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ABSTRACT
The exponential growth of Decentralized Finance (DeFi) has under-

scored the critical need for formal verification methods that can

reason about the financial properties of smart contracts. Traditional

formal methods such as Alternating-time Temporal Logic (ATL) can-

not express liquidity properties—guarantees about users’ ability to

access assets based on wallet balances. We introduce Wallet ATL

(WATL), an extension of ATL with wallet predicates and financially

constrained strategic operators. WATL ensures that actions are

both strategically and economically feasible. We formalize the se-

mantics of WATL, provide model checking algorithms within the

VITAMIN framework, and address scalability through the Meta-

Agent Abstraction, which collapses all non-coalition agents into

a single meta-agent with a sum-aggregated wallet. This abstrac-

tion preserves liquidity properties while significantly reducing the

verification space. Through case studies such as a crowdfunding

smart contract, we demonstrate how WATL formally specifies and

verifies liquidity guarantees. Our results show that WATL, imple-

mented in the VITAMIN tool, bridges the gap between multi-agent

strategic reasoning and financial correctness, providing a practi-

cal step towards the formal verification of smart contracts with

liquidity-awareness.
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1 INTRODUCTION
Smart contracts are self-executing programs deployed on blockchain

platforms[26], where digital assets are transferred and managed

according to predefined rules. Their transparency, immutability,

and automation enable novel applications in finance, supply chains,

and decentralized governance[5, 26]. However, the same properties

that make smart contracts powerful also make them error-prone

and difficult to repair: once deployed, vulnerabilities may lead to

irrevocable financial loss [5, 6, 14].
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A particularly critical aspect of smart contract correctness is liq-

uidity [12, 24]—the guarantee that agents can withdraw or transfer

their funds according to the contract’s intended rules. Unlike safety

or liveness[25], liquidity properties depend not only on the logical

structure of the contract but also on the availability of financial

resources. Ensuring liquidity requires reasoning simultaneously

about strategies of interacting agents and their wallet balances.

Traditional logics for Multi-Agent Systems, like Alternating-time

Temporal Logic (ATL) [4, 21], provide powerful tools for reasoning

about strategic abilities of coalitions. Yet, they are insufficient for

smart contracts because they cannot express whether a strategy

is financially feasible. In particular, ATL assumes that agents can

execute any action permitted by the transition system, ignoring

whether the action requires tokens, deposits, or payments.

To address this limitation, we introduce Wallet Alternating-time

Temporal Logic (WATL), an extension of ATL with wallet predicates

and wallet-constrained strategy operators. WATL allows specifying

and verifying properties such as: “Coalition A can ensure even-

tual payout, provided each member has sufficient funds to perform

their part of the strategy”. We formalize WATL’s syntax and se-

mantics over Wallet Concurrent Game Structures (WCGS), and we

present a model checking algorithm[9, 22] that extends fixed-point

techniques used in ATL.

Since the state space of WCGS grows rapidly with the number

of agents and wallet values, we further propose an abstraction

technique—Meta Agent abstraction—that collapses all non-coalition

agents into a single meta-agent with a sum-aggregated wallet. This

reduces the complexity of verification while preserving wallet-

based strategic properties of the coalition.

Our contributions are threefold:

(1) A new logic with wallet constraint (WATL) to express liquid-

ity properties in smart contracts.

(2) A verification algorithm integrated into the VITAMIN [19]

tool, extending model checking to WATL.

(3) Introduce WATL Meta Agent abstraction to reduce state

space and enable tractable verification.

Through detailed case studies, including auction and crowdfund-

ing contracts, we demonstrate that WATL provides a precise and

efficient framework for the formal verification of liquidity in smart

contracts. Note that, although smart contracts are the primary moti-

vation, WATL applies broadly to MAS scenarios involving financial

or resource transfers, such as auctions, economic simulations, and

market-driven multi-agent environments.

1.1 Related Work
Our work onWATL intersects with several lines of research, primar-

ily in formal verification of smart contracts, secondly in strategic
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reasoning with resource constraints and finally the abstraction that

ensures practical scalability.

Formal Verification of Smart Contracts. A significant body of

work applies formal methods to smart contracts, ranging from the-

orem proving [17] to model checking [12, 23]. The Solvent tool [12]

focuses on detecting insolvency vulnerabilities but operates at the

code level. In contrast,WATL offers a logical framework for spec-

ifying and verifying general strategic liquidity properties across

agents. Game-theoretic models [17] capture strategic behavior but

lack integration with temporal logic, hindering automated verifica-

tion of dynamic financial interactions.

