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ABSTRACT
This paper investigates formal analysis of bias properties in Multi-

Agent Systems. We present a formal framework to reason about

bias properties within these models. We propose a novel definition

of bias based on attribute interference and formalise the notion of

bias by trace equivalence regarding bias-sensitive lattice. Intuitively,

a model is considered unbiased or fair if the input values of bias-

sensitive attributes will not affect the system’s output, ensuring

that the system treats all bias-sensitive attributes equitably. To ef-

fectively capture and specify bias and fairness properties, we extend

Alternating-time Temporal Logic (ATL) with new bias operators as

bATL. Using model checking techniques, we propose algorithm to

rigorously verify these properties within the game structure.
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1 INTRODUCTION
As intelligent systems become increasingly integrated into decision-

making processes, ranging from hiring and lending to criminal jus-

tice and healthcare, the need for fair and transparent Multi-Agent

Systems (MASs) is more critical than ever. These systems often

involve interactions among humans, AI agents, and institutions,

where bias can emerge from model assumptions or strategic be-

haviours. Formal analysis provides a principled and rigorous way

to specify, detect, and reason about bias, enabling system designers

to verify whether certain outcomes or behaviours are fair across dif-

ferent groups. However, this task is highly non-trivial: bias can be

subtle, context-dependent, and temporally dynamic, and arises not

just from individual actions but from complex agent interactions.

Addressing these challenges requires expressive formal tools that

can capture strategic behaviour, temporal evolution, and structured
notions of fairness, which motivates the development of notions

and formal specification tailored to bias reasoning in MASs.

We introduce a formal definition of bias in MASs, based on the

concept of interference between bias-sensitive inputs and the public

outputs of the system. Intuitively, a system is considered unbiased or
fair if its outputs remain consistent when bias-sensitive attributes
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are varied, provided that non-bias attributes are held constant. This

ensures that changes in bias-sensitive inputs, such as gender or race,

do not influence the system’s intermediate behaviours and/or final

outcomes, thereby guaranteeing equitable treatment of all such

attributes. Our definition, inspired by the notion of noninterference
[15] from the information security community, provides a rigorous

way to formalise state and path equivalence with respect to bias-

sensitive properties. This approach is well-suited to MASs, where

fairness and bias are inherently tied to how the system handles

equivalently relevant states (i.e., bias-sensitive states). By ensuring

that two states equivalent in terms of non-bias-sensitive attributes

yield consistent system behaviour, noninterference eliminates the

risk of unintended bias arising from structural or contextual dis-

crepancies within the model. This provides a robust mathematical

foundation for analysing and mitigating bias in dynamic and inter-

active systems. Although simpler definitions, such as identifying

bias through paths where biased states affect outcomes, may ap-

pear straightforward, they lack the ability to capture the subtle

interdependencies within MASs. Bias often arises not just from

direct paths but from how states are related based on bias-sensitive

attributes. Noninterference addresses this by ensuring fairness at a

more structural and comprehensive level.

We then propose a logical framework, bias-aware Alternating-

time Temporal Logic (bATL) and bATL ∗, to rigorously specify and

reason about this notion of bias. Building on ATL (ATL
∗
) [1, 6],

bATL (bATL ∗) introduces bias-sensitive operators, enabling the for-
malisation of properties related to bias within MASs, such as those

found in human–AI interaction models. The bATL (bATL ∗) frame-

work is interpreted over concurrent game structures, representing

interactions among agents.

Furthermore, we develop verification algorithms tailored to both

bATL and bATL ∗ logic, enabling the automatic verification of mul-

tiagent systems against formally specified bias-related properties.

By embedding bias reasoning within a strategic temporal logic

framework, our approach extends bias analysis to dynamic and

strategic settings, providing a significant and novel contribution

to the field of fair AI. We show that the model-checking problems

for bATL and bATL ∗ in our model are decidable, with complexities

PTIME-complete and 2EXPTIME-complete, respectively.

Outline. The paper is organised as follows. Section 2 reviews the

underlyingmodel based on Concurrent Game Structures (CGSs) and

the Alternating-time Temporal Logic (ATL
∗
) framework. Section 3

presents the foundational model for formal bias analysis in MASs,

including our novel definitions of bias and bias policy, together with
their formalisation in this setting. Section 4 defines the bATL ∗ logic
for expressing and reasoning about bias. Section 5 and 6 describe the

model checking procedure for bATL and bATL ∗ and analyses their

computational complexity respectively. Finally, Sections 7 and 8
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discuss related work and provide concluding remarks & future

works, respectively.

2 PRELIMINARIES
In this section we recall some preliminary notions. Given a set 𝑈 ,

𝑈 denotes its complement,𝑈 + denotes the set of all finite sequence
over 𝑈 . We denote the length of a tuple 𝑣 as |𝑣 |, its 𝑗-th element

as 𝑣 𝑗 , and its last element 𝑣 |𝑣 | as last (𝑣). For 𝑗 ≤ |𝑣 |, let 𝑣≥ 𝑗 be the
suffix 𝑣 𝑗 , . . . , 𝑣 |𝑣 | of 𝑣 starting from 𝑣 𝑗 and 𝑣≤ 𝑗 the prefix 𝑣1, . . . , 𝑣 𝑗
of 𝑣 .

2.1 Model
We start by showing a formal model for Multi-Agent Systems

(MASs) via concurrent game structures [1].

Definition 1. A concurrent game structure (CGS) is a tuple
𝑀 = ⟨Ag,Ap, 𝑆, 𝑠𝐼 , {Act𝑖 }𝑖∈Ag, 𝑑, 𝛿,𝑉 ⟩ such that:
• Ag = {1, . . . ,𝑚} is a nonempty finite set of agents.
• Ap is a nonempty finite set of atomic propositions (atoms).
• 𝑆 ≠ ∅ is a finite set of states, with a set of initial states 𝑠𝐼 ⊆ 𝑆 .
• For every 𝑖 ∈ Ag, Act𝑖 is a nonempty finite set of actions.
Let Act =

⋃
𝑖∈Ag Act𝑖 be the set of all actions, and ACT =∏

𝑖∈𝐴𝑔 Act𝑖 the set of all joint actions.
• The protocol function 𝑑 : Ag × 𝑆 → (2Act \ {∅}) defines
the availability of actions so that for every 𝑖 ∈ Ag, 𝑠 ∈ 𝑆 ,
𝑑 (𝑖, 𝑠) ⊆ Act𝑖 .
• The transition function 𝛿 : 𝑆 × ACT→ 𝑆 assigns a successor
state 𝑠′ = 𝛿 (𝑠, ®𝑎) to each 𝑠 ∈ 𝑆 , for every joint action ®𝑎 ∈ ACT
such that 𝑎𝑖 ∈ 𝑑 (𝑖, 𝑠) for every 𝑖 ∈ Ag.
• 𝑉 : 𝑆 → 2

Ap is the labelling function.

By Definition 1 an CGS describes the interactions of a group

Ag of agents, starting from a initial state 𝑠 ∈ 𝑠𝐼 , according to the

transition function 𝛿 . The latter is constrained by the availability

of actions to agents, as specified by the protocol function 𝑑 .

