3 ψ1) = tt, iff
ψ1 ∈ Bi+1 by induction hypothesis, iff φ ∈ Bi by Def. 12. Similarly, (pipi+1 . . . |=3

φ) = ff iff (pi+1, pi+2 . . . |=3 ψ1) = ff , iff ¬ψ1 ∈ Bi+1 by induction hypothesis, iff
¬φ ∈ Bi again by Def. 12.

For φ = ψ1Uψ2. Let p = pipi+1 . . . ∈ (2Lit)ω and BiBi+1 . . . ∈ Qω satisfy
conditions (i) and (ii), we then show that φ ∈ Bi iff (pipi+1 . . . |=3 φ) = tt.

(⇐) Suppose that (pipi+1 . . . |=3 ψ1Uψ2) = tt. Then, for some j ≥ i, (pjpj+1 . . . |=3

ψ2) = tt and (pkpk+1 . . . |=3 ψ1) = tt for all i ≤ k < j. By the induction hypothesis
applied to ψ1 and ψ2, it follows that ψ2 ∈ Bj and ψ1 ∈ Bk for all i ≤ k < j. Since
Bj is elementary, ψ1Uψ2 ∈ Bj as well. Further, by definition of π, we obtain that
ψ1Uψ2 ∈ Bk for all i ≤ k < j. In particular, ψ1Uψ2 ∈ Bi.

(⇒) Suppose that ψ1Uψ2 ∈ Bi. Since Bi is elementary, then either ψ1 ∈ Bi or
ψ2 ∈ Bi. If ψ2 ∈ Bi, it follows from the induction hypothesis that (pipi+1 . . . |=3

ψ2) = tt, and therefore (pipi+1 . . . |=3 ψ1Uψ2) = tt. On the other hand, if ψ2 6∈ Bi,
then both ψ1 ∈ Bi and ψ1Uψ2 ∈ Bi. To obtain a contradiction suppose that ψ2 6∈ Bj
for all j ≥ i. By the definition of π, by using an inductive argument we have that
ψ1 ∈ Bj and ψ1Uψ2 ∈ Bj for all j ≥ i. Further, since BiBi+1 . . . is accepting and
satisfies (ii), for infinitely many k ≥ i, we have Bk ∈ Fψ1Uψ2

, that is, ψ1Uψ2 ∈ Bk
implies ψ2 ∈ Bk. But for all j ≥ i, ψ1Uψ2 ∈ Bj and ψ2 6∈ Bj iff Bj 6∈ Fψ1Uψ2

,
which is a contradiction. Thus, ψ2 ∈ Bj for some j > 0. Assume that k is the smallest
index such that ψ2 ∈ Bk. By the induction hypothesis applied to ψ1 and ψ2 it follows
(pkpk+1 . . . |=3 ψ2) = tt and (pjpj+1 . . . |=3 ψ1) = tt for all i ≤ j < k. Hence
(pipi+1 . . . |=3 ψ1Uψ2) = tt.

Now we show that ¬φ ∈ Bi iff (pipi+1 . . . |=3 φ) = ff .
(⇐) Suppose that (pipi+1 . . . |=3 ψ1Uψ2) = ff . Then, either (i) for all k ≥ i,

(pkpk+1 . . . |=3 ψ2) = ff , or (ii) for some j ≥ 0, (pjpj+1 . . . |=3 ψ1) = ff and
for all j, i ≤ j ≤ k implies (pjpj+1 . . . |=3 ψ2) = ff . If (i), then by induction
hypothesis ¬ψ2 ∈ Bk for all k ≥ i. By assumption (ii), there are infinitely many
j ≥ i such that ¬(ψ1Uψ2) ∈ Bj . By definition of π, ¬(ψ1Uψ2) ∈ Bk for all k ≥ i.
In particular, ¬(ψ1Uψ2) ∈ Bi. If (ii), by induction hypothesis, for some k ≥ i,
¬ψ1 ∈ Bk, and for all j, i ≤ j ≤ k implies ¬ψ2 ∈ Bj . By local consistency we
obtain that ¬(ψ1Uψ2) ∈ Bk, and by definition of π, we derive that for all j, i ≤ j ≤ k
implies ¬(ψ1Uψ2) ∈ Bj . In particular, ¬(ψ1Uψ2) ∈ Bi.

(⇒) Suppose that ¬(ψ1Uψ2) ∈ Bi. We use the equivalent clause for falsehood of
the until operator U and prove by induction that for every k ≥ i, either (i) ¬ψ2 ∈ Bk
or (ii) for some j, i ≤ j < k and ¬ψ1 ∈ Bj . Consider k = i, then ¬ψ2 ∈ Bi by
local consistency. Now consider k ≥ i such that ¬ψ2 ∈ Bk or for some j, i ≤ j < k
and ¬ψ1 ∈ Bj . If ¬ψ2 ∈ Bk+1, then we are fine. On the other hand, suppose that
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¬ψ2 /∈ Bk+1. By definition of π, we have that either¬ψ1 ∈ Bk or¬(ψ1Uψ2) ∈ Bk+1.
In the former case, the result follows as for some j, i ≤ j < k + 1 and ¬ψ1 ∈ Bj . In
the latter, we have ¬(ψ1Uψ2) ∈ Bk+1, and ¬ψ2 ∈ Bk+1 by local consistency. Finally,
by induction hypothesis, for all k ≥ 1, either (pkpk+1 . . . |=3 ψ2) = ff or for some j,
i ≤ j < k and (pjpj+1 . . . |=3 ψ1) = ff , that is, (pipi+1 . . . |=3 ψ1Uψ2) = ff .

Finally, we prove the main theoretical result in this section. Hereafter, Paths(ψ,uu)
is the set of paths p ∈ (2Lit)ω such that (p |=3 ψ) = uu.

Theorem 3. For everyLTL formulaψ there exists a GNBAAψ,uu (given as in Def. 12)
s.t. L(Aψ,uu) = Paths(ψ,uu). Moreover, the size of Aψ,uu is exponential in the size
of ψ.

Proof. Clearly, by Def. 12 the size of Aψ,uu in terms of number of states is expo-
nential in the size of ψ. Then, we prove the set inclusions in both directions.

(1) Let p = p1p2 . . . ∈ Paths(ψ,uu). For i ≥ 0, define sets Bi of formulas as
{φ ∈ cl(ψ) | (pipi+1 . . . |=3 φ) = tt}∪{¬φ ∈ cl(ψ) | (pipi+1 . . . |=3 φ) = ff}. Note
that every Bi is elementary, i.e., Bi ∈ Q. Now, we prove that B1B2 . . . is an accepting
run for p. Observe that Bi+1 ∈ π(Bi, pi), since for all i > 0,

• pi = Bi ∩ Lit.

• ForXφ ∈ cl(ψ), we haveXφ ∈ Bi iff (pipi+1 . . . |=3 Xφ) = tt, iff (pi+1pi+2 . . . |=3

φ) = tt, iff φ ∈ Bi+1.

• Similarly, ¬Xφ ∈ Bi iff (pipi+1 . . . |=3 Xφ) = ff iff (pi+1pi+2 . . . |=3 φ) = ff
iff ¬φ ∈ Bi+1.

• For ψ1Uψ2 ∈ cl(ψ), we have ψ1Uψ2 ∈ Bi iff (pipi+1 . . . |=3 ψ1Uψ2) = tt
iff (pipi+1 . . . |=3 ψ2) = tt or, (pipi+1 . . . |=3 ψ1) = tt and (pi+1pi+2 . . . |=3

ψ1Uψ2) = tt, iff ψ2 ∈ Bi or, ψ1 ∈ Bi and ψ1Uψ2 ∈ Bi+1.

• Similarly, ¬(ψ1Uψ2) ∈ Bi iff (pipi+1 . . . |=3 ψ1Uψ2) = ff iff (pipi+1 . . . |=3

ψ2) = ff , and (pipi+1 . . . |=3 ψ1) = ff or (pi+1pi+2 . . . |=3 ψ1Uψ2) = ff iff
¬ψ2 ∈ Bi, and ¬ψ1 ∈ Bi or ¬(ψ1Uψ2) ∈ Bi+1.