Strategic Logics with Resource Constraints. ATL [4, 18] provides

the basis for reasoning about coalitional abilities but assumes that all

actions are feasible. Resource-Bounded ATL (RB-ATL) [2, 15] incorpo-

rates resource limits but employs static, global bounds that cannot

model the dynamic, transferable nature of blockchain tokens. It also

lacks per-agent wallet predicates, which are essential for expressing

balance-dependent feasibility. Other extensions—such as bounded

temporal logics [20] or probabilistic ATL (pATL) [16]—address tem-

poral or stochastic constraints rather than economic ones.WATL

extends these frameworks by introducing wallet-awareness and

financial executability as first-class concepts.

Abstraction and Scalability. State-space explosion is a persistent

challenge in multi-agent verification. Existing abstraction meth-

ods [7, 8, 10, 11] reduce complexity but are not designed for finan-

cially constrained systems. Our Meta-Agent Abstraction specifically

targets WCGS, collapsing all non-coalition agents into an aggre-

gated meta-agent while preserving wallet-sensitive strategies. This

approach maintains the correctness of liquidity properties and dras-

tically reduces computational complexity.

Moreover, while existing research has addressed correctness,

resource-bounded logics, or scalability independently,WATL fills

this gap by combining strategic expressiveness with explicit finan-

cial feasibility, supported by an abstraction technique that ensures

practical scalability.

2 BACKGROUND
The formal verification of multi-agent systems requires logics ca-

pable of expressing strategic interactions between autonomous

entities. Alternating-time Temporal Logic (ATL) is a powerful for-

mal logic specifically designed for reasoning about the strategic

capabilities of agents in Multi-Agent Systems (MAS) [4]. Unlike

traditional temporal logics such as LTL or CTL [9, 13], which focus

on what must or can happen in a system, ATL explicitly addresses

what a coalition of agents can enforce or achieve through their

coordinated actions, regardless of the choices made by other agents.

This makes ATL particularly suitable for analyzing systems where

autonomous entities interact and make decisions that collectively

determine the system’s evolution, such as in game theory [4, 6],

distributed systems [14], and, increasingly, blockchain-based smart

contracts [17, 24].

The syntax of ATL is defined by the following grammar:

𝜑 ::= 𝑝 | ¬𝜑 | 𝜑 ∨ 𝜑 | ⟨⟨𝐴⟩⟩𝑋𝜑 | ⟨⟨𝐴⟩⟩𝐺𝜑 | ⟨⟨𝐴⟩⟩ 𝜑 𝑈 𝜑

where 𝑝 is an atomic proposition, 𝐴 ⊆ 𝐴𝑔 represents a coalition

of agents, and 𝑋 (next), 𝐺 (globally), and 𝑈 (until) are temporal

operators. The operator 𝐹 (eventually) is derived as 𝐹𝜑 ≡ true𝑈 𝜑 .

The semantics of ATL is defined over Concurrent Game Structures

(CGS) = (𝐴𝑔,𝑄,Π, 𝜋, 𝐴𝑐𝑡, 𝑑, 𝛿) which include a set of agents 𝐴𝑔, a

finite set of states 𝑄 , a valuation function 𝜋 that specifies which

propositions hold in each state, and a transition function 𝛿 that

determines the next state based on the current state and the actions

selected by all agents. The key innovation of ATL is the strategy-

based semantics [4]: a state satisfies ⟨⟨𝐴⟩⟩𝜑 if there exists a collective

strategy for coalition 𝐴 such that, when 𝐴 follows this strategy, the

temporal property 𝜑 is guaranteed to hold regardless of how other

agents behave.

Strategies in ATL can be either perfect recall strategies (depending

on the entire history of states) or memoryless strategies (depending

only on the current state). A collective strategy for coalition 𝐴 is

a tuple containing individual strategies for each agent in 𝐴. The

outcome function out(𝑞, 𝑠𝐴) returns all possible paths that may

occur when coalition 𝐴 follows strategy 𝑠𝐴 from state 𝑞.

The model-checking complexity for ATL is PTIME-complete,

making it computationally more tractable than its extension ATL*,

where arbitrary nesting of temporal operators yields 2EXPTIME-
completeness [1, 4]. This balance between expressiveness and com-

plexity has made ATL a fundamental framework for specifying and

verifying strategic abilities in multi-agent systems, serving as the

basis for numerous extensions, including the Wallet Alternating-

time Temporal Logic (WATL) variant we present in this work.