2.2 Syntax
We recall ATL

∗
[1] to reason about the strategic abilities of agents.

Definition 2. State (𝜑) and path (𝜓 ) formulas in ATL∗ are defined
as follows:

𝜑 ::= 𝑞 | ¬𝜑 | 𝜑 ∧ 𝜑 | ⟨⟨Γ⟩⟩𝜓
𝜓 ::= 𝜑 | ¬𝜓 | 𝜓 ∧𝜓 | ⃝𝜓 | (𝜓U𝜓 )

where 𝑞 ∈ Ap and Γ ⊆ Ag. Formulas in ATL∗ are all and only the
state formulas.

As usual, a formula ⟨⟨Γ⟩⟩Φ is read as “the agents in coalition Γ have

a strategy to achieve Φ”. The meaning of temporal operators next
⃝ and until U is standard [3]. Operators release R, eventually ^,
and globally □ can be introduced as usual.

Formulas in the ATL fragment are obtained from Definition 2 by

restricting path formulas as follows:

𝜓 ::= ⃝𝜑 | (𝜑U𝜑) | (𝜑R𝜑)

2.3 Semantics
First, we give the formal definition of strategy.

Definition 3. A perfect recall strategy for agent 𝑖 ∈ Ag is a
function 𝜎𝑖 :𝑆+→Act𝑖 such that for all ℎ ∈ 𝑆+, 𝜎𝑖 (ℎ) ∈ 𝑑 (𝑖, last (ℎ)).

By Definition 3, any strategy for agent 𝑖 has to return actions

that are enabled for 𝑖 . Furthermore, we obtain memoryless (or

imperfect recall) strategies by considering the domain of 𝜎𝑖 in 𝑆 ,

i.e. 𝜎𝑖 : 𝑆 → Act𝑖 . Given an CGS 𝑀 , a path 𝜋 is a finite or infinite

sequence of states. We denote with 𝑆𝜔 the set of paths over 𝑆 .

Given a joint strategy ®𝜎Γ , comprising of one strategy for each

agent in coalition Γ, a path 𝜋 is ®𝜎Γ-compatible iff for every 𝑗 ≥ 1,

𝜋 𝑗+1 = 𝛿 (𝜋 𝑗 , ®𝑎) for some joint action ®𝑎 such that for every 𝑖 ∈ Γ,

𝑎𝑖 = 𝜎𝑖 (𝜋≤ 𝑗 ), and for every 𝑖 ∈ Γ, 𝑎𝑖 ∈ 𝑑 (𝑖, 𝜋 𝑗 ). We denote with

out(𝑠, ®𝜎Γ) the set of all ®𝜎Γ-compatible paths from 𝑠 .

Now, we have all the ingredients to give the semantics of ATL
∗
.

Definition 4. The satisfaction relation |= for a CGS𝑀 , state 𝑠 ∈ 𝑆 ,
path 𝜋 ∈ 𝑆𝜔 , atom 𝑞 ∈ Ap, and ATL∗ formula 𝜑 is defined as (clauses
for Boolean connectives are immediate and thus omitted):
(𝑀, 𝑠) |= 𝑞 iff 𝑞 ∈ 𝑉 (𝑠)
(𝑀, 𝑠) |= ⟨⟨Γ⟩⟩𝜓 iff for some joint strategy ®𝜎Γ ,

for all 𝜋 ∈out(𝑠, ®𝜎Γ), (𝑀, 𝜋) |=𝜓
(𝑀, 𝜋) |= 𝜑 iff (𝑀, 𝜋1) |= 𝜑

(𝑀, 𝜋) |= ⃝𝜓 iff (𝑀, 𝜋≥2) |= 𝜓

(𝑀, 𝜋) |= 𝜓U𝜓 ′ iff for some 𝑘 ≥ 1, (𝑀, 𝜋≥𝑘 ) |=𝜓 ′, and
for all 1≤ 𝑗 <𝑘, (𝑀, 𝜋≥ 𝑗 ) |=𝜓

We say that formula𝜑 is true in a CGS𝑀 , or𝑀 |= 𝜑 , iff (𝑀, 𝑠) |= 𝜑

for all 𝑠 ∈ 𝑠𝐼 . Now, we state the model checking problem.

Definition 5. Given a CGS𝑀 and an ATL∗ formula 𝜑 , the global
model checking problem concerns determining whether𝑀 |= 𝜑 .

3 MODELLING BIAS
This section introduces the foundational model for formal bias anal-

ysis in MASs. We propose a novel definition of bias and bias policy
inspired by the concept of non-interference [15], and formalise

these concepts using equivalence classes.

3.1 Bias-sensitive Model
Definition 6. A bias-sensitive model is a tuple of the form

G=(𝑀,𝜂), where:
• 𝑀 is a CGS;
• 𝜂 : Ap ↦→ L is the bias labelling functionmapping each atomic
proposition to a bias level inL representing the complete lattice
of the bias levels.

Let PathG denote the set of G-paths and PathsG (𝑠𝐼 ) denote the set
of G-paths, starting from any state in 𝑠𝐼 .

Example 1. Consider a simple scenario of college admission system
with three agents: a student applicant 𝐴, an AI reviewer 𝐵, and a hu-
man reviewer𝐶 . Each application is evaluated based on the following
attributes: ‘merit’ (1-high, 0-low), ‘origin’ (1-national, 0-overseas), ‘de-
mographic group’ (1-over represented group𝐺1, 0-under represented
group 𝐺2). The set of atomic propositions also includes: ‘decision’
(1-accepted, 0-unaccepted). We assume a three-tier bias structure:
𝜂 (merit) = 𝜂 (decision) = 0, 𝜂 (origin) = 1, and 𝜂 (group) = 2.
This hierarchy reflects that demographic group carries the highest



bias sensitivity, origin has a moderate bias level, and the remaining at-
tributes are considered bias-free. The available actions for each agent
are defined as follows:

Act𝐴 = {apply, receive, idle}
Act𝐵 = {accept, reject, idle}
Act𝐶 = {approve, override, idle}

If agent 𝐶 choose ‘approve ’, the decision made by the AI reviewer is
retained; if 𝐶 chooses ‘override ’, the decision is flipped. The set of
atomic propositions is given by:

Ap = {merit, origin, group, decision}
with each proposition taking values in {0, 1}. Figure 1 visualises the
model. To simplify the presentation, we divide the procedure into two

𝑠𝐼start

(apply, idle, idle)

𝑠′
1

1** 𝑠′
2

0**

𝑠′
3

11* 𝑠′
4

10* 𝑠′
5

01* 𝑠′
6

00*

𝑠′
7

111

𝑠′
8

110

𝑠′
9

101

𝑠′
10

100

𝑠′
11

011

𝑠′
12

010

𝑠′
13

001

𝑠′
14

000

𝑠0

𝑠1 𝑠2

𝑠3 𝑠4 𝑠5 𝑠6

𝑠7 𝑠8

(idle, accept, idle) (idle, reject, idle)

(idle, idle, approve)
(idle, idle, override)

(idle, idle, override)
(idle, idle, approve)

