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ABSTRACT

This paper investigates formal analysis of bias properties in Multi-
Agent Systems. We present a formal framework to reason about
bias properties within these models. We propose a novel definition
of bias based on attribute interference and formalise the notion of
bias by trace equivalence regarding bias-sensitive lattice. Intuitively,
a model is considered unbiased or fair if the input values of bias-
sensitive attributes will not affect the system’s output, ensuring
that the system treats all bias-sensitive attributes equitably. To ef-
fectively capture and specify bias and fairness properties, we extend
Alternating-time Temporal Logic (ATL) with new bias operators as
bATL. Using model checking techniques, we propose algorithm to
rigorously verify these properties within the game structure.
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1 INTRODUCTION

As intelligent systems become increasingly integrated into decision-
making processes, ranging from hiring and lending to criminal jus-
tice and healthcare, the need for fair and transparent Multi-Agent
Systems (MASs) is more critical than ever. These systems often
involve interactions among humans, Al agents, and institutions,
where bias can emerge from model assumptions or strategic be-
haviours. Formal analysis provides a principled and rigorous way
to specify, detect, and reason about bias, enabling system designers
to verify whether certain outcomes or behaviours are fair across dif-
ferent groups. However, this task is highly non-trivial: bias can be
subtle, context-dependent, and temporally dynamic, and arises not
just from individual actions but from complex agent interactions.
Addressing these challenges requires expressive formal tools that
can capture strategic behaviour, temporal evolution, and structured
notions of fairness, which motivates the development of notions
and formal specification tailored to bias reasoning in MASs.

We introduce a formal definition of bias in MASs, based on the
concept of interference between bias-sensitive inputs and the public
outputs of the system. Intuitively, a system is considered unbiased or
fair if its outputs remain consistent when bias-sensitive attributes
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are varied, provided that non-bias attributes are held constant. This
ensures that changes in bias-sensitive inputs, such as gender or race,
do not influence the system’s intermediate behaviours and/or final
outcomes, thereby guaranteeing equitable treatment of all such
attributes. Our definition, inspired by the notion of noninterference
[15] from the information security community, provides a rigorous
way to formalise state and path equivalence with respect to bias-
sensitive properties. This approach is well-suited to MASs, where
fairness and bias are inherently tied to how the system handles
equivalently relevant states (i.e., bias-sensitive states). By ensuring
that two states equivalent in terms of non-bias-sensitive attributes
yield consistent system behaviour, noninterference eliminates the
risk of unintended bias arising from structural or contextual dis-
crepancies within the model. This provides a robust mathematical
foundation for analysing and mitigating bias in dynamic and inter-
active systems. Although simpler definitions, such as identifying
bias through paths where biased states affect outcomes, may ap-
pear straightforward, they lack the ability to capture the subtle
interdependencies within MASs. Bias often arises not just from
direct paths but from how states are related based on bias-sensitive
attributes. Noninterference addresses this by ensuring fairness at a
more structural and comprehensive level.

We then propose a logical framework, bias-aware Alternating-
time Temporal Logic (bATL) and bATL *, to rigorously specify and
reason about this notion of bias. Building on ATL (ATL*) [1, 6],
bATL (bATL *) introduces bias-sensitive operators, enabling the for-
malisation of properties related to bias within MASs, such as those
found in human-Al interaction models. The bATL (bATL *) frame-
work is interpreted over concurrent game structures, representing
interactions among agents.

Furthermore, we develop verification algorithms tailored to both
bATL and bATL * logic, enabling the automatic verification of mul-
tiagent systems against formally specified bias-related properties.
By embedding bias reasoning within a strategic temporal logic
framework, our approach extends bias analysis to dynamic and
strategic settings, providing a significant and novel contribution
to the field of fair AI. We show that the model-checking problems
for bATL and bATL * in our model are decidable, with complexities
PTIME-complete and 2EXPTIME-complete, respectively.

Outline. The paper is organised as follows. Section 2 reviews the
underlying model based on Concurrent Game Structures (CGSs) and
the Alternating-time Temporal Logic (ATL*) framework. Section 3
presents the foundational model for formal bias analysis in MASs,
including our novel definitions of bias and bias policy, together with
their formalisation in this setting. Section 4 defines the bATL * logic
for expressing and reasoning about bias. Section 5 and 6 describe the
model checking procedure for bATL and bATL * and analyses their
computational complexity respectively. Finally, Sections 7 and 8
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discuss related work and provide concluding remarks & future
works, respectively.

2 PRELIMINARIES

In this section we recall some preliminary notions. Given a set U,
U denotes its complement, U* denotes the set of all finite sequence
over U. We denote the length of a tuple v as |0, its j-th element
as vj, and its last element v|,| as last(v). For j < [v], let v> ; be the

suffix vj, .. ., U)ol of v starting from v; and o< the prefix vy,...,0;
of v.
2.1 Model

We start by showing a formal model for Multi-Agent Systems
(MASs) via concurrent game structures [1].