The strategic perspective of ATL provides the foundation for our

work on WATL, which extends these concepts to incorporate re-

source constraints that directly affect agents’ strategic capabilities.

3 OUR MODEL
Resource availability—particularly liquidity in the sense of wallet

balances—is central to reasoning about smart contracts. Standard

Concurrent Game Structures (CGS) [4] capture multi-agent strate-

gies but assume that every action listed in the protocol is always

feasible. This is unrealistic in blockchain systems[14, 28], where

agents are constrained by their wallets. To address this, we extend

CGS intoWallet Concurrent Game Structures (WCGS).

3.1 Formal Definition
Definition 3.1. A Wallet Concurrent Game Structure (WCGS) is a

tuple 𝐺 = (𝐴𝑔,𝑄,Π, 𝜋, 𝐴𝑐𝑡, 𝑑, 𝛿,𝑊 ), where:
• 𝐴𝑔: a finite set of agents including the contract itself.

• 𝑄 : a finite set of global system states.

• Π: a set of smart contract atomic propositions
1
.

• 𝜋 : 𝑄 → 2
Π
: a labeling function that assigns to each state

the set of propositions that hold in it.

• 𝐴𝑐𝑡 : the set of parameterized actions, partitioned into three

disjoints categories:𝐴𝑐𝑡 = 𝐴𝑐𝑡↓ ∪𝐴𝑐𝑡↑ ∪𝐴𝑐𝑡0, where𝐴𝑐𝑡↓ ∩
𝐴𝑐𝑡↑ ∩𝐴𝑐𝑡0 = ∅.

1
Since the verification process is related to checking the correctness of the contract,

the atoms are tied to its evolution and do not convey information about the other

agents involved in the MAS. Information about the latter can be derived through the

wallet function.



– Consumption actions (𝐴𝑐𝑡↓): actions that reduce thewal-
let of the executing agent, e.g.,𝐴𝑐𝑡↓ = {𝑑𝑒𝑝𝑜𝑠𝑖𝑡 (𝑣), 𝑏𝑖𝑑 (𝑣),
𝑠𝑡𝑎𝑘𝑒 (𝑣), transfer (𝑣, recipient), 𝑑𝑜𝑛𝑎𝑡𝑒 (𝑣)}, 𝑣 ∈ N+, An ac-

tion 𝛼𝑐 ∈ 𝐴𝑐𝑡↓ is feasible for agent 𝑎𝑔 in state 𝑞 only if

𝑊 (𝑞, 𝑎) ≥ 𝑣 .

– Income actions (𝐴𝑐𝑡↑): actions that increase the wallet of
the executing agent, e.g.,𝐴𝑐𝑡↑ = {𝑤𝑖𝑡ℎ𝑑𝑟𝑎𝑤 (𝑣), 𝑟𝑒𝑐𝑙𝑎𝑖𝑚(𝑣),
𝑟𝑒𝑑𝑒𝑒𝑚(𝑣), 𝑟𝑒 𝑓 𝑢𝑛𝑑 (𝑣), 𝑢𝑛𝑠𝑡𝑎𝑘𝑒 (𝑣)}.

– Neutral actions (𝐴𝑐𝑡0): actions that do not change the

wallet balance of the executing agent, e.g.,𝐴𝑐𝑡0 = {𝑐𝑙𝑜𝑠𝑒 (),
𝑜𝑝𝑒𝑛𝐴𝑢𝑐𝑡𝑖𝑜𝑛(), 𝑎𝑝𝑝𝑟𝑜𝑣𝑒 (), 𝑟𝑒 𝑗𝑒𝑐𝑡 ()}. These actions may

change the system state but have no direct financial cost

or reward.

• 𝑑 : 𝐴𝑔 ×𝑄 → 2
𝐴𝑐𝑡

: the protocol function specifying the set

of moves available to an agent 𝑎𝑔 ∈ 𝐴𝑔 in state 𝑞 ∈ 𝑄 . It

considers both contract rules and wallet feasibility: 𝑑 (𝑎, 𝑞) =
{𝛼𝑐 ∈ 𝐴𝑐𝑡 | 𝛼𝑐 enabled in 𝑞 ∧ (𝛼𝑐 ∈ 𝐴𝑐𝑡↑ ∪ 𝐴𝑐𝑡0 ∨ (𝛼𝑐 ∈
𝐴𝑐𝑡↓ ∧𝑊 (𝑞, 𝑎) ≥ 𝑣))}.
• 𝛿 : 𝑄 × (𝐴𝑐𝑡𝑎1 × · · · × 𝐴𝑐𝑡𝑎𝑛 ) → 𝑄 : the transition func-

tion, mapping a state and the joint actions of all agents to a

successor state.