(receive, idle, idle) (receive, idle, idle) (receive, idle, idle)

∗ ∗

Figure 1: Example: CollegeAdmission System. The top part of
the figure represents a pre-phase submission process that is
not explicitly included in the formal model while the bottom
part of the figure represents the model in which we abstract
the set of initial states with 𝑠0. ∗ indicates decisions that
have not yet been specified in the current state, e.g., "1**"
represents merit = 1 but origin and group are still pending
or undefined at this stage.

parts. The top part of the figure represents the application submission
process, capturing different scenarios based on the applicant’s profile,
where each possible state {𝑠′

𝑖
| 7 ≤ 𝑖 ≤ 14} corresponds to a different

condition of the applicant:

𝑉 (𝑠′
7
) = {merit, origin, group} 𝑉 (𝑠′

8
) = {merit, origin}

𝑉 (𝑠′
9
) = {merit, group} 𝑉 (𝑠′

10
) = {merit}

𝑉 (𝑠′
11
) = {origin, group} 𝑉 (𝑠′

12
) = {origin}

𝑉 (𝑠′
13
) = {group} 𝑉 (𝑠′

14
) = ∅

They are represented as 𝑠0 (i.e., 𝑠0 ∈ {𝑠′𝑖 | 7 ≤ 𝑖 ≤ 14}) and passed to
the bottom part of the figure, which handles application processing

and decision-making. Note that the AI reviewer may exhibit bias: e.g.,
if group = 1 and merit = 1 he recommend accept, if group = 0 and
merit = 1 he may recommend reject (which can be considered being
biased). The human reviewer may confirm or override AI’s decision.
After an application is received, the system can be in one of 8 possible
states. State 𝑠0 = {𝑠′

𝑖
| 7 ≤ 𝑖 ≤ 12} represents the stage where an

application has been received and is pending evaluation. States 𝑠1
and 𝑠2 correspond to the AI reviewer recommending “accept” and
“reject” respectively. States 𝑠3 and 𝑠6 represent the human reviewer
confirming the AI reviewer’s recommendation of “accept” and “reject”,
respectively. States 𝑠4 and 𝑠5 capture the cases where the human
reviewer “overrides” the AI reviewer’s recommendation of “accept”
and “reject”, resulting in “reject” and “accept”, respectively. States
𝑠7 and 𝑠8 denote the final admission outcomes “accept” and “reject”
respectively. Consider example paths with input merit = 1, origin =

1, group = 0:

𝜋1 = (𝑠′8 ∈ 𝑠0) → 𝑠2 → 𝑠6 → 𝑠8

𝜋2 = (𝑠′8 ∈ 𝑠0) → 𝑠2 → 𝑠5 → 𝑠7

and example paths with input merit = 1, origin = 1, group = 1:

𝜋3 = (𝑠′7 ∈ 𝑠0) → 𝑠1 → 𝑠3 → 𝑠7

𝜋4 = (𝑠′7 ∈ 𝑠0) → 𝑠1 → 𝑠4 → 𝑠8

In a naive analysis, 𝜋1 might suggest that a qualified candidate from
group𝐺2 is rejected due to the AI reviewer’s bias, while 𝜋2 implies that
the human reviewer corrects this bias. Similarly, 𝜋3 may indicate that
a qualified candidate from group 𝐺1 is accepted, whereas 𝜋4 suggests
the human reviewer may (wrongly) override the AI’s correct decision.

3.2 Formalising Bias
Note that bias-sensitive attribute information is essentially con-

tained in the atomic state propositions in our model. To reason

about the property of bias in MASs, we assign bias-sensitive levels

with ordering to state atomic propositions, through 𝜂 : Ap ↦→ L,
where L denotes the complete lattice of the bias-sensitive lev-

els. The powerset of atomic state propositions therefore forms a

complete lattice L, whose partial ordering is regarding to the bias-

sensitive levels of the atomic propositions Ap:

∀𝑣, 𝑣 ′ ∈ Ap, 𝑣 ⪯ 𝑣 ′ iff 𝜂 (𝑣) ≤ 𝜂 (𝑣 ′)

where ⪯ denotes the partial ordering on Ap and 𝜂 (𝑣), 𝜂 (𝑣 ′) ∈ L
denotes the bias-sensitive levels of 𝑣 and 𝑣 ′, respectively.

Using a lattice to define bias levels, rather than a strictly ordered

set, allows for a more flexible and expressive representation of

bias relationships. A strict total order assumes that all biases can

be ranked along a single dimension, which may not accurately

capture the complexity of real-world biases. In contrast, a lattice
structure enables the representation of multiple dimensions of bias,

accommodating both hierarchical sensitivity levels and category-

based distinctions. For instance, the bias structure may consist of

two components: classification levels (𝐻 ) and categories (𝐶). The

classification levels 𝐻 represent an ordered hierarchy (e.g., {0, 1, 2}
or {low, medium, high}), while the categories 𝐶 capture specific

categories (e.g., {White, Mixed, Asian, Black}) with a partial order

defined by the inverse of the subset inclusion, since more specific

category would be more sensitive to bias. A partial order (≤) is



defined over the set of bias labels such that:

(ℎ1, 𝑐1) ≤ (ℎ2, 𝑐2) iff ℎ1 ≤ ℎ2 and 𝑐1 ⊇ 𝑐2 .

For instance, clearly: (merit, {Black, White}) ≤ (group, {White}).
since the sensitive classification level of merit is less than that of

group and {Black, White} ⊇ {White}. This lattice-based approach

allows for a structured yet adaptable representation, ensuring that

bias levels reflect both sensitivity degrees and group-specific con-

siderations, thereby enhancing the accuracy and applicability of

bias assessments in decision-making systems. The focus of this

paper is the formalisation of bias properties within a logical frame-

work, which necessitates a structured approach to categorising

bias-sensitive attributes. For clarity, we adopt a two-level classi-

fication system: B (bias-sensitive, e.g., age, gender, demographic

group), and NB (neutral, non-bias-sensitive, e.g., userID), with or-

deringNB ≤ B; however, this approach can be naturally extended

to accommodate multiple levels if needed.

Intuitively, a model G is considered “biased” if the behaviours

or outcomes of the model satisfy a bias policy. An outcome can

be defined as the set of paths that satisfy an ATL formula 𝜑 . We

denote PathsG (𝑠, 𝜑) as the set of paths starting from 𝑠 that lead to

an outcome characterised by 𝜑 . We now propose the bias policy

that a biased model should satisfy, to do so, we first present the

definition of NB-equivalent state and B-equivalent state.

Definition 7 (NB-eqivalent state). We say state 𝑠, 𝑠′ ∈ 𝑆
are NB-equivalent, written as 𝑠 =NB 𝑠′, iff:

∀𝑥 ∈ Ap.𝜂 (𝑥) ≤ NB ⇒(𝑥 ∈ 𝑉 (𝑠) ∧ 𝑥 ∈ 𝑉 (𝑠′))
∨ (𝑥 ∉ 𝑉 (𝑠) ∧ 𝑥 ∉ 𝑉 (𝑠′)) .