The above shows that B1B2 . . . is a run in Aψ,uu. Now, we prove that it is ac-
cepting, i.e., for each subformula ψ1,jUψ2,j ∈ cl(ψ), Bi ∈ Fj for infinitely many
i, by contradiction. Consider there are finitely many i such that Bi ∈ Fj , then
Bi 6∈ Fj = Fψ1,jUψ2,j

implies that either (i) ψ1,jUψ2,j ∈ Bi and ψ2,j 6∈ Bi, or
(ii) ¬ψ2,j ∈ Bi and ¬ψ1,jUψ2,j /∈ Bi. As regards (i), by construction of Bi, we
have that (pipi+1 . . . |=3 ψ1,jUψ2,j) = tt and (pipi+1 . . . |=3 ψ2,j) 6= tt. In par-
ticular, for some k > i we have (pkpk+1 . . . |=3 ψ2,j) = tt. By Lemma 3, it fol-
lows that ψ2,j ∈ Bk, and by definition of Fj , Bk ∈ Fj . So, if Bi ∈ Fj for finitely
many i, then Bk ∈ Fj for infinitely many k, which is a contradiction. As regards
(ii), if there are finitely many i such that Bi ∈ Fj , then for some index m, for all
k ≥ m, we have ¬ψ2,j ∈ Bk and ¬(ψ1,jUψ2,j) 6∈ Bk. By Lemma 3, we have that
(pkpk+1 . . . |=3 ψ2,j) = ff and (pkpk+1 . . . |=3 ψ1,jUψ2,x) 6= ff . But in particular,
(pipi+1 . . . |=3 ψ1,jUψ2,j) = ff , which is a contradiction.
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Algorithm 1 FailureState(s, ϕ)

Input: state s, state formula ϕ.
Output: failure state sf , subformula of ϕ.

1: if ϕ = a then
2: return (s, ϕ)
3: if ϕ = ¬ϕ′ then
4: return FailureState(s, ϕ′)
5: if ϕ = ϕ1 ∧ ϕ2 then
6: let i = min{1, 2} such that ((M, s) |=3 ϕi) = uu return FailureState(s, ϕi)
7: if ϕ = 〈〈Γ〉〉ψ then
8: let φ1, . . . , φm by all maximal 〈〈Γ〉〉-subformulas of ψ;
9: AP := AP ∪ {atomφ1

, . . . , atomφm
};

10: for v ∈ {tt,ff,uu}, V ′(atomφi
, v) := MC3(M,φi, v);

11: ψ′ := ψ[φ1/atomφ1
, . . . , φm/atomφm

];
12: if Paths(M ′ ⊗Aψ′,uu) = ∅ then
13: return (s, ϕ)
14: else
15: let w ∈ L(M ′ ⊗Aψ′,uu)
16: return FailurePath(w|S , ψ)

(2) Let p = p1p2 . . . ∈ L(Aψ,uu), i.e., there is an accepting run B1B2 . . . for p in
Aψ,uu. By the definition of Aψ,uu, we have that π(B,A) = ∅ for all pairs (B,A) with
A 6= B ∩ Lit. Then, it follows that pi = Bi ∩ Lit for all i ≥ 0. Thus, p = (B1 ∩
Lit)(B2 ∩Lit) . . . and we need to prove that ((B1 ∩Lit)(B2 ∩Lit) . . . |=3 ψ) = uu.
This follows by Lemma 3 and the fact that neither ψ nor ¬ψ belong to B1.

This completes the proof of Theorem 3, which will be used in the next section.

6. Finding Failure States

In Sec. 4 we mentioned that the refinement procedure takes as input a “failure” state
sf in which some subformula of the specification to be checked is undefined. However,
no hint was given as to how to find such state sf . Hereafter we tackle this problem, but
first we recall the notion of failure state from [7].

Definition 13 (Failure State). A state s is a failure state with respect to formula ϕ iff
((M, s) |=3 ϕ) = uu and, either ϕ = a ∈ AP , or ϕ = 〈〈Γ〉〉ψ and either ((M,p) |=3

ψ) = tt for every may-path p starting from s, or ((M,p) |=3 ψ) = ff for every
must-path p starting from s

Intuitively, s is a failure state with respect to ϕ iff ((M, s) |=3 ϕ) = uu even though
M has definite truth values for all (proper) subformulas of ϕ in the relevant states.

To introduce the procedure to find failure states, we first define the product between
abstract CGS and GNBA.
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Algorithm 2 FailurePath(p, ψ)

Input: path p, LTL-formula ψ
Output: call to FailureState with state s appearing in p and state subformula ϕ of ψ

1: if ψ = ϕ then
2: return FailureState(p1, ϕ)
3: if ψ = ¬ψ′ then
4: return FailurePath(p, ψ′)
5: if ψ = ψ1 ∧ ψ2 then
6: Let i = min{1, 2} such that ((M,p) |=3 ψi) = uu return FailurePath(p, ψi)
7: if ψ = Xψ′ then
8: return FailurePath(p≥2, ψ

′)
9: if ψ = ψ1Uψ2 then

10: checkψ1
:= checkψ2

:= true; i := 0
11: while checkψ1

= true ∧ checkψ2
= true do

12: i := i+ 1
13: if ((M,p≥i) |=3 ψ2) = uu then
14: checkψ2

:= false
15: else if ((M,p≥i) |=3 ψ1) = uu then
16: checkψ1

:= false
17: if checkψ2

= false then
18: return FailurePath(p≥i, ψ2)
19: else
20: return FailurePath(p≥i, ψ1)

Definition 14 (Product). Given an abstract CGSM = 〈S, s0, {Acti}i∈Ag, dmay , dmust ,
δmay , δmust , V 〉 and a GNBA A = 〈Q,Σ, π,Q0,F〉, their product M ⊗ A = 〈S ×
Q, Ŝ0, {Acti}i∈Ag, d̂may , d̂must , δ̂may , δ̂must , V̂ 〉 is the CGS s.t. for s, t ∈ S, q, q′ ∈
Q, q0 ∈ Q0, and x ∈ {may ,must}.

• Ŝ0 = {(s0, q) | q ∈ π(q0, {p | V (s0, p) = tt} ∪ {¬p | V (s0, p) = ff})};

• d̂x((s, q)) = dx(s);

• δ̂x((s, q), ~α) = (s′, q′) iff δx(s, ~α) = s′ and q′ ∈ π(q, {p | V (s, p) = tt}∪{¬p |
V (s, p) = ff};

• V̂ (s, q) = q.

Product M ⊗ A is so defined that its state space is the cartesian product of the
states spaces of CGS M and automaton A. Then, the initial states of M ⊗ A are pairs
in which the first element is the initial state s0 of CGS M and the second is a state
of the automata that is determined by the automaton transition from its initial state
by reading the atoms true in the initial state s0 of the CGS. The protocol function is
defined by considering only the first component of state-pairs, whereas the transition
function does in parallel a transition in the CGS to determine the first component and
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a transition in the automaton for the second component. Finally, the labelling function
is the identity on the second component (i.e., the state of the automaton).

Given product M ⊗ A, we define its language L(M ⊗ A) as the set of (infinite)
words w = (s1, q1), (s2, q2), . . ., such that (i) (s1, q1) ∈ Ŝ0; (ii) for every i ≥ 1,
(si+1, qi+1) = δ̂x((si, qi), ~α) for some joint action ~α and x ∈ {may,must}; and (iii)
the restriction w|Q to Q-components belongs to L(A).

Lemma 4. For every w ∈ L(M ⊗Aψ,uu), ((M,w|S ) |=3 ψ) = uu.

Proof. By item (iii) above, the restrictionw|Q belongs toL(Aψ,uu), and by Theorem 3,
w|Q ∈ Paths(ψ,uu). Further, by items (i) and (ii),w|S is a path in modelM , and since
w|S and w|Q agree pointwise on the labelling function, we obtain that ((M,w|S ) |=3

ψ) = uu.

The procedure FailureState() to find failure states and relevant subformulas is
depicted in Algorithm 1, where a maximal 〈〈Γ〉〉-subformula is a subformula of type
〈〈Γ〉〉ψ that does not appear within any other such subformula. It takes as input a state
s and a formula ϕ such that ((M, s) |=3 ϕ) = uu and returns state s′ and subformula
ϕ′ of ϕ. It calls procedure FailurePath(p, ψ) in Algorithm 2 to deal with path subfor-
mulas. Note that, to work recursively on formulas of type ϕ = 〈〈Γ〉〉ψ, we preprocess
ϕ by substituting maximal 〈〈Γ〉〉-subformulas of ψ with new atoms, whose truth value
is determined by procedure MC3(), which is presented in Algorithm 7.

We prove that the procedure FailureState() is sound.

Proposition 1. Suppose that ((M, s) |=3 ϕ) = uu. If FailureState(s, ϕ) = (s′, ϕ′)
then s′ is a failure state w.r.t. ϕ′.