• 𝑊 : 𝑄 ×𝐴𝑔→ Q+: the wallet function, assigning each agent

a non-negative balance in every state.

This definition extends the standard Concurrent Game Structure

(CGS) with perfect information used in ATL[4] by introducing eco-

nomic feasibility as a constraint on available actions. In classical

ATL, the protocol function 𝑑 depends only on the game rules: every

enabled action can be executed. In contrast, in WCGS, action avail-

ability additionally depends on the agent’s wallet balance. Actions

in 𝐴𝑐𝑡↑ are always permitted, as they increase the wallet. Actions

in 𝐴𝑐𝑡↓ are restricted to agents with sufficient balance𝑊 (𝑞, 𝑎).
This ensures that strategies in WATL are not only strategically

possible but also financially executable, thereby capturing liquidity

constraints inherent to smart contracts.

Example 3.2. As an example, we now define a simplified crowd-

funding campaign where a project seeks to raise funds from two

potential contributors, namely Alice (Agent 1) and Bob (Agent 2).

The campaign is managed by a smart contract (Agent 3), which acts

as an autonomous and impartial agent for the collection of funds.

The contract’s role is to accept contributions, track the total amount

raised, and ultimately determine if the funding goal has been met.

For the campaign, Alice and Bob want to support a community-

driven project such as the renovation of a local library. The contract

guarantees that their contributions are secure and transparent: if

enough funds are collected, the project can proceed; otherwise, the

backers retain the ability to withdraw their deposits.

Alice and Bob may choose to deposit a fixed amount of tokens

(𝐷20), withdraw (𝑊 20), or remain idle (𝐼 ). We encode the contract

actions using numbers which represent the id of each agent and 0 is

for no operation for the contract agent, that is: 1 (accept from Alice),

2 (accept from Bob), 0 (no operation). For an intuitive definition of

the crowdfunding WCGS, see Figure 1. Note that, each self-loop

transition labeled (∗, ∗, ∗) represents all possible combinations of

actions by the agents (Alice, Bob, and the Contract) that are not

explicitly defined by another outgoing transition from that state.

Here we have 𝑘 = 3 players: Alice, Bob, and the Smart Contract.

The set of states is defined as 𝑄 = {𝑠0, 𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5, 𝑠6}. The initial
state 𝑠0 corresponds to both Alice and Bob holding their full balance

and the pool being empty. States 𝑠1 and 𝑠2 represent a single agent

deposit, while 𝑠3 corresponds to both agents having contributed.

States 𝑠4 and 𝑠5 capture partial withdrawals, and 𝑠6 represents the

final outcome.

The set of propositions consists of seven elements:

𝐴𝑃 = {pool_empty, partial_deposited, deposited,withdraw_done,

goal_achieved, campaign_closed}.
For clarity in state of the model in Figure 1, we use the following

abbreviations: pe for pool_empty, pd for partial_deposited, dp for

deposited, ga for goal_achieved, wd for withdraw_done, and cc for

campaign_closed. The labeling function and the wallet can be read

directly from the graph. For the actions we have,

Act↓ = {𝐷20} (deposit reduces wallet),

Act↑ = {𝑊 20} (withdraw increases wallet), 𝐼 is neutral.

For simplicity, wewill omit a formal definition of the action function

𝑑 and the transition function 𝛿 , as these are implicitly defined by

the transition-arcs of the graph.

Figure 1: WCGS for Crowdfunding Campaign

The color-coded state transitions visualize the campaign lifecy-

cle: (𝑠0) represents the initial open campaign with an empty pool;

(𝑠1, 𝑠2) denote partial commitments, where one of the two con-

tributors has deposited funds. The campaign has progressed but is

still in an intermediate phase, awaiting further action. (𝑠3) marks

the critical threshold where both parties have contributed, and the

funding target has been met. In this phase, the campaign remains

open, and contributors still have the right to withdraw their funds.

(𝑠4, 𝑠5) signify completed withdrawals where contributors can

reclaim funds; and (𝑠6) denotes the successful campaign closure

where the funding goal is achieved and the project can proceed.