Intuitively, two states are NB-equivalent, if they are equivalent

to each other when bias-sensitive atomic propositions are removed,

focusing solely on the non-bias-sensitive atomic propositions.

Example 2. Continue to consider scenario presented in Example 1,
let 𝜂 (merit) = 𝜂 (origin) = 𝜂 (decision) = NB, and 𝜂 (group) =
B, and NB ⪯ B, i.e., demographic group is bias-sensitive attribute
while merit, origin, and final decision are non-bias-sensitive. We have:

𝑠′
7
=NB 𝑠′

8
, 𝑠′

9
=NB 𝑠′

10
, 𝑠′

11
=NB 𝑠′

12
, 𝑠′

13
=NB 𝑠′

14
.

Definition 8 (Weak and StrongNB-eqivalent path). Given
a model G, and two paths 𝜋, 𝜋 ′ ∈ PathG . We say that two paths 𝜋
and 𝜋 ′ are weakly NB-equivalent, written as 𝜋 ∼NBw 𝜋 ′, iff:

If |𝜋 | < |𝜋 ′ |: 𝜋0 =NB 𝜋 ′
0
⇒ ∃ 𝑗 ≥ |𝜋 |.∀𝑘 ≥ 𝑗 .(last (𝜋) =NB 𝜋 ′

𝑘
);

If |𝜋 ′ | < |𝜋 |: 𝜋0 =NB 𝜋 ′
0
⇒ ∃ 𝑗 ≥ |𝜋 ′ |.∀𝑘 ≥ 𝑗 .(𝜋𝑘 =NB

last (𝜋 ′));

Else |𝜋 | = |𝜋 ′ |: 𝜋0 =NB 𝜋 ′
0
⇒ last (𝜋) =NB last (𝜋 ′).

We say that 𝜋 and 𝜋 ′ are strongly NB-equivalent, written as
𝜋 ∼NBs 𝜋

′, iff:

( |𝜋 | = |𝜋 ′ |) ∧ (𝜋0 =NB 𝜋 ′
0
⇒ ∀𝑗 ∈ (0, |𝜋 |] .(𝜋 𝑗 =NB 𝜋 ′𝑗 )) .

Intuitively, two paths are weakly NB-equivalent if, whenever
they start from non-bias-equivalent initial states, any differences

caused by bias-sensitive attributes do not persist to the end of the

execution, so that their final states are indistinguishable with re-

spect to non-bias-sensitive attributes. In particular, even if the paths

have different lengths, any divergence caused by bias-sensitive at-

tributes is required to wash out after some point: once the shorter

path terminates, the longer path must eventually reach (and remain

in) a state that is non-bias-equivalent to the final state of the shorter

path. Thus, bias-sensitive differences may affect intermediate steps,

but they are not allowed to influence the eventual outcome. In con-

trast, two paths are strongly NB-equivalent if they have the same

length and, whenever their initial states are non-bias-equivalent,

all corresponding states along the paths keep non-bias-equivalent.

This enforces that bias-sensitive attributes never affect non-bias-

sensitive attributes (e.g., certain decisions) at any point in time,

guaranteeing bias-free behaviour throughout the entire execution

rather than only in the final result.

Proposition 1. Given amodelG, for any two path 𝜋, 𝜋 ′ ∈ PathG ,
we have:

𝜋 ∼NBs 𝜋
′ ⇒ 𝜋 ∼NBw 𝜋 ′

Proof. Directly from Definition 8, as the conditions for strong

NB-equivalence are stricter than those for weak one. □

Example 3. Continue to consider Example 1, it is easy to see
that, 𝜋1 ≁NBw 𝜋3, since the initial states of the two path are NB-
equivalent but final states of them are notNB-equivalent: 𝑠7 ≠NB 𝑠8.
Similarly, we have: 𝜋1 ∼NBw 𝜋4, 𝜋2 ∼NBw 𝜋3, 𝜋2 ≁NBw 𝜋4.

Definition 9 (Bias policy). Let𝜓 be an outcome formula and
G = (Ag, 𝑆, 𝑠𝐼 ,Act,→,Ap, 𝐿, 𝜂) a model.

• The model G is said to be weakly biased with respect to 𝜓 ,
written G ⊩𝜓 𝜙Bw , iff

PathsG (𝑠𝐼 ,𝜓 ) = ∅ ∨ ∃𝜋, 𝜋 ′ ∈ PathsG (𝑠𝐼 ,𝜓 ) implies 𝜋 ≁NBw 𝜋 ′ .

• The model G is said to be strongly biased with respect to 𝜓 ,
written G ⊩𝜓 𝜙Bs , iff

PathsG (𝑠𝐼 ,𝜓 ) = ∅ ∨ ∃𝜋, 𝜋 ′ ∈ PathsG (𝑠𝐼 ,𝜓 ) implies 𝜋 ≁NBs 𝜋
′ .

Here, PathsG (𝑠𝐼 ,𝜓 ) denotes the set of complete paths from the initial
states 𝑠𝐼 that satisfy𝜓 , and ∅ denotes the empty set.

Abias policy characterises whether a system exhibits biased be-

haviour w.r.t. a given outcome𝜓 . Intuitively, a model is considered

weakly biased w.r.t.𝜓 if either the outcome𝜓 is unreachable from

the initial states, or there exist two executions leading to 𝜓 that

are not weakly NB-equivalent. In the latter case, although both

executions achieve the same outcome, they differ in a way that can-

not be accounted for by non-bias-sensitive attributes alone. This

indicates that bias-sensitive attributes influence the final outcome.
The notion of strong bias is more demanding. A model is strongly

biased w.r.t.𝜓 if either𝜓 is unreachable, or there exist two execu-

tions leading to 𝜓 that are not strongly NB-equivalent, i.e., are
distinguishable at some point along their execution with respect

to non-bias-sensitive attributes. This means that the executions

become disinguishable at some point along their evolution w.r.t.

non-bias-sensitive attributes, implying that bias-sensitive attributes

affects the system’s behaviour during the execution, not merely the

final result.



Proposition 2. Given a model G and an outcome𝜓 , we have:

G ⊩𝜓 𝜙Bs ⇒ G ⊩𝜓 𝜙Bw

Proof. This follows directly from Proposition 1 and Defini-

tion 9. Since strong NB-equivalence is stricter than weak NB-
equivalence, any violation of the strong condition also violates the

weak one. □

Example 4. Continue to consider Example 1, let𝜓 = ^(decision),
clearly there exists 𝜋1, 𝜋3 ∈ PathsG (𝑠𝐼 ,𝜓 ) s.t. 𝜋1 ≁NBw 𝜋3, so G is
a weakly biased model regarding 𝜓 . This meets our intuition since
the bias-sensitive attribute of demographic group impacts the final
decision while non-bias-sensitive attributes remains the same, i.e., the
final result is influenced by bias-sensitive attributes, throughout the
path.