DEFINITION 1. A concurrent game structure (CGS) is a tuple
M = (Ag,Ap, S, sp, {Acti}icag, d. 6, V) such that:
Ag = {1,...,m} is a nonempty finite set of agents.
Ap is a nonempty finite set of atomic propositions (atoms).
S # 0 is a finite set of states, with a set of initial states s; C S.
For every i € Ag, Act; is a nonempty finite set of actions.
Let Act = Ujeag Acti be the set of all actions, and ACT =
[Ticag Act; the set of all joint actions.

e The protocol function d : Ag x § — (2 \ {0}) defines
the availability of actions so that for every i € Ag, s € S,
d(i,s) C Act;.

o The transition function § : S X ACT — S assigns a successor
states’ = (s, d) to eachs € S, for every joint action d € ACT
such that a; € d(i,s) foreveryi € Ag.

e V: 5 — 2"P is the labelling function.

By Definition 1 an CGS describes the interactions of a group
Ag of agents, starting from a initial state s € sy, according to the
transition function §. The latter is constrained by the availability
of actions to agents, as specified by the protocol function d.

2.2 Syntax
We recall ATL' [1] to reason about the strategic abilities of agents.

DEFINITION 2. State (p) and path (i) formulas in ATL® are defined
as follows:

® gl-plene| D)y

|4 el =y 1Ay Oy [YUY)

where q € Ap and ' C Ag. Formulas in ATL" are all and only the
state formulas.

As usual, a formula (T'))® is read as “the agents in coalition T have
a strategy to achieve ®”. The meaning of temporal operators next
O and until U is standard [3]. Operators release R, eventually <,
and globally O can be introduced as usual.

Formulas in the ATL fragment are obtained from Definition 2 by
restricting path formulas as follows:

¥ == O (¢Up) | (¢Re)

2.3 Semantics

First, we give the formal definition of strategy.

DEFINITION 3. A perfect recall strategy for agent i € Ag is a
function o;:St*—Act; such that for all h € S*, o;(h) € d(i, last(h)).

By Definition 3, any strategy for agent i has to return actions
that are enabled for i. Furthermore, we obtain memoryless (or
imperfect recall) strategies by considering the domain of o; in S,
i.e. g : S — Act;. Given an CGS M, a path = is a finite or infinite
sequence of states. We denote with S the set of paths over S.
Given a joint strategy o, comprising of one strategy for each
agent in coalition I, a path 7 is or-compatible iff for every j > 1,
7j+1 = 8(xj, @) for some joint action @ such that for every i € T,
a; = o0i(n<j), and for every i € T, a; € d(i, 7j). We denote with
out(s, o) the set of all Gy-compatible paths from s.

Now, we have all the ingredients to give the semantics of ATL".

DEFINITION 4. The satisfaction relation |= for a CGS M, states € S,
path 7 € S¥, atom q € Ap, and ATL' formula ¢ is defined as (clauses
for Boolean connectives are immediate and thus omitted):

(M,s) Eq iff qevV(s)
(M,s) E (WYY iff for some joint strategy or,
for all w€out(s,ar), (M, ) EY
M, ) E ¢ iff (Mm)Ee
M,m) EOY iff (M7mx2) FY
(M, 7) EyUY iff forsomek > 1, (M, n5)EY’, and
forall1< j <k, (M, 7m>;)Ey

We say that formula ¢ is trueina CGS M, or M |= ¢, iff (M, s) = ¢
for all s € s;. Now, we state the model checking problem.

DEFINITION 5. Given a CGS M and an ATL" formula ¢, the global
model checking problem concerns determining whether M = ¢.

3 MODELLING BIAS

This section introduces the foundational model for formal bias anal-
ysis in MASs. We propose a novel definition of bias and bias policy
inspired by the concept of non-interference [15], and formalise
these concepts using equivalence classes.

3.1 Bias-sensitive Model

DEFINITION 6. A bias-sensitive model is a tuple of the form
G=(M,n), where:
e M isa CGS;
o 1 : Ap — L isthe bias labelling function mapping each atomic
proposition to a bias level in L representing the complete lattice
of the bias levels.

Let Pathg denote the set of G-paths and Pathsg (s7) denote the set
of G-paths, starting from any state in sj.

ExampLE 1. Consider a simple scenario of college admission system
with three agents: a student applicant A, an Al reviewer B, and a hu-
man reviewer C. Each application is evaluated based on the following
attributes: ‘merit’ (1-high, 0-low), ‘origin’ (1-national, 0-overseas), ‘de-
mographic group’ (1-over represented group G1, 0-under represented
group Gy). The set of atomic propositions also includes: ‘decision’
(1-accepted, 0-unaccepted). We assume a three-tier bias structure:
n(merit) = np(decision) = 0, p(origin) = 1, and n(group) = 2.
This hierarchy reflects that demographic group carries the highest



bias sensitivity, origin has a moderate bias level, and the remaining at-
tributes are considered bias-free. The available actions for each agent
are defined as follows:

Acts = {apply, receive, idle}
Actg = {accept, reject, idle}
Actc = {approve,override, idle}

If agent C choose ‘approve ', the decision made by the Al reviewer is
retained; if C chooses ‘override ’, the decision is flipped. The set of
atomic propositions is given by:

Ap = {merit,origin, group,decision}

with each proposition taking values in {0, 1}. Figure 1 visualises the
model. To simplify the presentation, we divide the procedure into two
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Figure 1: Example: College Admission System. The top part of
the figure represents a pre-phase submission process that is
not explicitly included in the formal model while the bottom
part of the figure represents the model in which we abstract
the set of initial states with sy. * indicates decisions that
have not yet been specified in the current state, e.g., "1**"
represents merit = 1 but origin and group are still pending
or undefined at this stage.