3.2 Dynamics
The wallet function𝑊 evolves along with the system state, updated

according to the transition function 𝛿 .



Consumption Action. If in state 𝑞 an agent 𝑎 executes a consump-

tion action 𝐴𝑐𝑡↓ (e.g., token contributions) towards the contract

agent 𝑐 , then in the successor state 𝑞′ the wallets are updated as:

𝑊 (𝑞′, 𝑎) =𝑊 (𝑞, 𝑎) − 𝑣, 𝑊 (𝑞′, 𝑐) =𝑊 (𝑞, 𝑐) + 𝑣,

while all other wallets remain unchanged.

Income Action. If in state 𝑞 an agent 𝑎 executes an income action

𝐴𝑐𝑡↑ (e.g., reclaiming tokens) from the contract agent 𝑐 , then in the

successor state 𝑞′:

𝑊 (𝑞′, 𝑎) =𝑊 (𝑞, 𝑎) + 𝑣, 𝑊 (𝑞′, 𝑐) =𝑊 (𝑞, 𝑐) − 𝑣,

while other wallets remain unchanged.

Example 3.3. Illustration (based on Figure 1). Consider the
initial state 𝑠0, where:𝑊 (𝑠0, 𝐴𝑙𝑖𝑐𝑒) = 100,𝑊 (𝑠0, 𝐵𝑜𝑏) = 100,𝑊 (𝑠0,
𝐶𝑜𝑛𝑡𝑟𝑎𝑐𝑡) = 0. If Alice executes a consumption action 𝑑𝑒𝑝𝑜𝑠𝑖𝑡 (20),
the system transitions to state 𝑠1, with updated wallets:𝑊 (𝑠1, 𝐴𝑙𝑖𝑐𝑒)
= 100− 20 = 80,𝑊 (𝑠1,𝐶𝑜𝑛𝑡𝑟𝑎𝑐𝑡) = 0+ 20 = 20, while Bob’s balance

remains unchanged:𝑊 (𝑠1, 𝐵𝑜𝑏) = 100.

This dynamic reflects the economic semantics of smart contracts: ac-

tions consume or reallocate liquidity, shaping which future actions

remain feasible.

4 OUR LOGIC
TheWallet Alternating-time Temporal Logic (WATL) is a strategic

logic designed to specify and reason about the abilities of agents and

coalitions under wallet constraints. It extends standard temporal

and strategic logics to account explicitly for the availability of

financial resources.

4.1 Syntax
WATL formulas are built from atomic propositions using standard

Boolean and temporal operators, extended with a wallet predicate

and awallet-constrained strategy operator. Let𝐴𝑔 be the set of agents.

WATL formulas are defined by the following grammar:

𝜑 ::= 𝑝 | ¬𝜑 | 𝜑 ∨ 𝜑 | 𝑤𝑎𝑙𝑙𝑒𝑡 (𝑎, ⊲𝑣) | ⟨⟨𝐴 :

∧
𝑎∈𝐴𝑔

𝑤𝑎𝑙𝑙𝑒𝑡 (𝑎, ⊲𝑣𝑎)⟩⟩𝜓

𝜓 ::= 𝑋𝜓 | 𝜓1𝑈 𝜓2 | 𝐺𝜓

where 𝑝 ∈ Π is an atomic proposition; 𝑤𝑎𝑙𝑙𝑒𝑡 (𝑎, ⊲𝑣) is a wallet
predicate, which expresses that agent 𝑎 ∈ 𝐴𝑔 satisfies the wallet

condition relative to value 𝑣 with the comparison operator ⊲ ∈ {=
, <,≤, >,≥}; and ⟨⟨𝐴 :

∧
𝑎∈𝐴𝑔𝑤𝑎𝑙𝑙𝑒𝑡 (𝑎, ⊲𝑣𝑎)⟩⟩𝜓 states that coalition

𝐴 has a strategy to enforce the path formula𝜓 , provided all wallet

constraints are satisfied.

4.2 Semantics
The semantics ofWATL is defined over aWCGS𝐺 = (𝐴𝑔,𝑄,Π, 𝜋, 𝐴𝑐𝑡,
𝑑, 𝛿,𝑊 ), which includes categorized actions and wallet-dependent

protocols (a protocol is wallet-dependent if the availability of cer-

tain actions depends on the agent’s current wallet balance) . We

denote by 𝑄𝜔
the set of infinite sequences of states (computations).