Remark 1 (Model-level vs. strategy-level bias). Note that
the bias policy in Definition 9 is defined at the level of the model
rather than with respect to a fixed strategy profile. This allows us to
capture structural bias, namely whether the system admits biased
behaviour under some strategic interaction. A strategy-level notion
would instead characterise bias of a particular joint policy. Our model-
level definition thus identifies potential bias inherent in the system
design, independently of how agents resolve their choices. If desired,
a strategy-dependent notion of bias can be obtained by restricting
PathsG (𝑠𝐼 ,𝜓 ) to paths induced by a given strategy profile.

4 THE BIAS-SENSITIVE LOGIC
This section introduces bATL∗, a logical framework for specifying

bias in our game model, as an extention of ATL
∗
.

Definition 10 (bATL∗ syntax). The syntax of bATL∗ includes
two classes of formulae: state formulae and path formulae ranged
over by 𝜑 and𝜓 , respectively.

𝜑 ::= 𝑞 | ¬𝜑 | 𝜑 ∧ 𝜑 | ⟨⟨Γ⟩⟩𝜓 | ⟨⟨Γ⟩⟩𝔅w [𝜓 ] | ⟨⟨Γ⟩⟩𝔅s [𝜓 ]
𝜓 ::= 𝜑 | ¬𝜓 | 𝜓 ∧𝜓 | ⃝𝜓 | (𝜓U𝜓 )
where 𝑞 ∈ Ap and Γ ⊆ Ag.

The formulas ⟨⟨Γ⟩⟩𝔅w [𝜓 ] and ⟨⟨Γ⟩⟩𝔅s [𝜓 ] express that the coali-
tion Γ has a strategy to ensure 𝜓 under different bias conditions.

Specifically, ⟨⟨Γ⟩⟩𝔅w [𝜓 ] indicates that Γ can enforce𝜓 when the sys-

tem exhibits weak bias, while ⟨⟨Γ⟩⟩𝔅s [𝜓 ] states that Γ can enforce

𝜓 even under strong bias. In other words, these formulas capture

whether the system’s decision-making is considered weakly or

strongly biased concerning the outcome𝜓 when following a strat-

egy chosen by coalition Γ. Just as ATL is a fragment of ATL
∗
, bATL

is a fragment of bATL∗, by restricting path formulas as follows:

𝜓 ::= ⃝𝜑 | (𝜑U𝜑) | (𝜑R𝜑)
Let us consider some illustrating example formulae:

• ¬⟨⟨𝐴⟩⟩𝔅w [^(policyPassed)] captures that bias-sensitive fac-
tors (e.g., media influence, institutional discrimination) pre-

vent party A from ensuring the policy’s success through any

strategy;

• ⟨⟨Γ⟩⟩𝔅w [□ ¬error] states that under weak bias considera-

tion, coalition Γ can ensure that no execution path leads to

an error state.

Definition 11 (bATL∗ semantics). The satisfaction relation |=
for a model G, state 𝑠 ∈ 𝑆 , 𝑥 ∈ {s,w}, and bATL∗ formula 𝜑 follows:
(G, 𝑠) |= ⟨⟨Γ⟩⟩𝔅𝑥 [𝜓 ] iff there exists a joint strategy ®𝜎Γ s.t.

[∃𝜋, 𝜋 ′ ∈ out(𝑠, ®𝜎Γ).((G, 𝜋) |= 𝜓 ∧
(G, 𝜋 ′) |= 𝜓 )] ⇒ (𝜋 ≁NB𝑥

𝜋 ′)
Example 5. Consider Example 1, and the following two example

properties:
1) to express whether𝐶 has a strategy ensuring the system is biased

when a final decision is made, we propose:

𝜑 = ⟨⟨𝐶⟩⟩𝔅w [^ (decision)]
the result is true as the agent 𝐶 could choose to override the AI
reviewer’s decision whenever a non-bias answer is proposed.

2) to express whether the system is biased regarding the final ac-
ceptance being made, we propose:

𝜑 = ⟨⟨𝐴, 𝐵⟩⟩𝔅s [^ (decision)]
clearly 𝜑 is true, i.e., the system is strongly biased, as we can find
𝜋, 𝜋 ′ (e.g., 𝜋1 and 𝜋3 in Example 3) s.t.

(
(G, 𝜋) |= ^(decision) ∧

(𝑀, 𝜋 ′) |= ^(decision)
)
⇒ 𝜋 ≁NBw 𝜋 ′. This also meets the

results presented in Example 4.

Theorem 3 (Correctness). Given a model G=(Ag, 𝑆, 𝑠𝐼 ,Act,→
,Ap, 𝐿, 𝜂), let𝜓 be the outcome aimed to achieve. We evaluate whether
the system exhibits bias in its behaviours as it reaches the outcome𝜓 .
We have:

G ⊩𝜓 𝜙Bw iff (G, 𝑠) |= ⟨⟨Ag⟩⟩𝔅w [𝜓 ] .

Proof. We show both directions.

(⇒) AssumeG ⊩𝜓 𝜙Bw . ByDefinition 9, either (i)PathsG (𝑠𝐼 ,𝜓 ) =
∅, or (ii) there exist 𝜋, 𝜋 ′ ∈ PathsG (𝑠𝐼 ,𝜓 ) such that 𝜋 ≁NBw 𝜋 ′.

In case (i), for any joint strategy profile ®𝜎 and any 𝜋 ∈ out(𝑠𝐼 , ®𝜎),
we have (G, 𝜋) ̸|= 𝜓 , and thus (G, 𝑠𝐼 ) |= ⟨⟨Ag⟩⟩𝔅w [𝜓 ] holds trivially.

In case (ii), since every complete path is compatible with some

joint strategy profile, there exists ®𝜎 such that 𝜋, 𝜋 ′ ∈ out(𝑠𝐼 , ®𝜎).
Both paths satisfy 𝜓 and are not weakly NB-equivalent, hence
(G, 𝑠𝐼 ) |= ⟨⟨Ag⟩⟩𝔅w [𝜓 ] by Definition 11.

(⇐) Assume (G, 𝑠𝐼 ) |= ⟨⟨Ag⟩⟩𝔅w [𝜓 ]. Then there exists a joint

strategy profile ®𝜎 such that either (i) at most one ®𝜎-outcome satisfies

𝜓 , or (ii) there exist 𝜋, 𝜋 ′ ∈ out(𝑠𝐼 , ®𝜎) satisfying𝜓 with 𝜋 ≁NBw 𝜋 ′.
In both cases, by Definition 9, G ⊩𝜓 𝜙Bw holds. □

Similar result can be obtained for strong bias property by replac-

ing NBw with NBs. This theorem shows that if the starting state

of the model satisfies the bias formula following Γ ⊆ Ag’s enforcing
strategy, then the system is considered biased according to the bias

policy defined in Definition 9.

5 MODEL CHECKING BATL
The model checking problem for bATL formulae involves deter-

mining, given a model G and a bATL formula 𝜑 , the set of states

of G that satisfy 𝜑 . Verification of bias operator ⟨⟨Γ⟩⟩𝔅w [𝜓 ] an-
swers the question “whether the system is biased or not, regarding

an outcome expressed as [𝜓 ] following the strategy of a coalition

Γ ⊆ Ag?” As we have seen, we need to consider all possible paths

reaching 𝜑 to compare relevant executions to check the satisfaction

of the bias operator. The verification problem for bATL formulae is

defined in the following way:



Definition 12 (Verification problem for bATL formulae.).