parts. The top part of the figure represents the application submission
process, capturing different scenarios based on the applicant’s profile,
where each possible state {s] | 7 < i < 14} corresponds to a different
condition of the applicant:

V(s7) = {merit,origin,group} V(sg) = {merit,origin}

V(sg) = {merit, group} V(siy) = {merit}

V(sq;) = {origin, group} V(s],) = {origin}

V(s}3) = {group} V(sjy) = 0
They are represented as so (i.e., so € {s] | 7 < i < 14}) and passed to
the bottom part of the figure, which handles application processing

and decision-making. Note that the Al reviewer may exhibit bias: e.g.,
ifgroup =1 andmerit = 1 he recommend accept, if group = 0 and
merit = 1 he may recommend reject (which can be considered being
biased). The human reviewer may confirm or override AI’s decision.
After an application is received, the system can be in one of 8 possible
states. State so = {s] | 7 < i < 12} represents the stage where an
application has been received and is pending evaluation. States s;
and sy correspond to the Al reviewer recommending “accept” and
“reject” respectively. States s3 and sq represent the human reviewer
confirming the Al reviewer’s recommendation of “accept” and “reject’,
respectively. States s4 and s5 capture the cases where the human
reviewer “overrides” the Al reviewer’s recommendation of “accept”
and “reject’, resulting in “reject” and “accept’, respectively. States
sy and sg denote the final admission outcomes “accept” and “reject”
respectively. Consider example paths with inputmerit = 1,origin =
1, group = 0:

71 = (s§ €50) = 52 — S — S8
7y = (sg €50) = 52 = 85 > 87
and example paths with input merit = 1, origin =1, group = 1:
7'[3:(s§€so)—>sl — 53 > 87
74 = (87 €50) — S1 — S4 — S8

In a naive analysis, w1 might suggest that a qualified candidate from
group G is rejected due to the Al reviewer’s bias, while o implies that
the human reviewer corrects this bias. Similarly, m3 may indicate that
a qualified candidate from group Gy is accepted, whereas 14 suggests
the human reviewer may (wrongly) override the AI’s correct decision.

3.2 Formalising Bias

Note that bias-sensitive attribute information is essentially con-
tained in the atomic state propositions in our model. To reason
about the property of bias in MASs, we assign bias-sensitive levels
with ordering to state atomic propositions, through  : Ap = L,
where £ denotes the complete lattice of the bias-sensitive lev-
els. The powerset of atomic state propositions therefore forms a
complete lattice £, whose partial ordering is regarding to the bias-
sensitive levels of the atomic propositions Ap:

Vo,0" € Ap, v 20" iffn(v) < n(v”)

where <X denotes the partial ordering on Ap and 1(v),5n(v’) € £
denotes the bias-sensitive levels of v and o, respectively.

Using a lattice to define bias levels, rather than a strictly ordered
set, allows for a more flexible and expressive representation of
bias relationships. A strict total order assumes that all biases can
be ranked along a single dimension, which may not accurately
capture the complexity of real-world biases. In contrast, a lattice
structure enables the representation of multiple dimensions of bias,
accommodating both hierarchical sensitivity levels and category-
based distinctions. For instance, the bias structure may consist of
two components: classification levels (H) and categories (C). The
classification levels H represent an ordered hierarchy (e.g., {0, 1, 2}
or {low, medium, high}), while the categories C capture specific
categories (e.g., { White, Mixed, Asian, Black}) with a partial order
defined by the inverse of the subset inclusion, since more specific
category would be more sensitive to bias. A partial order (<) is



defined over the set of bias labels such that:

(h1,¢1) < (ha,c2)

For instance, clearly: (merit, {Black, White}) < (group, { White}).
since the sensitive classification level of merit is less than that of
group and {Black, White} 2 { White}. This lattice-based approach
allows for a structured yet adaptable representation, ensuring that
bias levels reflect both sensitivity degrees and group-specific con-
siderations, thereby enhancing the accuracy and applicability of
bias assessments in decision-making systems. The focus of this
paper is the formalisation of bias properties within a logical frame-
work, which necessitates a structured approach to categorising
bias-sensitive attributes. For clarity, we adopt a two-level classi-
fication system: B (bias-sensitive, e.g., age, gender, demographic
group), and N8B (neutral, non-bias-sensitive, e.g., userID), with or-
dering NB < 8B; however, this approach can be naturally extended
to accommodate multiple levels if needed.

Intuitively, a model G is considered “biased” if the behaviours
or outcomes of the model satisfy a bias policy. An outcome can
be defined as the set of paths that satisfy an ATL formula ¢. We
denote Pathsg (s, @) as the set of paths starting from s that lead to
an outcome characterised by ¢. We now propose the bias policy
that a biased model should satisfy, to do so, we first present the
definition of N'B-equivalent state and B-equivalent state.

iff hy <hyandcy 2 co.