For a computation 𝜆 = 𝑞0𝑞1 . . . ∈ 𝑄𝜔
we write 𝜆[𝑖] = 𝑞𝑖 for the 𝑖-th

state, and 𝜆[𝑖, 𝑗] = 𝑞𝑖 . . . 𝑞 𝑗 for the subsequence from 𝑞𝑖 to 𝑞 𝑗 . The

set of finite non-empty sequences of states is denoted by 𝑄+.

Definition 4.1 (Feasible Actions). Given a WCGS 𝐺 , a state 𝑞 ∈ 𝑄 ,

and an agent 𝑎 ∈ 𝐴𝑔, an action 𝛼 ∈ 𝐴𝑐𝑡 is feasible for 𝑎 in 𝑞 if:

(1) 𝛼 ∈ 𝑑 (𝑎, 𝑞) (enabled by protocol), and

(2) if 𝛼 ∈ 𝐴𝑐𝑡↓ with parameter 𝑣 , then𝑊 (𝑞, 𝑎) ≥ 𝑣 .

Definition 4.2 (Joint Moves and Outcomes). A joint move for coali-

tion 𝐴 ⊆ 𝐴𝑔 at state 𝑞 is a tuple 𝑚𝐴 = (𝑚𝑎)𝑎∈𝐴 where each

𝑚𝑎 ∈ 𝑑 (𝑎, 𝑞) is feasible. The set of all such moves is 𝐷𝐴 (𝑞).
The outcome of𝑚𝐴 ∈ 𝐷𝐴 (𝑞) is

𝑜𝑢𝑡 (𝑞,𝑚𝐴) = {𝑞′ ∈ 𝑄 | ∃𝑚 ∈ 𝐷 (𝑞) :𝑚𝐴 = (𝑚𝑎)𝑎∈𝐴∧𝑞′ = 𝛿 (𝑞,𝑚) }.

Definition 4.3 (Strategies). A strategy for coalition 𝐴 ⊆ 𝐴𝑔 is a

function 𝜎𝐴 : 𝑄+ → ⋃
𝑞∈𝑄 𝐷𝐴 (𝑞) mapping every history 𝜆𝑞 ∈ 𝑄+

to a feasible move 𝜎𝐴 (𝜆𝑞) ∈ 𝐷𝐴 (𝑞).
A computation 𝜆 = 𝑞0𝑞1 . . . ∈ 𝑄𝜔

is consistent with 𝜎𝐴 if for all

𝑖 ≥ 0, 𝜆[𝑖 + 1] ∈ 𝑜𝑢𝑡 (𝜆[𝑖], 𝜎𝐴 (𝜆[0, 𝑖])).
The set of all such computations from 𝑞 is 𝑜𝑢𝑡 (𝑞, 𝜎𝐴).

Definition 4.4 (Wallet Update). For a transition 𝑞
𝑚−→ 𝑞′ with

𝑚 = (𝑚𝑎)𝑎∈𝐴𝑔 , wallets update as:

if𝑚𝑎 ∈ 𝐴𝑐𝑡↓ (𝑣) : 𝑊 (𝑞′, 𝑎) =𝑊 (𝑞, 𝑎) − 𝑣,

if𝑚𝑎 ∈ 𝐴𝑐𝑡↑ (𝑣) : 𝑊 (𝑞′, 𝑎) =𝑊 (𝑞, 𝑎) + 𝑣,
otherwise𝑚𝑎 ∈ 𝐴𝑐𝑡0 : 𝑊 (𝑞′, 𝑎) =𝑊 (𝑞, 𝑎).

Definition 4.5 (C-Consistent Computations). Given a constraint

𝐶 =
∧

𝑎∈𝐴𝑤𝑎𝑙𝑙𝑒𝑡 (𝑎,▷𝑣𝑎), a computation 𝜆 ∈ 𝑜𝑢𝑡 (𝑞, 𝜎𝐴) is C-

consistent if in the initial state 𝑞,

∀𝑎 ∈ 𝐴 : 𝑊 (𝑞, 𝑎) ▷ 𝑣𝑎 .

We denote by 𝑜𝑢𝑡 (𝑞, 𝜎𝐴,𝐶) the set of all such computations.