Given a bias-sensitive model G=(Ag,Ap, 𝑆, 𝑠𝐼 , {Act𝑖 }𝑖∈Ag𝛿,𝑉 , 𝜂) and
a bATL formula 𝜑 , determine whether it is the case that every initial
state 𝑠 ∈ 𝑠𝐼 satisfies 𝜑 .

Theorem 4. The model checking problem for bATL in our model
is decidable.

To show the decidability of the problem, we describe the model

checking procedure in Algorithm 2. Given G, we denote by [[𝜑]]
the set of states that satisfy 𝜑 , i.e., [[𝜑]] = {𝑠 ∈ 𝑆 | (G, 𝑠) |= 𝜑}. Let
Pre(Γ,G, 𝑆′) denote the set of states from which there is a Γ-action
®𝑎Γ such that Γ can reach, by executing ®𝑎Γ , only states in 𝑆 ′, that is:

Pre(Γ,G, 𝑆′) = {𝑠 ∈ 𝑆 | ∃®𝑎Γ ∈ ActΓ, Post(𝑠, ®𝑎Γ) ⊆ 𝑆 ′}

where Post(𝑠, ®𝑎Γ) is the immediate state successors of 𝑠 by execut-

ing ®𝑎Γ . Algorithm 1 is proposed to generate Pre(Γ,G, 𝑆′). Given a

formula, the function Sub(𝜑) returns a queue of syntactic subformu-

lae of 𝜑 such that if 𝜑1 is a subformula of 𝜑 and 𝜑2 is a subformula

of 𝜑1, then 𝜑2 precedes 𝜑1 in the queue Sub(𝜑).

Algorithm 1 Pre(Γ,G, 𝑆𝑥 )
1: 𝑆𝑦 ← ∅
2: for each 𝑠 ∈ 𝑆 do
3: for each ®𝑎 ∈ ACTΓ do
4: if Post(𝑠, ®𝑎) ⊆ 𝑆𝑥 then
5: 𝑆𝑦 ← 𝑆𝑦 ∪ {𝑠}
6: return 𝑆𝑦

Algorithm 2Model Checking bATL formula 𝜑 : MC(G, 𝑠, 𝜑)
1: for each 𝜑 ′ ∈ Sub(𝜑) do
2: match 𝜑 ′:
3: case 𝑞 ∈ Ap: [[𝜑]] ← {𝑠 ∈ 𝑆 | 𝑞 ∈ 𝑉 (𝑠)}
4: case ¬𝜑1: [[𝜑]] ← 𝑆 \ [[𝜑1]]
5: case 𝜑1 ∧ 𝜑2: [[𝜑]] ← [[𝜑1]] ∩ [[𝜑2]]
6: case ⟨⟨Γ⟩⟩ ⃝ 𝜑1: [[𝜑]] ← Pre(Γ,G, [[𝜑1]])
7: case ⟨⟨Γ⟩⟩𝜑1U𝜑2:
8: 𝑋 ← ∅ 𝑌 ← [[𝜑2]]
9: while 𝑌 ⊈ 𝑋 do
10: 𝑋 ← 𝑋 ∪ 𝑌
11: 𝑌 ← Pre(Γ,G, 𝑋 ) ∩ [[𝜑1]]
12: [[𝜑]] ← 𝑋

13: case ⟨⟨Γ⟩⟩𝜑1R𝜑2:
14: 𝑋 ← [[𝑡𝑟𝑢𝑒]] 𝑌 ← [[𝜑2]];
15: while 𝑋 ≠ 𝑌 do
16: 𝑋 ← 𝑌

17: 𝑌 ← (Pre(Γ,G, 𝑋 ) ∪ [[𝜑1]]) ∩ [[𝜑2]];
18: [[𝜑]] ← 𝑋 ;

19: case ⟨⟨Γ⟩⟩𝔅𝑥 [𝜓 ]: [[𝜑]] ← SatBias(G, 𝑠𝐼 , Γ,𝜓, 𝑥)
20: return [[𝜑]]

Theorem 5 (Complexity). The model-checking problem for bATL
in the CGS is PTIME-complete.

Algorithm 3 Bias satisfaction checking: SatBias(G, 𝑠𝐼 , Γ,𝜓, 𝑥)
1: 𝜎sat ← GenStrat(Γ,G, [[𝜓 ]])
2: if 𝜎sat = ∅ then
3: return ∅ ⊲ Trivially unbiased (no𝜓 -satisfying paths)

4: 𝜎sat ← CompleteStrategy(𝜎sat)
5: for each 𝑠 ∈ 𝑠𝐼 do
6: for each 𝜋, 𝜋 ′ ∈ 𝑜𝑢𝑡 (𝑠, 𝜎sat) do
7: if 𝜋 ≁NB𝑥

𝜋 ′ then
8: return {𝑠} ⊲ Bias detected

9: return ∅ ⊲ No bias found

Algorithm 4 GenStrat(Γ,G,𝑇 )
1: for each 𝑡 ∈ 𝑇 do
2: 𝜎 ← ∅
3: for each 𝑠 ∈ 𝑆 do
4: for each ®𝑎 ∈ ActΓ do
5: if Post(𝑠, ®𝑎) ⊆ 𝑇 then
6: 𝜎 ∪ {(𝑠, ®𝑎)}
7: return 𝜎

8: return ∅

Proof. The proof consists of two parts. First, we show that

model checking bATL formula without 𝔅 operators is in PTIME-

complete. This follows from their correspondence to ATL formulas

[1], for which model checking over CSGs is known to be PTIME-

complete. Second, for formulas of the form ⟨⟨Γ⟩⟩𝔅𝑥 [𝜓 ], model

checking is based on Algorithm 3. The latter checks for bias viola-

tions via pairwise comparison of strategy-compatible paths under

the equivalence relation ∼NB𝑥
. Since ∼NB𝑥

depends only on some

features of the paths, and the pairwise comparison is a quadratic

problem, then this part can be performed in polynomial time. As

all steps in both parts can be performed in polynomial time, we

conclude that model checking for bATL is PTIME-complete. □

6 MODEL CHECKING BATL ∗

The model checking problem for bATL ∗ extends that of ATL∗ by
incorporating reasoning about bias. We apply a Nondeterministic

Tree Büchi Automaton (NTBA) construction, which offers a natural

way to capture both temporal evolution and strategic behaviour in

MASs.

Theorem 6. The model checking problem for bATL ∗ in CGSs is
decidable.