DEFINITION 7 (N B-EQUIVALENT STATE). We say states,s’ € S
are N B-equivalent, written ass =ng s, iff:

Vx € Ap.p(x) S NB =(x e V(s) Ax € V(s))
V(xeV(s)AxgV(s)).
Intuitively, two states are N B-equivalent, if they are equivalent

to each other when bias-sensitive atomic propositions are removed,
focusing solely on the non-bias-sensitive atomic propositions.

ExAMPLE 2. Continue to consider scenario presented in Example 1,
let n(merit) = p(origin) = p(decision) = N'B, and n(group) =
B, and NB < B, i.e., demographic group is bias-sensitive attribute
while merit, origin, and final decision are non-bias-sensitive. We have:

S7=NB Sp S9 =NB Sio> S11 =NB Sip> Si3 “NB Sia-

DEFINITION 8 (WEAK AND STRONG N B-EQUIVALENT PATH). Given
a model G, and two paths 7, n’ € Pathg. We say that two paths
and ' are weakly N B-equivalent, written as & ~ng,, 7', iff:

Iflx| < |n'|:m0 =ng my = 3j 2 |7|.Vk = j.(last(n) =n8 ir]’c);

Ifir’| < |nl: mo =ng 7y, = Fj 2 |7'|Vk 2 j(1 =n8
last(n'));

Else |rr| = |7'|: mo =ng 75 = last(n) =ng last(n’).

We say that = and nr’ are strongly N B-equivalent, written as
7w ~NB, 7 iff:
(| = |7']) A (0 =g 7 = ¥j € (0, |n]].(mj =g 7))
Intuitively, two paths are weakly N 8-equivalent if, whenever

they start from non-bias-equivalent initial states, any differences
caused by bias-sensitive attributes do not persist to the end of the

execution, so that their final states are indistinguishable with re-
spect to non-bias-sensitive attributes. In particular, even if the paths
have different lengths, any divergence caused by bias-sensitive at-
tributes is required to wash out after some point: once the shorter
path terminates, the longer path must eventually reach (and remain
in) a state that is non-bias-equivalent to the final state of the shorter
path. Thus, bias-sensitive differences may affect intermediate steps,
but they are not allowed to influence the eventual outcome. In con-
trast, two paths are strongly N B-equivalent if they have the same
length and, whenever their initial states are non-bias-equivalent,
all corresponding states along the paths keep non-bias-equivalent.
This enforces that bias-sensitive attributes never affect non-bias-
sensitive attributes (e.g., certain decisions) at any point in time,
guaranteeing bias-free behaviour throughout the entire execution
rather than only in the final result.

PROPOSITION 1. Given a model G, for any two path w, 7’ € Pathg,
we have:

’ ’
T~NB, T =T ~NB, T

Proor. Directly from Definition 8, as the conditions for strong
N B-equivalence are stricter than those for weak one. O

ExaMPLE 3. Continue to consider Example 1, it is easy to see
that, my + Ng,, 73, since the initial states of the two path are N B-
equivalent but final states of them are not N B-equivalent: s7 # 58 Ss.
Similarly, we have: m1 ~ N8, T4, T2 ~NB,, T3, T2 * NB,, T4-

DEFINITION 9 (B1as PoLICY). Let i be an outcome formula and
G = (Ag, S, sp, Act, >, Ap, L, 17) a model.

o The model G is said to be weakly biased with respect to i,
written G vy, $g,. iff

Pathsg(sp, ) =0 Vv 3m, ' € Pathsg(sp,y) implies w + N3, 7.

o The model G is said to be strongly biased with respect to i,
written G vy, $g,, iff

Pathsg(sp, ) =0 Vv 3m,n’ € Pathsg(sy, ¥) implies w + N, 7.

Here, Paths g (s1, /) denotes the set of complete paths from the initial
states sy that satisfy , and 0 denotes the empty set.

Abias policy characterises whether a system exhibits biased be-
haviour w.r.t. a given outcome ¢. Intuitively, a model is considered
weakly biased w.r.t. { if either the outcome ¢ is unreachable from
the initial states, or there exist two executions leading to i that
are not weakly N 8B-equivalent. In the latter case, although both
executions achieve the same outcome, they differ in a way that can-
not be accounted for by non-bias-sensitive attributes alone. This
indicates that bias-sensitive attributes influence the final outcome.
The notion of strong bias is more demanding. A model is strongly
biased w.r.t.  if either ¢ is unreachable, or there exist two execu-
tions leading to ¢ that are not strongly N $B-equivalent, i.e., are
distinguishable at some point along their execution with respect
to non-bias-sensitive attributes. This means that the executions
become disinguishable at some point along their evolution w.r.t.
non-bias-sensitive attributes, implying that bias-sensitive attributes
affects the system’s behaviour during the execution, not merely the
final result.



PROPOSITION 2. Given a model G and an outcome {/, we have:
Gy ds, = Gy 8,

Proor. This follows directly from Proposition 1 and Defini-
tion 9. Since strong N B-equivalence is stricter than weak NB-
equivalence, any violation of the strong condition also violates the
weak one. O

ExampLE 4. Continue to consider Example 1, letyy = ¢ (decision),
clearly there exists 1, 3 € Pathsg(sy, ) s.t. 11 » N8, 73, 50 G is
a weakly biased model regarding . This meets our intuition since
the bias-sensitive attribute of demographic group impacts the final
decision while non-bias-sensitive attributes remains the same, i.e., the
final result is influenced by bias-sensitive attributes, throughout the
path.