Truth Definition for WATL. Given a WCGS𝐺 and state 𝑞 ∈ 𝑄 ,

the satisfaction relation 𝐺,𝑞 |= 𝜑 is defined inductively as follows:

𝐺,𝑞 |= 𝑝 ⇐⇒ 𝑝 ∈ 𝜋 (𝑞)

𝐺,𝑞 |= ¬𝜑 ⇐⇒ 𝐺,𝑞 ̸ |= 𝜑

𝐺,𝑞 |= 𝜑1 ∨ 𝜑2 ⇐⇒ 𝐺,𝑞 |= 𝜑1 or 𝐺,𝑞 |= 𝜑2

𝐺,𝑞 |=𝑤𝑎𝑙𝑙𝑒𝑡 (𝑎,◁𝑣) ⇐⇒ 𝑊 (𝑞, 𝑎) ▷ 𝑣

𝐺, 𝑞 |= ⟨⟨𝐴 : 𝐶⟩⟩𝜓 ⇐⇒ ∃ C-strategy 𝜎𝐴
∀𝜆 ∈ 𝑜𝑢𝑡 (𝑞, 𝜎𝐴,𝐶), 𝐺, 𝜆 |=𝜓

The satisfaction relation for path formulas𝜓 is defined over com-

putations 𝜆 = 𝑞0, 𝑞1, 𝑞2, . . . as follows:

𝐺, 𝜆 |= 𝑋𝜓 ⇐⇒ 𝐺, 𝜆1 |=𝜓, where 𝜆1 = 𝑞1, 𝑞2, . . .

𝐺, 𝜆 |=𝐺𝜓 ⇐⇒ ∀𝑖 ≥ 0, 𝐺, 𝜆𝑖 |=𝜓

𝐺, 𝜆 |=𝜓1𝑈𝜓2 ⇐⇒ ∃𝑖 ≥ 0, 𝐺, 𝜆𝑖 |=𝜓2 ∧ ∀0 ≤ 𝑗 < 𝑖, 𝐺, 𝜆 𝑗 |=𝜓1

This semantics captures financial dynamics of smart contracts,

where actions directly modify wallets and strategies depend both

on protocol rules and economic feasibility.



4.3 Relation with existing logics
WATL is a conservative extension of ATL [4]. If all wallet constraints

𝐶 in a formula are trivially satisfied (e.g., 𝑣𝑎 = 0 for all 𝑎 ∈ 𝐴),

the operator ⟨⟨𝐴 : 𝐶⟩⟩𝜓 coincides with the standard ATL operator

⟨⟨𝐴⟩⟩𝜓 . Likewise, if the wallet function in a WCGS imposes no

constraints on action availability, the model is behaviorally identical

to a standard CGS. In this sense, ATL forms a syntactic and semantic

fragment of WATL.

The novelty of WATL does not lie in merely accounting for re-

source usage, but in capturingwallet-constrained strategic feasibility.

Unlike RB±ATL [2, 3], which reasons about cumulative path costs

along executions, WATL embeds per-agent wallet balances directly

into the system state and enforces that actions are enabled only if

the executing agent can afford them at the time of execution. As a

result, WATL rules out strategies that require temporary overdrafts

or infeasible intermediate transitions, which cannot be excluded in

RB±ATL. For example, an agent with an initial wallet of 10 tokens

may, in RB±ATL, be allowed to execute a strategy that incurs a cost
of 100 tokens and later gains 95 tokens, since the net cost is 5. In

WATL, such a strategy is impossible, as the 100-token action is not

enabled in the initial state. Consequently, WATL and RB±ATL are

semantically incomparable, andWATL is not subsumed by RB±ATL;
only WATL can exclude strategies that exceed an agent’s available

resources at any point during execution.

5 MODEL CHECKING ALGORITHM
The verification of WATL properties requires extending the stan-

dard ATL model checking procedure [4, 18, 23] to incorporate

wallet-based constraints. In this section, we formalize the algo-

rithm used to decide whether a WATL formula holds in a given

Wallet-Constrained Game Structure (WCGS).

The main difference from classical ATL is the introduction of a

wallet predicate filter that prunes states where the coalition cannot

afford the required actions. This mechanism ensures that only feasi-

ble strategies (those consistent with agents’ wallets) are considered.

This algorithm has been implemented in the VITAMIN [19]

tool, which has been extended to support WATL model checking.

The implementation allows users to specify WATL formulas, con-

struct Wallet Concurrent Game Structures, and automatically verify

liquidity-related properties. In particular, VITAMIN integrates the

wallet predicate filter into its symbolic fixed-point computation,

ensuring that the semantics of WATL are faithfully captured in

practice.