Satisfaction sets for strategy quantified property ⟨⟨Γ⟩⟩𝜓 are de-

fined as:

Sat(⟨⟨Γ⟩⟩𝜓 ) = {𝑠 ∈ 𝑆 | ∃ ®𝜎Γ .∀𝜋 ∈ PathsG (𝑠, ®𝜎Γ) . (G, 𝜋) |= 𝜓 }
This involves checking the intersection of two tree automata as

described in [1]: one that accepts trees where all paths satisfy 𝜓

and another that accepts trees corresponding to possible strategies

of the coalition Γ ⊆ Ag.
Thus, we focus on the model checking process for the new bias

formula ⟨⟨Γ⟩⟩𝔅s [𝜓 ]. Similar to that for ⟨⟨Γ⟩⟩𝜓 , the process involves
checking the non-emptiness of the intersection of two tree au-

tomata: one that accepts trees where all paths satisfy 𝔅s [𝜓 ] and



another that accepts trees corresponding to possible strategies of

the coalition Γ. Since the latter automaton has the same definition

as the one described in [1], we focus on the construction of the

automaton that accepts trees where all paths satisfy 𝔅s [𝜓 ], i.e.,
each tree accepted by the automaton has all paths that satisfy 𝜓

and there are at least two paths 𝜋 and 𝜋 ′ that are not strongly

equivalent to each other: 𝜋 ≁NBs 𝜋
′
.

Furthermore, we need to identify a set 𝐹𝔅s [𝜓 ] of nodes in the

automaton 𝐴𝔅s [𝜓 ] s.t. in each tree accepted by 𝐴𝔅s [𝜓 ] there is at
most one path reaching 𝐹𝔅s [𝜓 ] , or there exists two infinite paths
(𝜋, 𝜋 ′) reaching 𝐹𝔅s [𝜓 ] infinitely often iff: ((G, 𝜋) |= 𝜓 ∧ (G, 𝜋 ′) |=
𝜓 ) ⇒ (𝜋 ≁NBs 𝜋

′).
The formula𝜓 can be considered as an LTL formula over atomic

propositions Σ = 2
max(𝜓 )

, where max(𝜓 ) is the set of maximal

state subformula of 𝜓 . Note that we assume this set of atomic

propositions because we apply the classic bottom-up approach, in

which, after solving the innermost subformula, we replace it with

the corresponding atomic proposition.

So we can construct a Nondeterministic Tree Büchi Automaton

(NTBA).

Definition 13. An NTBA 𝐴 is a tuple (Σ, 𝑄, 𝑞∗, 𝐷,Δ, 𝐹 ) where
Σ is the alphabet, 𝑄 is a finite set of states, 𝑞∗ ∈ 𝑄 is the initial
state, 𝐷 is a finite set of directions, Δ : 𝑄 × Σ → B+ (𝐷 × 𝑄) is a
transition function, where B+ (𝐷 ×𝑄) is the set of all positive Boolean
combinations of pairs (𝑑, 𝑞) with 𝑑 direction and 𝑞 state, and 𝐹 ⊆ 𝑄

is the set of accepting states.1

Towell understand this class of automata, assume that𝐴, being in

a state 𝑞, is reading a node 𝑥 of the input tree labelled by 𝜉 . Assume

also that Δ(𝑞, 𝜉) = (((0, 𝑞1) ∧ (1, 𝑞1)) ∨ (1, 𝑞2)). Then, there are
two ways along which the construction of the run can proceed. In

the first option, one copy of the automaton proceeds in direction

0 to state 𝑞1 and one copy proceeds in direction 1 to state 𝑞1. In

the second option, one copy of 𝐴 proceed in direction 1 to state

𝑞2. Hence, ∨ and ∧ in Δ(𝑞, 𝜉) represent, respectively, choice and
concurrency. A run is accepting if all infinite paths reach infinitely

often accepting states. An input tree is accepted if there exists a

corresponding accepting run. By 𝐿(𝐴) we denote the set of trees
accepted by 𝐴. We say that 𝐴 is not empty if 𝐿(𝐴) ≠ ∅.

Given the class of automata, we need to construct an NTBA

𝐴𝔅s [𝜓 ] = (Σ, 𝑄𝔅s [𝜓 ] , 𝑞
∗
𝔅s [𝜓 ] , 𝐷𝔅s [𝜓 ] ,Δ𝔅s [𝜓 ] , 𝐹𝔅s [𝜓 ] ) over alpha-

bet Σ recognising trees in which every path satisfies𝜓 , and there

exist two paths 𝜋, 𝜋 ′ such that 𝜋 ≁NBs 𝜋
′
. To construct such an

automaton, we first need to formally introduce the concept of tree.

Definition 14. Let Υ be a set. An Υ-tree is a prefix closed subset
𝑇 ⊆ Υ∗. The elements of 𝑇 are called nodes and the empty word
𝜀 is the root of 𝑇 . For 𝑣 ∈ 𝑇 , the set of children of 𝑣 (in 𝑇 ) is
𝑐ℎ𝑖𝑙𝑑 (𝑇, 𝑣) = {𝑣 · 𝑥 ∈ 𝑇 | 𝑥 ∈ Υ}. Given a node 𝑣 = 𝑦 · 𝑥 , with 𝑦 ∈ Υ∗
and 𝑥 ∈ Υ, we define 𝑎𝑛𝑐 (𝑣) to be𝑦, i.e., the ancestors of 𝑣 , and 𝑙𝑎𝑠𝑡 (𝑣)
to be 𝑥 . We also say that 𝑣 corresponds to 𝑥 . The complete Υ-tree is the
tree Υ∗. For 𝑣 ∈ 𝑇 , a (full) path 𝜋 of 𝑇 from 𝑣 is a minimal set 𝜋 ⊆ 𝑇
such that 𝑣 ∈ 𝜋 and for each 𝑣 ′ ∈ 𝜋 such that 𝑐ℎ𝑖𝑙𝑑 (𝑇, 𝑣 ′) ≠ ∅, there
is exactly one node in 𝑐ℎ𝑖𝑙𝑑 (𝑇, 𝑣 ′) belonging to 𝜋 . Note that every
word𝑤 ∈ Υ∗ can be thought of as a path in the tree Υ∗, namely the
1
Note that, formulas are in disjunctive normal form, and in each conjunctive clause

every direction appears at most once.

path containing all the prefixes of𝑤 . For an alphabet Σ, a Σ-labeled
Υ-tree is a pair <𝑇,𝑉 > where 𝑇 is an Υ−tree and 𝑉 : 𝑇 → Σ maps
each node of 𝑇 to a symbol in Σ.

Our aim is to construct an automaton 𝐴𝔅s [𝜓 ] whose vertex set
is:

𝑄𝔅s [𝜓 ] = 𝑆 ×𝑄𝜓 × {⊥,⊤}
Note that with 𝑄𝜓 we assume the set of states of the automaton

𝐴𝜓 that accepts all the trees satisfying𝜓 . Since this automaton as

the same structure as the one described in [1], we do not describe

it further. Thus, in the rest, we will focus in the solution of the 𝔅

operator.