REMARK 1 (MODEL-LEVEL VS. STRATEGY-LEVEL BIAS). Note that
the bias policy in Definition 9 is defined at the level of the model
rather than with respect to a fixed strategy profile. This allows us to
capture structural bias, namely whether the system admits biased
behaviour under some strategic interaction. A strategy-level notion
would instead characterise bias of a particular joint policy. Our model-
level definition thus identifies potential bias inherent in the system
design, independently of how agents resolve their choices. If desired,
a strategy-dependent notion of bias can be obtained by restricting
Pathsg (s1, ) to paths induced by a given strategy profile.

4 THE BIAS-SENSITIVE LOGIC

This section introduces bATL*, a logical framework for specifying
bias in our game model, as an extention of ATL".

DEFINITION 10 (bATL* sYNTAX). The syntax of bATL* includes
two classes of formulae: state formulae and path formulae ranged
over by ¢ and ), respectively.

¢ ql=elene | )Y | THBw [Y] 1 (T)Bs [Y]
4 e~y IyAylOYI| YUY
where g € Ap andT' C Ag.

The formulas (T)Bw [¢¥] and (T)Bs[¢] express that the coali-
tion I has a strategy to ensure § under different bias conditions.
Specifically, (I')) By, [/] indicates that I can enforce ¢ when the sys-
tem exhibits weak bias, while (T'))Bs[y/] states that T can enforce
¥ even under strong bias. In other words, these formulas capture
whether the system’s decision-making is considered weakly or
strongly biased concerning the outcome i when following a strat-
egy chosen by coalition I'. Just as ATL is a fragment of ATL", bATL
is a fragment of bATL*, by restricting path formulas as follows:

¥ == Q¢ (¢Up) | (¢Rep)

Let us consider some illustrating example formulae:

o = ((A)By [O(policyPassed)] captures that bias-sensitive fac-
tors (e.g., media influence, institutional discrimination) pre-
vent party A from ensuring the policy’s success through any
strategy;

o (T)B,,[O —error] states that under weak bias considera-
tion, coalition I" can ensure that no execution path leads to
an error state.

DErFINITION 11 (bATL* sEMANTICS). The satisfaction relation =
for a model G, states € S, x € {s,w}, and bATL* formula ¢ follows:

(G,s) E (TYBx[¢] iff there exists a joint strategy or s.t.

[37, " € out(s,or).((G,. 7)) EY A
G.7)EP] = (r+ng, )

ExaMmpLE 5. Consider Example 1, and the following two example
properties:

1) to express whether C has a strategy ensuring the system is biased
when a final decision is made, we propose:

@ = (CHBw[¢ (decision)]

the result is true as the agent C could choose to override the Al
reviewer’s decision whenever a non-bias answer is proposed.

2) to express whether the system is biased regarding the final ac-
ceptance being made, we propose:

¢ = (A B)Bs[¢© (decision)]

clearly ¢ is true, i.e., the system is strongly biased, as we can find
n,n’ (e.g., m and w3 in Example 3) s.t. ((G, w) | ¢(decision) A
(M, ') | ©O(decision)) = & +ng, 7. This also meets the
results presented in Example 4.

THEOREM 3 (CORRECTNESS). Given a model G=(Ag, S, sy, Act, —
,Ap,L,n), let be the outcome aimed to achieve. We evaluate whether
the system exhibits bias in its behaviours as it reaches the outcome 1.
We have:

G ky ¢3, iff (G.s) F (Ag)BwlY].

Proor. We show both directions.

(=)Assume G Iy ¢, .By Definition 9, either (i) Paths g (s1, ) =
0, or (ii) there exist 7, 7" € Pathsg(s7, 1) such that 7 » y g, 7.

In case (i), for any joint strategy profile ¢ and any 7 € out(sy, 7),
we have (G, 7) £ ¢, and thus (G, s7) = (Ag)Bw [¢/] holds trivially.

In case (ii), since every complete path is compatible with some
joint strategy profile, there exists ¢ such that 7, 7’ € out(sy, 7).
Both paths satisfy  and are not weakly N 8B-equivalent, hence
(G, s1) E {Ag)Bw[¢] by Definition 11.

(&) Assume (G, s1) E (Ag)Bw[¥]. Then there exists a joint
strategy profile & such that either (i) at most one G-outcome satisfies
i, or (ii) there exist 77, 7” € out(sy, &) satisfying  with 7 » g, 7.
In both cases, by Definition 9, G Iy ¢, holds. O

Similar result can be obtained for strong bias property by replac-
ing N8B, with NB;. This theorem shows that if the starting state
of the model satisfies the bias formula following I' C Ag’s enforcing
strategy, then the system is considered biased according to the bias
policy defined in Definition 9.

5 MODEL CHECKING BATL

The model checking problem for bATL formulae involves deter-
mining, given a model G and a bATL formula ¢, the set of states
of G that satisfy ¢. Verification of bias operator (I'))By, [¢/] an-
swers the question “whether the system is biased or not, regarding
an outcome expressed as [¢/] following the strategy of a coalition
I € Ag?” As we have seen, we need to consider all possible paths
reaching ¢ to compare relevant executions to check the satisfaction
of the bias operator. The verification problem for bATL formulae is
defined in the following way:



DEFINITION 12 (VERIFICATION PROBLEM FOR bATL FORMULAE.).
Given a bias-sensitive model G=(Ag, Ap, S, sp, {Acti}ieagd, V. 1) and
a bATL formula @, determine whether it is the case that every initial
state s € sy satisfies ¢.