Proof. We prove the soundness of FailureState() by induction. Given a model M ,
state s, and formulaϕwith no nested strategy operators, the algorithm FailureState(s, ϕ)
starts by considering the base case in which ϕ is an atom (lines 1-2). Here, ϕ is a failure
state since the atom a is undefined on it. For the inductive step, we have the following
cases. For Boolean operators (lines 3-6), the procedure propagates over subformulas.
To deal with the strategic operator (lines 7-16), the algorithm checks whether there
is a path in the product M ⊗ Aψ,uu (Def. 14). By Lemma 4, the product between
model M and automaton Aψ,uu “accepts” all words w whose projection w|S on the S-
component is a path in M that makes the subformula ψ undefined. If there is no such
word, then the procedure returns the current state and formula. Otherwise, procedure
FailurePath(p, ϕ) in Algorithm 2 is called, where p is a path obtained by projecting
on the S-component some word accepted by the product M ⊗ Aψ,uu, i.e., p = w|S
for some w ∈ L(M ⊗ Aψ,uu). In procedure FailurePath(p, ϕ) the base case for state
formulas (lines 1-2) returns to FailureState() by taking as input the first state of path
p. In lines 3-6, FailurePath() handles the Boolean operators, and in lines 7-8 solves
the next operator in accordance with its semantics. The main point of interest is the
until operator U (lines 9-20). To prove that the while loop on line 11 terminates, we
make use of Lemma 5 below, whereby we can show that the case of the until operator
U in procedure FailurePath() terminates after a finite number of step.
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Lemma 5. Consider an abstract CGS M, path p, and formulaϕ = ψUψ′. If ((M,p) |=3

ϕ) = uu then for some i ≥ 0, either ((M,p≥i) |=3 ψ) = uu or ((M,p≥i) |=3 ψ′) =
uu.

Proof. We prove the lemma by contradiction. Suppose that ((M,p) |=3 ϕ) = uu and
for all i ≥ 0, for some v, v′ ∈ {tt,ff}, ((M,p≥i) |=3 ψ) = v and ((M,p≥i) |=3 ψ′) =
v′. We then consider the following cases:

1. If ((M,p≥i) |=3 ψ′) = ff (resp. tt) for all i ≥ 0, then by the three-valued
semantics we have ((M,p) |=3 ϕ) = ff (resp. tt), which is a contradiction.

2. If (1) is not the case, then formula ψ′ is sometimes true and sometimes false, but
always defined by assumption. Consider the smallest i ≥ 0 such that ((M,p≥i) |=3

ψ′) = tt. Then, we can only have one of the following:

(a) If for all 1 ≤ j < i, ((M,p≥j) |=3 ψ) = tt, then by the three-valued
semantics we have ((M,p) |=3 ϕ) = tt, which is a contradiction.

(b) Otherwise, there exists 1 ≤ j < i such that ((M,p≥j) |=3 ψ) = ff .
Since we assumed that i is the smallest index for which ψ′ is true, then for
all 1 ≤ k ≤ j we have ((M,p≥k) |=3 ψ′) = ff . Hence, by the three-
valued semantics it follows that ((M,p) |=3 ϕ) = ff , which is again a
contradiction.

This concludes the proof of Proposition 1.

Example 5. As an example of the application of our procedure to find failure states,
we consider again the model proposed in Example 2. Now, as input for procedure
FailureState() we consider formula ϕ = 〈〈Γ〉〉F (l1 ∧ ¬bUg) and state a1 in Fig. 2. In
Example 2 we observed that ((MΓ, a1) |=3 ϕ) = uu. Since the main operator in ϕ is
the strategic modality 〈〈Γ〉〉, procedure FailureState() goes to line 7. In particular, it
constructs the automaton Aψ,uu that accepts all paths where ψ = true U(l1 ∧ ¬bUg)
is undefined. Now, the language of the product of model MΓ and Aψ,uu is not empty,
consider for instance word w = (a1, q1)(a2, q2)(a3, q3) . . ., where q1, q2, q3 are states
in Aψ,uu. Hence, the procedure calls FailurePath() with input p = a1a2a3 . . ., i.e.,
the projection on the MΓ-component of word w. Since formula ψ has until U as the
main operator, the procedure goes to line 9. Now, ((MΓ, p≥2) |=3 ψ) = uu and
we call FailurePath(p≥2, ψ

′) with ψ′ = l1 ∧ ¬bUg. Observe that the main opera-
tor in ψ′ is a conjunction ∧, and therefore we go to line 5. Here, ((MΓ, p≥2) |=3

l1) = ((MΓ, p2) |=3 l1) = uu, then we call FailurePath(p≥2, l1), and by lines 1-2,
FailureState(p2, l1) finally returns failure state a2 and atom l1.

7. Refinement

By Theorem 2 if a formula is undefined on abstraction MΓ, then no conclusion
can be drawn on the model checking problem for M . In this section we provide a
refinement procedure taking as input the “failure” state sf in MΓ given by Algorithm
1, and returning a refined CGS Mr

Γ, whose state space is bigger than MΓ, but still

25



smaller than M in general, and for which we are able to prove Theorem 4 below, a
preservation result similar to Theorem 2.

The procedure Refinement(MΓ,M, sf ) is described in Algorithm 3. Intuitively,
we look at incoming transitions into sf . For concrete states s and s′ in sf , if the Γ-
component of actions ending respectively in s and s′ are different, any uniform strategy
for Γ will visit either s or s′. As a result, the abstract state sf can be split “safely” into
an s- and an s′-component. More precisely, the procedure Refinement() begins by
initializing as true the values of a matrix m that stores the relation “having uniform in-
coming transitions”, between the concrete states in sf (lines 1-2). Then, the algorithm
calls the subroutine Check1(MΓ,M, sf ,m) in Algorithm 4, which updates the values
in m by considering the concrete transition function δ in M . In particular, at each it-
eration Check1() considers one predecessor tf of sf (line 1). Then, two other loops
iterate on pairs of states s and s′ in the abstract state sf and pairs of states t and t′ in
predecessor tf . If s and s′ are indistinguishable for some agent i ∈ Γ and i performs
the same action in the transitions from t and t′ to s and s′ respectively (lines 2-4), then
we update the value of the corresponding cell in m to false (line 5). The subroutine
reported in Check1() carries out the first round of updates onm. Further updates in the
Refinement() algorithm are performed by the subroutine Check2(MΓ, sf ,m, update)
reported in Algorithm 5, which considers the “indirect” binding that some concrete
states may have in an abstract state. Specifically, given the states s and s′ in the ab-
stract state sf that have true as value in m (lines 2-3), we need to consider the relation
that s and s′ have with the other states in sf (lines 4-6): if the values in m for both
states related with some other state t are false, then we update the value of cellm[s, s′]
to false as well. Subroutine Check2() is called repeatedly in algorithm Refinement()
as long as guard update remains true. When update becomes false, we proceed to
check whether there is at least an element true in m (line 8). If this is the case, we
assign the related concrete states s and s′ to two different, new abstract states v and
w (line 10). Finally, we populate the new abstract states v and w with the other con-
crete states in the old abstract state sf (which is removed) according to matrix m (lines
11-15).

Hereafter we present the formal definition of the refined CGS Mr
Γ as obtained by

the application of the Refinement() algorithm.

Definition 15 (Refined CGS). Given an abstract CGS MΓ = 〈SΓ, s0, {Acti}i∈Ag,
dmay

Γ , dmust
Γ , δmay

Γ , δmust
Γ , VΓ〉, its refinementMr

Γ =〈SrΓ, sr0, {Acti}i∈Ag, d
may
Γ , dmust

Γ ,
δmay
Γ , δmust

Γ , V rΓ 〉 as obtained by an application of algorithm Refinement(MΓ,M, sf )
is defined as follows:

1. If Refinement(MΓ,M, sf ) returns split = tt, then SrΓ = (SΓ \{sf})∪{v, w},
that is, SrΓ is the set SΓ of states in MΓ without the “failure” state sf , but with
the new states v, w added by Alg. 3. Otherwise (if split = ff), then SrΓ = SΓ.
Moreover, sr0 is the state in SrΓ such that s0 ∈ sr0, for s0 ∈M .

2. For x ∈ {may ,must}, the transitions relations δxΓ and the protocol functions dxΓ
are defined as in Def. 9. In particular,

(a) for every t, t′ ∈ SrΓ and joint action ~α, t′ ∈ δmay
Γ (t, ~α) iff for some s ∈ t

and s′ ∈ t′, δ(s, ~α) = s′;
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Algorithm 3 Refinement(MΓ,M, sf )

Input: CGS MΓ, iCGS M , failure state sf
Output: CGS MΓ, truth value split

1: for s, s′ ∈ sf do
2: m[s, s′] := true
3: Check1(MΓ,M, sf ,m); update := true
4: while update = true do
5: Check2(MΓ, sf ,m, update)
6: split := false
7: while s, s′ ∈ sf ∧ split = false do
8: if m[s, s′] = true then
9: split := true; remove(sf , SΓ)

10: add(v, SΓ); add(w, SΓ); add(s, v); add(s′, w)
11: for t ∈ sf do
12: if m[s, t] = true then
13: add(t, w)
14: else
15: add(t, v)
16: return (MΓ, split)

Algorithm 4 Check1(MΓ,M, sf ,m)

Input: CGS MΓ, iCGS M , failure state sf , matrix m
Output: updated matrix m

1: for tf ∈ Pre(sf ), s, s′ ∈ sf , t, t′ ∈ tf do
2: if δ(t, ~α) = s ∧ δ(t′, ~β) = s′ then
3: for i ∈ Γ do
4: if s ∼i s′ ∧ ~αi = ~βi then
5: m[s, s′] := false

(b) for every t, t′ ∈ SrΓ and joint action ~α, t′ ∈ δmust
Γ (t, ~α) iff for all s ∈ t

there is s′ ∈ t′ such that δ(s, ~α) = s′;

(c) for every t ∈ SrΓ, and i ∈ Ag, dxΓ(i, t) = {αi ∈ Acti | δxΓ(t, (αi, ~αi))
is defined for some ~αi}.