Thus, the root of the accepting trees need to be the following:

𝑞∗
𝔅s [𝜓 ] = (𝑠𝐼 , 𝑞0,⊤)

For any state 𝑞 = (𝑠, 𝑞𝜓 , 𝑏) and label 𝜉 ∈ Σ, define the transition
set Δ(𝑞, 𝜉) to include all valid successor configurations. For each

possible tuple of actions 𝛼, 𝛼 ′ ∈ ACT:
• compute successors 𝑡 = 𝛿 (𝑠, 𝛼) and 𝑡 ′ = 𝛿 (𝑠, 𝛼 ′)
• compute new automaton state: 𝑞1 ∈ Δ(𝑞𝜓 , 𝜉𝑠 ), where

𝜉𝑠 = {𝜑 ∈ max(𝜓 ) | (𝑀, 𝑠) |= 𝜑}
• update bit 𝑏: if (𝑡 =NB 𝑡 ′), then 𝑏1 = 𝑏 else 𝑏1 = ⊥;
• add combinations of directions and successor states:∨

any valid d,d’ and t, t’

[(𝑑, (𝑡, 𝑞1, 𝑏1)) ∧ (𝑑′, (𝑡 ′, 𝑞1, 𝑏1))]

This encodes two synchronised paths progressing through the

model and formula automata, tracking divergence of bias-sensitive

equivalence.

Finally, we consider the accepting set as

𝐹𝔅s [𝜓 ] = {(𝑠, 𝑞,⊥) ∈ 𝑄𝔅s [𝜓 ] | 𝑞 ∈ 𝐹𝜓 },

That is, accepts runs where both paths satisfy𝜓 (i.e., their automa-

ton states visit accepting states infinitely often), and eventually

diverge in bias-sensitive equivalence (i.e., 𝑏 = ⊥ is seen infinitely

often).

A similar process can be applied to the weak bias operator, which

only checks state equivalence for final states when the preceding

states are bias-sensitive equivalent.

Theorem 7 (Complexity). The model-checking bATL ∗ can be
done in 2EXPTIME-complete.

Proof. For hardness, note that bATL ∗ strictly extends ATL
∗

by introducing bias-aware operators such as ⟨⟨Γ⟩⟩𝔅𝑥 [𝜓 ], which
impose additional constrains on strategy profiles based on fairness-

based equivalence. SinceATL
∗
model checking is already 2EXPTIME-

hard, and bATL ∗ subsumes ATL
∗
, it follows immediately that

bATL ∗ is 2EXPTIME-hard. For membership, the model checking

procedure for bATL ∗ extends that of ATL∗ by evaluating formu-

lae over strategy trees of exponential size. Evaluating nested path

quantifiers and checking bias-awareness across strategy-compatible

paths can be done in exponential time, but due to the exponential

size of the strategy tree and potential nesting of modalities, the

total runtime becomes double exponential in the size of the formula.

Thus, bATL ∗ model checking is 2EXPTIME-complete. □



7 RELATEDWORK
Active research has investigated bias in AI systems from various

perspectives, focusing on issues such as discriminatory outcomes

and fairness in decision-making processes. For example, Burnett et

al. [7] examined how agents form and communicate stereotypical

reputations based on observed features and behaviours, facilitat-

ing the detection of biases in reputational opinions. Ryu et al. [23]

proposed an approach that leverages biased action information

to improve policy learning, achieving enhanced performance in

mixed environments. Similarly, Alvim et al. [2] extended the De-

Groot model to incorporate individual cognitive biases in social

networks, illustrating how societies reach consensus or unanimity

under such influences. While these works offer valuable insights,

our approach diverges by introducing a formal framework for au-

tomatically reasoning about bias in system behaviours. Our novel

notion of bias, based on the interference between bias-sensitive

inputs and public outputs, is intuitive and general. Additionally, our

bias policy, built upon equivalence classes, provides a structured

and robust foundation for systematic analysis. Such formulation

is foundational, as it rigorously formalises state equivalence - a

critical requirement for fairness in dynamic and interactive models.

Simpler definitions, such as identifying bias through paths where bi-

ased states affect outcomes, may seem intuitive but hard to capture

the nuanced manifestations of bias in dynamic multiagent sys-

tems, particularly when state equivalence is overlooked. Drawing

inspiration from the concept of non-interference, our use of non-

bias-equivalent behaviours ensures that bias-sensitive attributes do

not unfairly influence outcomes, fairness across equivalence classes

within MASs.

Our work also relates to logical verification techniques in multi-

agent systems. We propose bATL with bias operators to specify and

reason about our notion of bias. Numerous extensions of the ATL

family have been developed for reasoning about properties in MASs.

For instance, PATL [12, 16] incorporates probabilistic operators to

reason about quantitative behaviours, while rPATL [19] includes

quantified reward formulae to address reward-based reasoning.

oPATL [21] introduce operators for (quantitative) opacity and ob-

servability analysis of agents. Beyond probabilistic and reward-

based operators, a number of logics have been proposed to account

for different dimensions of agency. For example, RB-ATL [22] and

RAB-ATL [8] address bounded rationality by incorporating explicit

resource constraints, while OL [9] and its extensions [10, 11] enrich

the verification framework to model obstruction-based reasoning.

Similarly, ATLF [14] integrates fuzzy operators to reason about

uncertainty, NatATL [17, 18] and NatSL [5] capture the use of natu-

ral strategies, and Cap-ATL [4] incorporates capacity constraints.

These contributions underline the richness of the ATL family, which

continues to evolve to address diverse reasoning requirements in

multi-agent systems. However, our bATL framework introduces

new bias operators specifically designed to assess bias induced by

AI system behaviours during HAI interactions. This unique focus

allows us to rigorously analyse and potentially mitigate bias in a

structured and formalised manner, contributing the field of bias

detection and correction in AI systems. Additionally, [20] assessed

AI system fairness through a logical perspective, formalising key

criteria like skewness and dependency on data, and defining met-

rics for group and individual fairness. Furthermore, [13] introduces

a method for the quantitative analysis of fairness in AI systems,

using the BRIO tool to assess social unfairness and ethically un-

desirable behaviours, with a particular focus on credit scoring ap-

plications. While related, our work differs by introducing formal

verification with bATL, which operates within an alternating-time

logic framework and includes a model checking algorithm tailored

for MAS-based AI systems. This framework is specifically designed

for reasoning about bias in agent interactions, with dynamic and

interactive settings and providing a formal approach for rigorous

bias analysis.

8 CONCLUSIONS AND FUTUREWORKS
In this paper, we have introduced a novel notion of bias and a

corresponding bias policy for MASs, formalised through the bATL
logic framework upon a game structure model. We also presented

verification precess for reasoning about bias within this framework.

For future work, we plan to extend our framework to incorporate

quantitative measures of bias. Developing metrics and algorithms to

quantify bias across different contexts and scenarios would enhance

the practical applicability of our approach. Additionally, we aim to

investigate how strategic interactions among multiple agents af-

fect bias, integrating strategic elements into our logical framework

to better capture the complexities of decision-making in competi-

tive and cooperative environments. Lastly, we plan to extend our

formal bias analysis to evaluate large language models (LLMs) in

interactive settings. By modelling LLM-driven systems as decision-

tree prompts within our bATL framework, we can systematically

identify and verify bias-related properties using model-checking

techniques. This approach enables dynamic analysis of LLM be-

haviours, pinpointing where bias-sensitive attributes improperly

influence outcomes. The insights gained can inform targeted miti-

gation strategies, such as refining prompts or adjusting fine-tuning

processes, ensuring fairness and transparency in LLM interactions

across diverse applications.
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