THEOREM 4. The model checking problem for bATL in our model
is decidable.

To show the decidability of the problem, we describe the model
checking procedure in Algorithm 2. Given G, we denote by [[¢]]
the set of states that satisfy ¢, i.e,, [[¢]] = {s € S| (G.s) F ¢}. Let
Pre(T, G, S’) denote the set of states from which there is a I'-action
ar such that I can reach, by executing ar, only states in §’, that is:

Pre(T,G,S’) = {s € S | 3dr € Actr, Post(s,ar) € S’}

where Post(s, ar) is the immediate state successors of s by execut-
ing ar. Algorithm 1 is proposed to generate Pre(T, G, S’). Given a
formula, the function Sub(¢) returns a queue of syntactic subformu-
lae of ¢ such that if ¢; is a subformula of ¢ and ¢ is a subformula
of @1, then ¢y precedes ¢1 in the queue Sub(gp).

Algorithm 1 Pre(T, G, Sx)

Algorithm 3 Bias satisfaction checking: SATB1as(G, s, T, ¥, x)

1. osat < GENSTRAT(T, G, [[¥/]])
2: if Ogsat = 0 then

3: return () > Trivially unbiased (no y-satisfying paths)
4: Ogat < COMPLETESTRATEGY(Osat)

5. for each s € s; do

6: for each 7, 1’ € out(s, osat) do

7 if 7 +ng, 7’ then

8 return {s} > Bias detected
9: return 0 > No bias found

Algorithm 4 GENSTRAT(T, G, T)

1: foreacht € T do

2 o« 0

3 for each s € S do

4 for each d € Actr do

5 if Post(s,a) C T then
6 ocU{(s,a)}

7: return o

8: return 0

1: Sy —0

2: for each s € S do

3 for each @ € ACTr do

4 if Post(s,a) C Sx then
5 Sy < Sy U {s}

6: return Sy

Algorithm 2 Model Checking bATL formula ¢: MC(G, s, ¢)

1: for each ¢’ € Sub(¢) do

2 match ¢’:

3 case g € Ap: [[¢]]l — {s€S|qeV(s)}

1 case —1: [[o]] — S\ [[o1]]

5: case ¢1 A ¢2: [[o]] < [[o1]] N [[2]]

6 case (I')) O ¢1: [[¢]] « Pre(L, G, [[¢1])
7 case () g1 Upy;

8 X0 Y [lgll

9: while Y ¢ X do

10: X—XUY

11: Y « Pre(T, G, X) N [[¢1]]

12 o]l — X

13: case {(I')p1Repz:

14: X [[true]]l Y < [[o2]l;

15: while X # Y do

16: XY

17: Y « (Pre(T, G, X) U [[o1]D) N [[e2]l;

18: o]l < X;

19: case (THBx [V]: [[¢]] « SATB1AS(G, 51, T, ¥, x)

20: return [[¢]]

THEOREM 5 (COMPLEXITY). The model-checking problem for bATL
in the CGS is PTIME-complete.

Proor. The proof consists of two parts. First, we show that
model checking bATL formula without B operators is in PTIME-
complete. This follows from their correspondence to ATL formulas
[1], for which model checking over CSGs is known to be PTIME-
complete. Second, for formulas of the form {T')B[¢], model
checking is based on Algorithm 3. The latter checks for bias viola-
tions via pairwise comparison of strategy-compatible paths under
the equivalence relation ~ 5/ . Since ~ n g, depends only on some
features of the paths, and the pairwise comparison is a quadratic
problem, then this part can be performed in polynomial time. As
all steps in both parts can be performed in polynomial time, we
conclude that model checking for bATL is PTIME-complete. O

6 MODEL CHECKING BATL *

The model checking problem for bATL * extends that of ATL* by
incorporating reasoning about bias. We apply a Nondeterministic
Tree Biichi Automaton (NTBA) construction, which offers a natural
way to capture both temporal evolution and strategic behaviour in
MASs.

THEOREM 6. The model checking problem for bATL * in CGSs is
decidable.

Satisfaction sets for strategy quantified property (I'))y are de-
fined as:

Sat({TH¢) = {s € S | Aor.Vx € Pathsg (s, ar). (G, 7) E ¥}

This involves checking the intersection of two tree automata as
described in [1]: one that accepts trees where all paths satisfy
and another that accepts trees corresponding to possible strategies
of the coalition I' € Ag.

Thus, we focus on the model checking process for the new bias
formula (T')Bs[¢]. Similar to that for (T')¢, the process involves
checking the non-emptiness of the intersection of two tree au-
tomata: one that accepts trees where all paths satisfy Bs[¢/] and



another that accepts trees corresponding to possible strategies of
the coalition I'. Since the latter automaton has the same definition
as the one described in [1], we focus on the construction of the
automaton that accepts trees where all paths satisfy Bs[y/], i.e.,
each tree accepted by the automaton has all paths that satisfy ¢/
and there are at least two paths 7 and 7’ that are not strongly
equivalent to each other: 7 » yg, 7.