3. For v ∈ {tt,ff}, p ∈ AP , and t ∈ SrΓ, V rΓ (t, p) = v iff V (s, p) = v for all s ∈ t;
otherwise, V rΓ (s, p) = uu.

By Def. 15 the components of the refined CGS Mr
Γ coincide with those in abstrac-

tion MΓ, except possibly as regards the “failure” state sf and new states introduced by
Refinement(). On the new states, the transition relations and protocol functions are
defined in analogy with MΓ.

We now show a property of the refined CGS Mr
Γ, which will be useful to prove

the main preservation result Theorem 4. Intuitively, must strategies in Mr
Γ respect

uniformity on the set of their outcomes.
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Algorithm 5 Check2(MΓ, sf ,m, update)

Input: CGS MΓ, failure state sf , matrix m, truth value update
Output: updated matrix m, truth value update

1: update := false
2: for s, s′ ∈ sf do
3: if m[s, s′] = true then
4: for t ∈ sf do
5: if m[s, t] = false ∧m[s′, t] = false then
6: m[s, s′] := false; update := true

Lemma 6. In Mr
Γ for every joint strategy Fmust

Γ , for all p, p̂ ∈ out(t, Fmust
Γ ), all

p′ ∈ p, p̂′ ∈ p̂, and all i ∈ Γ, j ∈ N, if p′≤j ∼i p̂′≤j then fmust
i (p≤j) = fmust

i (p̂≤j).

Proof. For illustration, the lemma holds trivially in the abstraction MΓ as, if p′≤j ∼i
p̂′≤j for some i ∈ Γ, j ∈ N, then [p′≤j ]Γ = [p̂′≤j ]Γ and immediately fmust

i ([p′≤j ]Γ) =

fmust
i ([p̂′≤j ]Γ). So, it is left to show that the refinement procedure does not break

this feature. To obtain a contradiction, suppose that fmust
i (p≤j) 6= fmust

i (p̂≤j). This
means that for some minimal k ≤ j, pk and p̂k have been obtained by splitting some
“failure” state sf . But then, by the structure of the Refinement() procedure, p and p̂
cannot be both paths in out(t, Fmust

Γ ), as there would be prefixes p≤k−1 = p̂≤k−1 and
a unique incoming action fmust

i (p≤k−1) = fmust
i (p̂≤k−1) for both states pk and p̂k,

which contradicts the fact that they have been obtained through a split.

By Lemma 6 we can prove the main preservation result of this section. In particular,
the lemma is used in the inductive step for strategy operators.

Theorem 4. Given an iCGS M , state s, coalition Γ, its abstract CGS MΓ with refine-
ment Mr

Γ, and state srΓ 3 s, for every Γ-formula φ in ATL∗,

((Mr
Γ, s

r
Γ) |=3 φ) = tt ⇒ (M, s) |=2 φ (5)

((Mr
Γ, s

r
Γ) |=3 φ) = ff ⇒ (M, s) 6|=2 φ (6)

Proof. The proofs for both (5) and (6) are by mutual induction on the structure of
the formula. The induction hypotheses are as follows:

((Mr
Γ, t

r) |=3 ϕ) = tt ⇒ (M, t) |=2 ϕ (7)
((Mr

Γ, t
r) |=3 ϕ) = ff ⇒ (M, t) 6|=2 ϕ (8)

for t ∈ tr and state formula ϕ, and

((Mr
Γ, p

r) |=3 ψ) = tt ⇒ (M,p) |=2 ψ (9)
((Mr

Γ, p
r) |=3 ψ) = ff ⇒ (M,p) 6|=2 ψ (10)

for pj ∈ prj for every j ≥ 0, and path formula ψ. We consider the case where the main
operator is the strategic modality. The other cases are immediate and thus omitted.

28



(5) By Def. 4 ((Mr
Γ, s

r
Γ) |= 〈〈Γ〉〉ψ) = tt iff for some joint strategy Fmust

Γ , for all
paths p ∈ out(srΓ, F

must
Γ ), ((Mr

Γ, p) |= ψ) = tt. Given Fmust
Γ and out(srΓ, F

must
Γ )

we construct a joint uniform strategy F ′Γ to be used in M as follows: for every agent
i ∈ Γ and history h ∈ S+, we define f ′i(h) = ~αi if there is a path p ∈ out(srΓ, Fmust

Γ )
such that (i) for all j ≤ |h|, hj ∈ pj , (ii) fmust

i (p≤|h|) = ~αi, and (iii) δmust
Γ (p|h|, ~α) =

p|h|+1. For all histories that do not satisfy the conditions above the only important
thing is to preserve uniformity. To do so, for each h where f ′i is undefined, if there
exists h′ on which f ′i is defined and h and h′ are indistinguishable to i, then f ′i(h) =
f ′i(h

′). Otherwise, we can set any action in accordance with the transition function.
We observe that by Lemma 6, such F ′Γ is well-defined, as FmustΓ is “uniform” on
out(srΓ, F

must
Γ ). Given such F ′Γ, we obtain that for all p ∈ out(s, F ′Γ) there is p′ ∈

out(srΓ, F
must
Γ ) such that pj ∈ p′j , for all j ≥ 0. Then, by induction hypothesis, for all

p ∈ out(s, F ′Γ), (M,p) |=2 ψ, and therefore (M, s) |=2 〈〈Γ〉〉ψ.
(6) By Def. 4 ((Mr

Γ, s
r
Γ) |= 〈〈Γ〉〉ψ) = ff iff for every joint strategy Fmay

Γ , for some
path p ∈ out(srΓ, F

may
Γ ), ((Mr

Γ, p) |= ψ) = ff . Now, every joint (uniform) strategy F ′Γ
in M induces several joint may-strategies Fmay

Γ in Mr
Γ depending on the witness of

choice. Namely, given a strategy f ′i for agent i ∈ Ag, we define a may-strategy fmay
i

such that for every history k ∈ (SrΓ)+, fmay
i (k) = f ′i(h) for some history h ∈ S+

such that |h| = |k| and hj ∈ kj for every j ≤ |h|. Given such strategies, for every
p ∈ out(srΓ, F

may
Γ ) there exists p′ ∈ out(s, F ′Γ) such that p′j ∈ pj for every j ≥ 0, and

therefore (M,p′) 6|=2 ψ by induction hypothesis. As a result, (M, s) 6|=2 〈〈Γ〉〉ψ.

By Theorem 4 defined truth values are preserved from the refined CGS to the orig-
inal iCGS, similarly to Theorem 2.

Example 6. As an example of the application of our refinement procedure, we can
consider the model proposed in Example 2 and a2 as failure state (as produced in
Example 5). The Refinement() algorithm initializes the matrix m used to split the
abstract state a2 with all the entries as true (lines 1-2). Then, Check1() starts by
considering the predecessors of a2, i.e., a1 only. Since a1 is composed of only one
concrete state sI , Check1() considers the transitions from sI to all the states in a2.
In detail, by considering the model in Example 1, we need to check four transitions:
(sI , s1), (sI , s2), (sI , s3), and (sI , s4). For the last one, we need to consider the
actions pertaining to coalition Γ appearing in formula ϕ = 〈〈t1, c〉〉F (l1 ∧ ¬bUg),
i.e., Γ = {t1, c}. Check1() modifies the matrix m by updating to false the ele-
ments m[s1, s2] and m[s3, s4] since some agents in coalition Γ performs the same
actions. With more detail, m[s1, s2] becomes false due to the action L for train t1 and
m[s3, s4] becomes false due to the actionR for controller c. After this step, Check2()
checks whether there is a partition according to matrix m. In particular, in our exam-
ple such a partition exists, whereas the condition in line 5 of Check2() never holds.
Since there are no further updates in matrix m, the algorithm exits the loop in lines 4-6
of Refinement(). Finally, because of the loop in lines 7-15, state a2 is split into two
new states a1

2, including concrete states s1 and s2, and a2
2 with concrete states s3 and

s4 (Figure 5).
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Figure 5: The refinement for the CGS in Example 2, where # ∈ {LLL,LRL}, $ ∈ {RLR,RRR}, ∗ is
any action, must-transitions are depicted with continuous lines, and may-transitions are the continuous and
dashed lines.

8. Translating from Three-valued to Two-valued Semantics

To decide the model checking problem in the three-valued, perfect information
semantics, we make use of some auxiliary procedures to update the model and the
formula, so as to handle the three-valued semantics in the two-valued model checker
MCMAS. The results presented in this section are inspired to the procedures presented
in [11], the main difference here is that we need to handle models with must and may
transitions. Given a model M we use the procedure Duplicate atoms(M) to produce
a new model M ′ that differs from M as regards atoms and the labeling function as
follows:

1. For each atom a ∈ AP , the procedure introduces two new atoms att and aff and
add them to the new set of atoms AP ′ = {att, aff | a ∈ AP}.

2. For each state s ∈ S, the procedure defines the (two-valued) labeling function
V ′ on s as V ′(s, att) = tt iff V (s, a) = tt, and V ′(s, aff) = tt iff V (s, a) = ff .

As regards the formula to check, we introduce Algorithm 6 that, given an LTL-
formula ϕ on AP and a truth value v ∈ {tt,ff}, returns a new formula Transl(ϕ, v)
on AP ′, which handles the new atoms generated by Duplicate atoms(). In particular,
Algorithm 6 restricts a similar translation in [11] to LTL formulas only. To this end,
we show the following result.

Lemma 7. Given an iCGS M and LTL formula ϕ, let M ′ = Duplicate atoms(M),
ϕtt = Transl(ϕ, tt), and ϕff = Transl(ϕ,ff). Then, for every path p,

(M ′, p) |=2 ϕtt ⇔ ((M,p) |=3 ϕ) = tt (11)
(M ′, p) |=2 ϕff ⇔ ((M,p) |=3 ϕ) = ff (12)

(M ′, p) |=2 ¬(ϕtt ∨ ϕff) ⇔ ((M,p) |=3 ϕ) = uu (13)
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Algorithm 6 Transl(ϕ, v)

Input: LTL-formula ϕ, truth value v ∈ {tt,ff}
Output: LTL-formula Transl(ϕ, v)

1: switch (ϕ)
2: case a:
3: if v = tt then
4: return att

5: else if v = ff then
6: return aff

7: case ¬ψ:
8: return Transl(ψ,¬v) /* where ¬tt = ff and ¬ff = tt */
9: case ψ ∧ ψ′:

10: if v = tt then
11: return Transl(ψ, tt) ∧ Transl(ψ′, tt)
12: else if v = ff then
13: return Transl(ψ,ff) ∨ Transl(ψ′,ff)
14: case Xψ:
15: return X Transl(ψ, v)
16: case ψUψ′:
17: if v = tt then
18: return Transl(ψ, tt) U Transl(ψ′, tt)
19: else if v = ff then
20: return Transl(ψ,ff) R Transl(ψ′,ff)
21: case ψRψ′:
22: if v = tt then
23: return Transl(ψ, tt) R Transl(ψ′, tt)
24: else if v = ff then
25: return Transl(ψ,ff) U Transl(ψ′,ff)
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Lemma 7 can be proved as a slightly adaptation of the proof in [11].
We can now present Algorithm 7 to decide the model checking problem in the

three-valued semantics (with perfect information), and analyse its complexity.
Algorithm 7 takes as input a (three-valued) model M , an ATL∗-formula ϕ, and

x ∈ {may ,must}. Then, it returns whether ϕ is true or false according to the three-
value semantics for ATL∗.

Algorithm 7 MC3 (M,ϕ, v)

Input: iCGS M , a state formula ϕ in ATL∗, truth value v ∈ {tt,ff}
Output: Set of states s ∈ S such that ((M, s) |=3 ϕ) = v

1: switch (ϕ)
2: case ϕ = a:
3: return {s ∈ S | V (s, a) = v}
4: case ϕ = ¬ϕ′:
5: return MC3 (M,ϕ′,¬v)
6: case ϕ = ϕ′ ∧ ϕ′′:
7: if v = tt then
8: return MC3 (M,ϕ′, tt) ∩MC3 (M,ϕ′′, tt);
9: else if v = ff then

10: return MC3 (M,ϕ′,ff) ∪MC3 (M,ϕ′′,ff);
11: case ϕ = 〈〈Γ〉〉ψ:
12: let φ1, . . . , φm by all maximal 〈〈Γ〉〉-subformulas of ψ;
13: AP := AP ∪ {atomφ1

, . . . , atomφm
};

14: for i ≤ m, v ∈ {tt,ff}, V (atomφi , v) := MC3(M,φi, v);
15: ψ := ψ[φ1/atomφ1 , . . . , φm/atomφm ];
16: if v = tt then
17: return MC2(Mmust , 〈〈Γ〉〉Transl(ψ, tt))
18: else if v = ff then
19: return MC2(Mmay , [[Γ]]Transl(ψ,ff))
20: end switch

Theorem 5. Algorithm 7 is sound. That is, s ∈MC3(M,ϕ, v) iff ((M, s) |=3 ϕ) = v.
Moreover, it is in 2EXPTIME for ATL∗, and in PTIME for ATL.

Proof. Algorithm 7 works bottom-up on the structure of the state formula ϕ. The
cases for the atomic propositions and Boolean operators are immediate. The inductive
case for formulas of type 〈〈Γ〉〉ψ calls the model checking procedure MC2(M,φ),
which returns the set of states satisfying the ATL∗-formula φ in model M , according
to the two-valued semantics [3]. This step, which can be performed in 2EXPTIME,
requires more discussion. First of all, we assume that ψ is an LTL formula. This can
be assumed w.l.o.g. by taking care of updating the model and formula at each iteration
of Algorithm 7. In particular, once we have taken care of the innermost formulas
of type 〈〈Γ〉〉ψ, we extend the set AP of atoms with a new atom atom〈〈Γ〉〉ψ , whose
interpretation is provided by the model checking procedure, that is, V (atom〈〈Γ〉〉ψ, s) =
v iff s ∈ MC3(M, 〈〈Γ〉〉ψ, v). Furthermore, formula ϕ is updated by replacing every
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occurrence of 〈〈Γ〉〉ψ with atom〈〈Γ〉〉ψ . Finally, the soundness of the inductive step for
formulas of type 〈〈Γ〉〉ψ follows by Lemma 7. For instance, as regards the case for
v = tt, by Def. 8, ((M, s) |=3 〈〈Γ〉〉ψ) = tt iff for some joint strategy Fmust

Γ , for all
paths p ∈ out(s, Fmust

Γ ), ((M,p) |=3 ψ) = tt. Now notice that Fmust
Γ -strategies inM

corresponds to standard FΓ-strategies on restriction Mmust . As a result, by Lemma 7,
((M, s) |=3 〈〈Γ〉〉ψ) = tt iff for some joint strategy FΓ, for all paths p ∈ out(s, FΓ),
(Mmust , p) |=2 Transl(ψ, tt), iff (Mmust , p) |=2 〈〈Γ〉〉Transl(ψ, tt). The case for
v = ff can be proved similarly.

As regard complexity, the procedure recursively solves the formula in a polyno-
mial number of steps (in the size of the formula). In line 17 (resp. 19), it calls sub-
routine MC2() over restriction Mmust (resp., Mmay ), that is the model checking pro-
cedure under perfect information and perfect recall for two-valued ATL∗. Since the
latter problem is known to be 2EXPTIME-complete for the case ofATL∗ and PTIME-
complete for ATL [3], the complexity result follows.

Remark 1. Given Algorithm 7, we can solve the model checking problem simply by
checking whether s0 ∈ MC3(M,ϕ, tt). Furthermore, by Theorem 1, Algorithm 7
is optimal, that is, we can not provide an algorithm that solves the same problem with
better complexity. Notice that we can defineMC3(M,ϕ, uu) as S\(MC3(M,ϕ, tt)∪
MC3(M,ϕ,ff)). Moreover, we overload the symbol MC3() by using MC3(M,ϕ) to
denote the truth value of ϕ in M , that is, s0 ∈ MC3(M,ϕ, v) for v = MC3(M,ϕ).
In the rest of the paper, when it can be evinced from its context, we refer to Algorithm 7
for both the versions MC3(M,ϕ, v) and MC3(M,ϕ).

9. The Complete Verification Procedure

In Algorithm 8 we report the high-level iterative procedure for model checking
ATL∗ formulas under the assumptions of imperfect information and perfect recall.
Given an iCGS M and Γ-formula ϕ to check, we first construct the abstract (perfect
information) CGS MΓ based on M and Γ, by using procedure Abstraction() as de-
scribed in Def. 9. Then, we model check formula ϕ in the abstract model MΓ by
using procedure MC3() described in Algorithm 7, which is decidable by Theorem 1.
If a defined truth value v 6= uu is returned, we output it, since by Theorem 2 this
result can be transferred to the original verification problem. On the other hand, if
(MΓ |=3 ϕ) = MC3 (MΓ, ϕ) = uu then we enter the refinement loop in lines 5-10.
We start by calling procedure FailureState(sΓ, ϕ) to find failure state sf that makes
formula ϕ undefined (line 6). Then, line 7 calls function Refinement(MΓ,M, sf ) with
sf as input. We then check again formula ϕ in the refined model MΓ (line 8), and if
the result is defined, we exit the loop by returning the defined truth value (line 9).