Furthermore, we need to identify a set Fg, [ of nodes in the
automaton Ag, [y s.t. in each tree accepted by Ag, [y there is at
most one path reaching Fg_ [y, or there exists two infinite paths
(7, n") reaching Fy |y infinitely often iff: ((G, 7) F Y A (G, 7') E
V) = (r+ N8, 7).

The formula ¢/ can be considered as an LTL formula over atomic
propositions ¥ = 2max(¥) where max(y) is the set of maximal
state subformula of . Note that we assume this set of atomic
propositions because we apply the classic bottom-up approach, in
which, after solving the innermost subformula, we replace it with
the corresponding atomic proposition.

So we can construct a Nondeterministic Tree Biichi Automaton
(NTBA).

DEFINITION 13. An NTBA A is a tuple (3, Q,q", D, A, F) where
> is the alphabet, Q is a finite set of states, ¢* € Q is the initial
state, D is a finite set of directions, A : Q XX — B*(Dx Q) isa
transition function, where B (D x Q) is the set of all positive Boolean
combinations of pairs (d, q) with d direction and q state, and F C Q
is the set of accepting states.!

To well understand this class of automata, assume that A, being in
a state g, is reading a node x of the input tree labelled by £. Assume
also that A(q, &) = (((0,q1) A (1,q1)) V (1,q2)). Then, there are
two ways along which the construction of the run can proceed. In
the first option, one copy of the automaton proceeds in direction
0 to state q; and one copy proceeds in direction 1 to state g;. In
the second option, one copy of A proceed in direction 1 to state
q2- Hence, V and A in A(g, £) represent, respectively, choice and
concurrency. A run is accepting if all infinite paths reach infinitely
often accepting states. An input tree is accepted if there exists a
corresponding accepting run. By L(A) we denote the set of trees
accepted by A. We say that A is not empty if L(A) # 0.

Given the class of automata, we need to construct an NTBA
Ag [y] = 08,191 9y, 1y PBi[y1 A8, [y 1> F,[y)) over alpha-
bet X recognising trees in which every path satisfies ¢, and there
exist two paths 7, 7’ such that 7 » g, 7. To construct such an
automaton, we first need to formally introduce the concept of tree.

DEFINITION 14. Let Y be a set. An Y-tree is a prefix closed subset
T C Y*. The elements of T are called nodes and the empty word
¢ is the root of T. Forv € T, the set of children of v (in T) is
child(T,v) ={v-x € T | x € Y}. Given anodev =y - x, withy € Y*
andx € Y, we define anc(v) to bey, i.e., the ancestors of v, and last (v)
to be x. We also say that v corresponds to x. The complete Y -tree is the
tree Y*. Forv € T, a (full) path 7 of T fromv is a minimal set 7 C T
such thatv € & and for each v’ € & such that child(T,v") # 0, there
is exactly one node in child(T,v") belonging to n. Note that every
word w € Y* can be thought of as a path in the tree Y*, namely the

INote that, formulas are in disjunctive normal form, and in each conjunctive clause
every direction appears at most once.

path containing all the prefixes of w. For an alphabet %, a Z-labeled
Y-tree is a pair <T,V > whereT isanY—treeandV : T — X maps
each node of T to a symbol in 3.

Our aim is to construct an automaton Ag,_[4] whose vertex set

is:
Q%S[l’/,] =SX Q¢ x{L, T}

Note that with Qy, we assume the set of states of the automaton
Ay that accepts all the trees satisfying . Since this automaton as
the same structure as the one described in [1], we do not describe
it further. Thus, in the rest, we will focus in the solution of the B
operator.

Thus, the root of the accepting trees need to be the following:

9, y) = (55.90.T)

For any state g = (s, gy, b) and label £ € Z, define the transition
set A(g, £) to include all valid successor configurations. For each
possible tuple of actions a, &’ € ACT:

e compute successors t = §(s, ) and ' = §(s, a”)

e compute new automaton state: g1 € A(qy, &), where
& ={p e max(y) | (M, s) = ¢}

e update bit b: if (t =g t’), then by = b else by = L;

e add combinations of directions and successor states:

[(d, (£, q1,b1)) A (d’, (¢, q1,b1))]
any valid d,d’ and t, t’

This encodes two synchronised paths progressing through the
model and formula automata, tracking divergence of bias-sensitive
equivalence.

Finally, we consider the accepting set as

Fg 1y ={(s,.q.1) € Op,[y] | g € Fy},

That is, accepts runs where both paths satisfy ¢ (i.e., their automa-
ton states visit accepting states infinitely often), and eventually
diverge in bias-sensitive equivalence (i.e., b = L is seen infinitely
often).

A similar process can be applied to the weak bias operator, which
only checks state equivalence for final states when the preceding
states are bias-sensitive equivalent.

THEOREM 7 (COMPLEXITY). The model-checking bATL * can be
done in 2EXPTIME-complete.