When the instructions in lines 6-9 are terminated, we check the truth value of the
boolean variable split that is returned by the refinement procedure (line 10). We recall
that split is false if and only if the model has not been refined in the last iteration of
the loop. If this is the case, the loop is exited (and uu is returned), as it is not possible
to refine the model in a way to make the formula defined with our procedure.

We now discuss the complexity of our model checking algorithm.
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Algorithm 8 ModelCheckingProcedure(M,ϕ)

Input: iCGS M , Γ-formula ϕ.
Output: truth value v ∈ {tt,ff,uu}.

1: MΓ := Abstraction(M,Γ);
2: if MC3 (MΓ, ϕ) 6= uu then
3: return MC3 (MΓ, ϕ);
4: else
5: repeat
6: (sf , ψ) := FailureState(sΓ, ϕ);
7: (MΓ, split) := Refinement(MΓ,M, sf );
8: if MC3 (MΓ, ϕ) 6= uu then
9: return MC3 (MΓ, ϕ);

10: until ¬split;
11: return uu;

Theorem 6. ModelCheckingProcedure(M,ϕ) terminates in 2EXPTIME if ϕ is in
ATL∗, in PTIME if ϕ is in ATL.

Proof. We analyze in some detail Algorithm 8. The procedure of abstraction has
to explore a polynomial number of states to generate the abstract model. Since the
abstraction procedure returns a CGS with perfect information, we can use Algorithm
7 for the verification of formulas in ATL∗ (resp. ATL). By Theorem 5, this leads
to a model checking procedure in 2EXPTIME (resp. PTIME). The loop in lines 5-10
is shown to be polynomial by variable split that guarantees termination. In fact, the
number of refinements is polynomial in the size of the model. Furthermore, procedure
FailurePath() explores a polynomial number of states and formulas, and procedure
FailureState() builds an automaton, whose size is exponential in length of the for-
mula to be checked for ATL∗, of constant size for ATL. So, it appears that the re-
finement procedure (lines 6-7) can be performed in EXPTIME (resp. PTIME) overall.
Actually, the automaton Aψ,uu and product M ⊕ Aψ,uu can be built and checked for
emptiness on-the-fly, in principle, by using only a polynomial amount of space. In
both cases, the complexity is dominated by model checking ATL∗ (resp. ATL), and
therefore the overall complexity of our procedure is in 2EXPTIME (resp. PTIME).

By Theorem 6 the complexity of our partial model checking procedure is high for
ATL∗, but only in PTIME for ATL. This is still better than the general undecidability
result.

We conclude by presenting the last part of our example.

Example 7. As an example of the application of our procedure, we consider once
again the model proposed in Example 1. By line 1, the abstraction procedure pro-
duces the model presented in Example 2. Since the formula ϕ = 〈〈Γ〉〉F (l1 ∧ ¬bUg) is
undefined, the condition in line 2 is not satisfied and the algorithm enters the loop in
lines 5-10. For the initial state a1 in the abstract model, the algorithm checks whether
ϕ is undefined at a1. This is indeed the case. As showed in Example 5 the procedure
FailureState() returns failure state a2 and atom l1. So, theModelCheckingProcedure()
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calls theRefinement() procedure. Here, given a2 as failure state, as described in Ex-
ample 6, the Refinement() procedure splits state a2 into new states a1

2 with concrete
states s1 and s2, and a2

2 with concrete states s3 and s4. Then, by calling MC3() once
again, formula ϕ is defined (specifically, true) and this ends the whole procedure.

Finally, notice that ModelCheckingProcedure() does not necessarily terminate
with a defined truth value. Indeed, the model checking problem forATL (and a fortiori
forATL∗) in case of imperfect information and perfect recall is undecidable in general.
This is meant to be a sound, albeit partial, verification algorithm.

10. Implementation

The entire approach presented in this paper has been implemented in Java and the
resulting tool is publicly available as a GitHub repository2. The tool is structured as
follows:

1. Java classes which instantiate the various steps of the proposed approach (Sec. 10.1).

2. A web-based GUI to help the user to interact with the tool (Sec. 10.2).

10.1. Java Classes

The procedure described in Algorithm 8 has been fully implemented in Java. The
main component of such procedure is the iCGS, which has its corresponding Java class
(ATLModel class).

Model reading, storing and representation. In the ATLModel class the information
about states, transitions, agents, and coalitions are stored. To have a direct way to
import and export iCGSs, the ATLModel class implements the JsonObject interface3.
Through custom annotations, the class fields are exposed and serialised. In this way,
given an ATLModel object, it is possible to automatically generate its corresponding
Json character string representation, and vice versa. This allows a straightforward and
lightweight management of the import/export of iCGSs inside the tool. Note that, when
our iCGSs are verified using the MCMAS model checker, they need to be first trans-
lated into Interpreted Systems [27]. In fact, MCMAS does not support iCGSs, and it
expects Interpreted Systems expressed using a domain specific language called Inter-
preted Systems Programming Language (ISPL). Thus, a processing step before calling
MCMAS is always required, where the iCGS of interest (or better its ATLModel object
representation) is first translated into its ISPL representation. This is only a technical
detail, since iCGSs and Interpreted Systems present the same level of expressiveness
[14, 32].

2
https://github.com/VadimMalvone/A-Tool-for-Verifying-Strategic-Properties-in-MAS-with-Imperfect-Information

3https://docs.oracle.com/javaee/7/api/javax/json/JsonObject.html
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Abstraction. As described in Algorithm 8, the first step of the procedure consists in
abstracting the iCGS according to the chosen coalition (line 1). In the abstract CGS
MΓ, as described in Def. 9, states are clustered according to the common knowledge
indistinguishability relation for the chosen coalition of agents. This is obtained in
the implementation by generating two different abstract CGSs, named must and may
models (which correspond to theMmust andMmay models described in Sec. 4). These
models represent the abstraction of the input CGSs where only must and may transitions
are considered, respectively. Both must and may models contain the same states, as
only the transitions are different. The transitions inside the must model correspond
to function δmust, while the transitions inside the may model correspond to δmay .
We split the abstraction of an iCGS into a must and a may component because our
implementation depends on the MCMAS model checker. Since MCMAS supports
only standard CGSs, we need a way to represent abstract CGSs in MCMAS, without
modifying the tool (as shown in Algorithm 7). Splitting a CGS into its must and may
components is a practical way to tackle this issue.

Verification in MCMAS. Moving on with Algorithm 8, we find the first call to the
model checking procedure MC3(), whose structure is reported in Algorithm 7. Here,
we check if the CGS MΓ can be verified as it is (i.e., without performing any refine-
ment step). In Algorithm 7, MCMAS is called on the corresponding must or may
model, depending on the structure of the property. Note that, at this point, each atom
a is duplicated into a positive att and a negative atom aff through the Transl() func-
tion, where att (resp. aff ) denotes the occurrence of a being true (resp. false). This is
fundamentally different from standard negation in LTL. Here, we need to explicitly
recognise when an atom is observed to be true (resp. false), and the easiest way to do
so is by splitting each atom in the formula to check accordingly (Algorithm 6). If the
verification step returns tt, then the tool reports the satisfaction of the formula. Oth-
erwise, if the verification step concludes ff , then the tool reports its violation. Finally,
in case no defined outcome is concluded, the procedure moves on with undefined uu
returned by Algorithm 7 (overloaded according to Remark 1).

Refinement. In case Algorithm 7 returns uu, Algorithm 8 progresses to model refine-
ment. First, it calls the FailureState() function to extract the state sf that may be
causing the property to be evaluated as uu in MΓ. Then, the Refinement() func-
tion is called. The refinement of the model is performed according to Algorithm 3.
Specifically, the Java implementation of Algorithms 4 and 5 is immediate, with the
only difference being that instead of having a single abstract CGS, we have two: the
must and may models. Note that, from a practical perspective, the FailureState and
FailurePath algorithms for a formula ϕ have been implemented differently (this will be
thoroughly explained in the next two paragraphs) from what presented in Algorithm 1
and 2, since they are the only places where the GNBA Aψ,uu is used (the automaton
which accepts exactly the infinite paths that evaluate ψ to undefined).

Three-valued automaton. Differently from the approach described in Sec. 5, in the
implementation we work only on automata. The results concerning the computations
over iCGSs and three-valued automata are obtained by first translating the former into
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equivalent automata. Then, all the steps in Algorithm 1 are performed by implementing
operations on automata. This choice has been done only for implementation purposes,
and it does not affect the final result. The construction of the three-valued automaton
is based on Def. 11 and 12 and it is implemented through the Antlr parser generator4

by defining a customised design pattern. This parser analyses the ATL formula and
extracts its closure, which is then used to construct the GNBA. This generation step has
been implemented in Java. The GNBA of interest recognises the language of paths that
make the ATL property undefined, which differs from the standard GNBA construc-
tion, where the automaton aims to satisfy (resp. violate) the property instead. Together
with the GNBA, also its product with an iCGS has been implemented in Java. In more
detail, the product is obtained by first translating the iCGS (the ATLModel object) into
the corresponding GNBA. This can be done by following a similar procedure whereby
a Kripke structure is transformed into its corresponding GNBA [6]. Note that, since
iCGSs do not have the notion of final states, in the resulting GNBA all states are final.
Intuitively, we can think of this GNBA as an automaton that recognises the language
of paths that characterise the iCGS executions. Once such automaton is obtained, the
product with automaton Aψ,uu can be computed (line 12 of Algorithm 1).

Must and May model instantiation. Since at the implementation level, the iCGS is di-
vided into two models (must andmay), also the corresponding GNBA needs to be split
into two different GNBAs: one for the must and the other for the may model. First,
a GNBA corresponding to the iCGS including must transitions is generated. Then, the
same procedure is followed concerning may transitions. The product between the two
GNBAs5, which corresponds to the standard GNBA product definition [6], has been
implemented in Java. Once the two product automata are obtained, we can use them
to extract the infinite paths in the iCGS that make ψ undefined. Specifically, we first
look for paths in the must product. Then, in case no such path exists, we look for paths
in the may product instead. In more detail, we start looking into the must product first
because its language is included in the language recognised by the may product by
construction. If we find a suitable path in the must product, then it will also appear in
the may model. In case no path is found, then the procedure moves to the may prod-
uct, where a suitable path can still be found, even though belonging only to the may
product (i.e., the over-approximation of the model). If no such a path exists in either of
the two product automata, which means that they both recognise the empty language,
then the FailureState procedure terminates (as shown in Algorithm 1). But, if at least
one such paths exists, then the FailurePath procedure is called (Algorithm 1, line 16).
The latter, from an implementation perspective, is challenging w.r.t. how the model
checking step has been implemented, that is using paths instead of states. This feature
appears in Algorithm 2, lines 6, 13, and 15, where the model checker is supposed to be
called with a path as second argument (instead of a state as before). The verification
has been achieved by generating the product automaton M ⊗ Aϕ,uu of the CGS M

4Antlr is a powerful parser generator for reading, processing, executing, and translating structured text:
https://www.antlr.org/.

5Specifically, between the GNBA considering must transitions and the undefined automaton Aψ,uu, and
between the GNBA considering may transitions and the undefined automaton Aψ,uu.
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with the property of interest ϕ (as explained above). Then, since on lines 6, 13 and 15,
the property is verified against a path p, an additional product automaton is generated
between Aϕ,uu and the GNBA obtained by p. If such product recognises the empty
language, then it means that path p does not make ϕ undefined in M . But, if such a
product recognises at least one path, then it means that p actually makes ϕ undefined
in M .

Practical aspects of automata construction. We here discuss at some length the prac-
tical differences in the three-valued automaton construction. In Sec. 5, we introduced
the theory behind the generation of the GNBA Aψ,uu which recognises the paths that
make ψ undefined (hence, neither satisfy nor violate it). The resulting implementation
corresponds to a direct map of the theory, where the GNBA is generated and handled
as a Java class, which stores states, transitions, and atoms (labels), as described in the
previous paragraph. However, some additional technical aspects need to be considered
at the practical level.

The alphabet needs to be explicit. Differently from two-valued LTL-to-automaton
translation [30], we need to duplicate all atoms in order to make them explicit. The rea-
son is similar to the one of the Transl() function. Again, the assumption whereby the
lack of an atom is equivalent to its being false is not always convenient. A way to
solve this issue is to explicitly specify which atoms are true (att) and which are false
(aff ). As a consequence, it is necessary to unroll all these atoms and to explicitly popu-
late the corresponding automaton’s transitions accordingly to their being true, false, or
undefined (and therefore absent).

The rest of Algorithm 8 is immediate. Either it uses methods that we have already
described, or it performs computations that are easy to map to the corresponding Java
implementation.

10.2. GUI

The GUI is implemented as a web server through the Spring framework6, which
provides a comprehensive programming and configuration model for modern Java-
based enterprise applications, on any kind of deployment platform. We decided to
use Spring because it is a very flexible framework, and it allowed us to quickly develop
a user-friendly web-based GUI for our tool.

Figure 6 shows the GUI when the tool starts. On the top, a brief description of
how the tool works is reported. On the left, the input model can be specified (in Json).
This is the model that the user wants to analyse. On the right, the results of the model
checking procedure are visualised. Here, the user can check the resulting must and
may models that have been produced through the procedure. Additionally, buttons to
interact with the tool are present. In more detail:

• A Transform button, which calls our model checking procedure and populate the
cells on the right of the GUI with its results.

6https://spring.io/
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• A Generate Original Model Graph button, which shows a graphical representa-
tion of the input model.

• A Generate Must Model Graph button, which shows a graphical representation
of the must model.

• A Generate May Model Graph button, which shows a graphical representation
of the may model.

Figure 7 shows the GUI after the Transform button has been pressed. Differently
from Figure 6, now the boxes on the right of the GUI are populated with the resulting
models and the verification result (as given by MCMAS). In fact, for both the must and
may models, MCMAS is called and depending on the result (as per Algorithm 8) the
model checking procedure progresses.

10.3. Experimental Results
We made use of Example 1 to illustrate our theoretical contribution. We showed

how the algorithms work on this example and we reported the corresponding results
step by step. However, at the implementation level, we have tested our tool on a larger
set of iCGSs. Specifically, we carried out two lines of experiments. First, we experi-
mented with our tool on iCGSs of different size (defined as the number of states), while
keeping the formula to verify fixed. Then, we did the opposite: we experimented with
our tool keeping the iCGS fixed, and varying the size of the formula, in particular the
number of strategic operators. Note that, our experiments are restricted to ATL be-
cause of limitations of MCMAS, which only supports ATL formulas. However, the
theory presented in this paper, as well as its implementation, is more general and can be
applied to ATL∗. Thus, if in the future another model checker supporting ATL∗ be-
comes available, then our tool will not need to be changed (i.e., only the corresponding
call to the model checker will need updating in case).

Figure 8 reports the results for the first line of experiments. On the x-axis, we
may find the number of states of the analysed model, while on the y-axis, we have the
corresponding time (in seconds) required by our tool to complete the verification step.
Let us now go into a bit more of detail on what kind of models we ran experiments on.
First of all, the results reported in Figure 8 have been collected over a range of 7000
randomly generated models (1000 models for each size considered in the experiments).
Each model was randomly generated as a transformation from the model presented
in Example 1. Which means, starting from that model, we randomly generated an
additional number of new states to add to the model and an additional number of new
transitions to connect those states. Now, one may wonder why building such models
as extensions of the iCGS in Example 1, instead of generating them from scratch.
In fact, initially we generated completely random models, but the results were too
positive, as most of such models did not need refinement. Consequently, when called
on these models, Algorithm 8 would just conclude the satisfaction (or violation) in line
2, returning the corresponding result in line 3. Indeed, our refinement method was not
applied, but only standard ATL model checking was. In order to tackle this issue, we
decided to generate random models, although based on a well-known structure (i.e.,
the iCGS in Example 1), which we know requires refinement. In this way, we can
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Figure 8: Results obtained by varying the size of the iCGS.

carry out the experiments on a large number of random iCGSs of which we know the
base topology. Note that, we may observe a pseudo-quadratic behaviour, instead of
the expected exponential one, because MCMAS only supports ATL, and the model
checking problem for ATL under perfect information is PTIME-complete [3].

The second line of experiments concerns the behaviour of our tool when varying the
size of the ATL formula to verify. In these experiments, we fixed the iCGS to the one
in Example 1, and varied the number of strategic operators inside the formula. On the
x-axis we reported the number of operators, while on the y-axis the time (in seconds)
required by our tool to perform the verification. The results reported in Figure 9 show
a pseudo-linear behaviour w.r.t. the size of the formula. The reason of this lies in
Algorithms 1 and 7; where the procedures iterate over the strategic operators in formula
ϕ to check. Naturally, these experiments do not imply that in the worst case scenario
the algorithm would not grow exponentially (which would be indeed the case), but
show how the algorithm behaves in a more random setting, where strategic operators
are added.