Proor. For hardness, note that bATL * strictly extends ATL*
by introducing bias-aware operators such as (I'))Bx[y], which
impose additional constrains on strategy profiles based on fairness-
based equivalence. Since ATL* model checking is already 2EXPTIME-
hard, and bATL * subsumes ATL", it follows immediately that
bATL * is 2EXPTIME-hard. For membership, the model checking
procedure for bATL * extends that of ATL* by evaluating formu-
lae over strategy trees of exponential size. Evaluating nested path
quantifiers and checking bias-awareness across strategy-compatible
paths can be done in exponential time, but due to the exponential
size of the strategy tree and potential nesting of modalities, the
total runtime becomes double exponential in the size of the formula.
Thus, bATL * model checking is 2EXPTIME-complete. [m}



7 RELATED WORK

Active research has investigated bias in Al systems from various
perspectives, focusing on issues such as discriminatory outcomes
and fairness in decision-making processes. For example, Burnett et
al. [7] examined how agents form and communicate stereotypical
reputations based on observed features and behaviours, facilitat-
ing the detection of biases in reputational opinions. Ryu et al. [23]
proposed an approach that leverages biased action information
to improve policy learning, achieving enhanced performance in
mixed environments. Similarly, Alvim et al. [2] extended the De-
Groot model to incorporate individual cognitive biases in social
networks, illustrating how societies reach consensus or unanimity
under such influences. While these works offer valuable insights,
our approach diverges by introducing a formal framework for au-
tomatically reasoning about bias in system behaviours. Our novel
notion of bias, based on the interference between bias-sensitive
inputs and public outputs, is intuitive and general. Additionally, our
bias policy, built upon equivalence classes, provides a structured
and robust foundation for systematic analysis. Such formulation
is foundational, as it rigorously formalises state equivalence - a
critical requirement for fairness in dynamic and interactive models.
Simpler definitions, such as identifying bias through paths where bi-
ased states affect outcomes, may seem intuitive but hard to capture
the nuanced manifestations of bias in dynamic multiagent sys-
tems, particularly when state equivalence is overlooked. Drawing
inspiration from the concept of non-interference, our use of non-
bias-equivalent behaviours ensures that bias-sensitive attributes do
not unfairly influence outcomes, fairness across equivalence classes
within MASs.

Our work also relates to logical verification techniques in multi-
agent systems. We propose bATL with bias operators to specify and
reason about our notion of bias. Numerous extensions of the ATL
family have been developed for reasoning about properties in MASs.
For instance, PATL [12, 16] incorporates probabilistic operators to
reason about quantitative behaviours, while rPATL [19] includes
quantified reward formulae to address reward-based reasoning.
oPATL [21] introduce operators for (quantitative) opacity and ob-
servability analysis of agents. Beyond probabilistic and reward-
based operators, a number of logics have been proposed to account
for different dimensions of agency. For example, RB-ATL [22] and
RAB-ATL [8] address bounded rationality by incorporating explicit
resource constraints, while OL [9] and its extensions [10, 11] enrich
the verification framework to model obstruction-based reasoning.
Similarly, ATLF [14] integrates fuzzy operators to reason about
uncertainty, NatATL [17, 18] and NatSL [5] capture the use of natu-
ral strategies, and Cap-ATL [4] incorporates capacity constraints.
These contributions underline the richness of the ATL family, which
continues to evolve to address diverse reasoning requirements in
multi-agent systems. However, our bATL framework introduces
new bias operators specifically designed to assess bias induced by
Al system behaviours during HAI interactions. This unique focus
allows us to rigorously analyse and potentially mitigate bias in a
structured and formalised manner, contributing the field of bias
detection and correction in Al systems. Additionally, [20] assessed
Al system fairness through a logical perspective, formalising key

criteria like skewness and dependency on data, and defining met-
rics for group and individual fairness. Furthermore, [13] introduces
a method for the quantitative analysis of fairness in Al systems,
using the BRIO tool to assess social unfairness and ethically un-
desirable behaviours, with a particular focus on credit scoring ap-
plications. While related, our work differs by introducing formal
verification with bATL, which operates within an alternating-time
logic framework and includes a model checking algorithm tailored
for MAS-based Al systems. This framework is specifically designed
for reasoning about bias in agent interactions, with dynamic and
interactive settings and providing a formal approach for rigorous
bias analysis.

8 CONCLUSIONS AND FUTURE WORKS

In this paper, we have introduced a novel notion of bias and a
corresponding bias policy for MASs, formalised through the bATL
logic framework upon a game structure model. We also presented
verification precess for reasoning about bias within this framework.

For future work, we plan to extend our framework to incorporate
quantitative measures of bias. Developing metrics and algorithms to
quantify bias across different contexts and scenarios would enhance
the practical applicability of our approach. Additionally, we aim to
investigate how strategic interactions among multiple agents af-
fect bias, integrating strategic elements into our logical framework
to better capture the complexities of decision-making in competi-
tive and cooperative environments. Lastly, we plan to extend our
formal bias analysis to evaluate large language models (LLMs) in
interactive settings. By modelling LLM-driven systems as decision-
tree prompts within our bATL framework, we can systematically
identify and verify bias-related properties using model-checking
techniques. This approach enables dynamic analysis of LLM be-
haviours, pinpointing where bias-sensitive attributes improperly
influence outcomes. The insights gained can inform targeted miti-
gation strategies, such as refining prompts or adjusting fine-tuning
processes, ensuring fairness and transparency in LLM interactions
across diverse applications.
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