10.4. Benchmarks
In addition to the experiments presented above, we carried out additional bench-

marks considering a variant of the simple voting scenario presented in [36], and used in
[11] to evaluate the partial model checking procedure proposed therein. This scenario
comprises of ` voters, k candidates, and a single coercer. Every voter i ≤ ` votes for
one candidate j ≤ k (action voteij), and after casting her ballot, voter i can either give
a proof of vote to the coercer (action giveij), or refrain from doing so (action n givei),
assuming the proof is trustworthy. The coercer receives the proof (action reci), and
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Figure 9: Results obtained by varying the size of the formula.

decides whether to punish voter i or not (actions pi and n pi). The decision is made
t timestamps after the proof is submitted by the voter (the coercer delays decision by
performing the wait action). For the sake of clarity, the iCGS is given in Figure 10 in
the case with a single voter, two candidates, and one waiting step. In that case, we have
the following indistinguishability relations between different states: s6 ∼Coercer s7,
s6 ∼Coercer s8, and s7 ∼Coercer s8. Note that, since we have a single voter, in Figure
10 we omit the index i for the voter’s actions.

This scenario and the corresponding iCGS is used in [11] to analyse the expressive
power of bounded-recall strategies. In particular, the property “there exists a strategy
for the coercer such that voter i is not punished if she votes for candidate 1 and provides
the proof, otherwise she is punished” (for any i ≤ l) can be represented in ATL as
follows:

ϕ3 = 〈〈Coercer〉〉F ((votei1 ∧ n pi) ∨ (

k∨
j=2

voteij ∧ pi) ∨ (n givei ∧ pi))

We observe that ϕ3 is false w.r.t. memoryless strategies, since for this property
to hold, the coercer is supposed to perform two different actions in indistinguishable
states (the states connected with dotted lines in Figure 10 are indistinguishable for the
coercer). However, the coercer has a (t + 1)-bounded recall strategy (in the sense of
[11]) to win the game, where t is the number of waiting steps.

Furthermore, in [11] the authors evaluate the ATL specification ϕ4 stating that the
voters collectively have a strategy to avoid being punished:

ϕ4 = 〈〈all voters〉〉G¬(
∨nv

i=1(n givei ∧ n pi) ∨ (¬n givei ∧ pi))
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Figure 10: The iCGSM for the simple voting scenario. We consider the setting with one waiting step before
the Coercer makes a decision for punishment. Here, action ∗ represents any action available for the agent
and action I represents the idle action. The states s9, . . . , s14 are labeled with atomic propositions, where
p stands for punish, vi stands for voter voted for candidate i, and n g the voter did not give a proof to the
coercer.

This voting scenario is a good candidate to compare our verification approach with
the one proposed in [11]. In that work, the authors consider the same problem as we
do here, i.e., ATL∗ model checking under imperfect information and perfect recall,
but they approximate perfect recall by considering bounded-recall strategies with an
increasingly greater bound; while, here, we approximate imperfect information (by an
abstraction refinement method).

Table 1 reports the results obtained by applying the two approaches when verifying
formula ϕ4. Note that, both approaches conclude the same verdict, that is, the viola-
tion of the property. However, our approach concludes the verification step requiring
longer computation time. This is due specifically to the size of the model and its rep-
resentation. Indeed, [11] suffers from increasing the bound (of the recall), whereas
our approach suffers from increasing the number of states (as usual in model checking
techniques). In particular, the voting scenario is a model which best suits the bounded
approach presented in [11]. To perform the comparison reported in Table 1, we had
to port the ISPL implementation (which was used in [11]) into its equivalent iCGS
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Voters Waiting Bound Verdict [11] Verdict (Ours) [11] Ours

2 6 7 ff ff 2.8 135.3
2 6 9 ff ff 5.8 135.3
2 6 11 ff ff 11.1 135.3
2 6 13 ff ff 18.1 135.3
2 8 7 uu ff 3.2 139.1
2 8 9 ff ff 6.8 139.1
2 8 11 ff ff 12.4 139.1
2 8 13 ff ff 18.5 139.1
2 10 7 − ff T/O 143.6
2 10 9 − ff T/O 143.6
2 10 11 − ff T/O 143.6
2 10 13 − ff T/O 143.6
3 6 7 ff ff 7.7 3508.4
3 6 9 ff ff 171.3 3508.4
3 6 11 ff ff 599.6 3508.4
3 6 13 ff ff 1503.4 3508.4
3 8 7 uu ff 7.7 3762.5
3 8 9 ff ff 173.6 3762.5
3 8 11 ff ff 192.0 3762.5
3 8 13 ff ff 1042.6 3762.5
3 10 7 − ff T/O 3915.1
3 10 9 − ff T/O 3915.1
3 10 11 − ff T/O 3915.1
3 10 13 − ff T/O 3915.1

Table 1: Benchmarks results for property ϕ4 (all times are in seconds), where T/O is reported when time
superior at 2 hours (timeout).

representation (which is the formalism we use). This translation entails an explosion
in the number of states, since the iCGS explicitly represents all transitions. For this
reason, the verification step takes longer. Nonetheless, it is important to observe that
our verification approach is not influenced by the number of waiting steps (which were
specifically added to highlight the bounded scenario), while [11] is. Furthermore, by
increasing the bound, the bounded approach’s computation time grows exponentially,
since a greater bound is required to remember visited states, while our approach is
marginally influenced (the small increment in the computation time is caused by the
additional waiting states that are added). Moreover, Belardinelli et al.’s approach re-
quires a bound as parameter to properly function, while we do not require such param-
eter (our execution times in Table 1 are not influenced by the choice of the bound).
Since such bound cannot be known in advance, the real computation time required is
actually higher. Indeed, it is the sum of all computation times for each bound tested
before finding the one for which a conclusive verdict can be concluded. Another im-
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portant aspect to report is that our approach did not need to apply any refinement step to
conclude. Thus, only the verification of the must and may abstractions was necessary.

To further evaluate our tool against the simple voting scenario, we also carried out
experiments on ϕ3. The verification of ϕ3 requires refinement, when the imperfect
information is propagated to the leaf states of the iCGS, i.e., s9, . . . , s14. Note that,
the iCGS presented in Figure 10 has imperfect information on s6, s7, and s8 w.r.t.
the coercer. However, such imperfect information does not require any additional step
of refinement. Instead, if we move the imperfect information on s9, . . . , s14, then a
refinement step is required to verify the property. Thanks to such modification, we
could test the whole of our method, which reported the right verdict (i.e., tt), on a
more complicated scenario, where the verification on must and may abstractions was
not enough (indeed an additional step of refinement was required).

The previous benchmarks were meant to show that our approach can be used to
tackle problems already handled by [11]. However, we also experimented the other
way around. Specifically, we translated our train case study into its equivalent ISPL,
and we applied Belardinelli et al.’s approach. The resulting verification outcome was
uu, while with our approach we conclude with a conclusive verdict. Note that, even
though such empirical results would make us think that our approach is more gen-
eral (i.e., all problems that can be solved by [11] can be solved by our approach as
well), the two techniques are actually orthogonal. In fact, it is not difficult to find
problems for which [11] would return a conclusive result, while our approach would
not. Specifically, a good candidate set of problems are all those where the property
to verify contains different strategic operators (more precisely, properties with at least
two strategic operators based on different agents’ coalitions). Such properties are not
currently handled by our approach, which focuses on strategic properties with only one
coalition of agents involved.

11. Conclusions

As discussed in the introduction, one of the key issues in deploying logics for strate-
gic reasoning, such as ATL and ATL∗, in the context of Multi-agent Systems is that
their model checking problem is undecidable under the assumption of perfect recall
and incomplete information. Yet, this is one of the most natural and compelling setup
in applications. Finding appropriate approximations remains a key question at present.

In this paper we have put forward a notion of abstraction between systems with
perfect and imperfect information to overcome this issue. Specifically, we showed
that iCGS with imperfect information admit a (perfect information) abstraction which
preserves satisfaction back to the original model, when checked under a three-valued
semantics. This enabled us to give an incomplete but sound procedure for the original
model checking problem, which is undecidable in general. We implemented the whole
procedure in a model checking suit and provided experimental results. One important
limitation of the proposed approach is that it works for formulas with a fixed coali-
tion Γ of agents appearing in coalition operators (Γ-formulas). Still, within this class
of formulas we can deal with arbitrary alternation of temporal operators (i.e., ATL∗-
formulas). Moreover, we can envisage an extension of the proposed approach whereby
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different abstractions are applied and refined for the different coalition operators ap-
pearing in the formula at hand. Such an extension would require careful handling of
nested coalition operators.

An interesting question that we would like to explore as future work is to find the
“most promising” failure states. It might be possible to devise robust heuristics to find
good candidates for refinement. Furthermore, we would like to find a method to handle
non-Γ formulas in our procedure. Finally, we plan to extend the verification techniques
here developed to more expressive languages including Strategy Logic [21, 49] in the
light of the recent tractable verification results in [8].
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