5.1 Model Checking Procedure
The main model checking algorithm mcheck_watl(𝐺,𝜑) proceeds
bottom-up on the structure of the formula, extending the standard

ATL fixed-point computation [4, 9, 22]. For each subformula, the

algorithm computes the set of states where it holds.

The novelty lies in the treatment of strategic operators con-

strained by wallets:

⟨⟨𝐴 :

∧
𝑎∈𝐴𝑔

𝑤𝑎𝑙𝑙𝑒𝑡 (𝑎,≥ 𝑣𝑎)⟩⟩𝜓 .

Before computing the pre-image for coalition 𝐴, we apply the

wPre filter to ensure only states where the coalition can afford the

strategy are retained.

Algorithm 1Model Checking WATL

Require: 𝜑 : a WATL state formula

Require: 𝐺 = (𝐴𝑔,𝑄,Π, 𝜋, 𝑑, 𝐴𝑐𝑡, 𝛿,𝑊 ): Wallet CGS

1: for all 𝜑 ′ ∈ Sub(𝜑) do
2: if 𝜑 ′ = 𝑝 then
3: [[𝜑 ′]] ← Reg(𝑝)
4: else if 𝜑 ′ = ¬𝜃 then
5: [[𝜑 ′]] ← 𝑄 \ [[𝜃 ]]
6: else if 𝜑 ′ = 𝜃1 ∨ 𝜃2 then
7: [[𝜑 ′]] ← [[𝜃1]] ∪ [[𝜃2]]
8: else if 𝜑 ′ = ⟨⟨𝐴 :

∧
𝑎∈𝐴𝑤𝑎𝑙𝑙𝑒𝑡 (𝑎,▷𝑣𝑎)⟩⟩𝑋𝜃 then

9: [[𝜑 ′]] ← 𝑤𝑃𝑟𝑒 (𝐺,𝐴, {▷𝑣𝑎}𝑎∈𝐴, 𝑃𝑟𝑒 (𝐴, [[𝜃 ]]))
10: else if 𝜑 ′ = ⟨⟨𝐴 :

∧
𝑎∈𝐴𝑤𝑎𝑙𝑙𝑒𝑡 (𝑎,▷𝑣𝑎)⟩⟩𝐺𝜃 then

11: 𝜌 ← [[𝑡𝑟𝑢𝑒]]
12: 𝜏 ← [[𝜃 ]]
13: while 𝜌 ≠ 𝜏 do
14: 𝜌 ← 𝜏

15: 𝜏 ← 𝑤𝑃𝑟𝑒 (𝐺,𝐴, {▷𝑣𝑎}𝑎∈𝐴, 𝑃𝑟𝑒 (𝐴, 𝜌)) ∩ [[𝜃 ]]
16: end while
17: [[𝜑 ′]] ← 𝜌

18: else if 𝜑 ′ = ⟨⟨𝐴 :

∧
𝑎∈𝐴𝑤𝑎𝑙𝑙𝑒𝑡 (𝑎,▷𝑣𝑎)⟩⟩𝜃1 𝑈 𝜃2 then

19: 𝜌 ← [[𝑓 𝑎𝑙𝑠𝑒]]
20: 𝜏 ← [[𝜃2]]
21: while 𝜌 ≠ 𝜏 do
22: 𝜌 ← 𝜏

23: 𝜏 ← 𝜌 ∪ (𝑤𝑃𝑟𝑒 (𝐺,𝐴, {▷𝑣𝑎}𝑎∈𝐴, 𝑃𝑟𝑒 (𝐴, 𝜌)) ∩ [[𝜃1]])
24: end while
25: [[𝜑 ′]] ← 𝜌

26: end if
27: end for
28: return [[𝜑]]

Algorithm 1 – Model Checking WATL.

(1) For atomic and Boolean subformulas: proceed as in ATL[4].

(2) The function Reg, when given a proposition 𝑝 ∈ Π, returns
the set of states in 𝑄 that satisfy 𝑝 .

(3) For strategic operators ⟨⟨𝐴 : 𝐶⟩⟩𝜓 :
(a) Apply the wallet predicate filter wPre(𝐴,𝐶,𝑄𝑠 ) to restrict

feasible states.

(b) Compute the fixed-point set of states from which coalition

𝐴 has a strategy to enforce𝜓 , restricted to feasible states.

(4) Return the set of states where 𝜑 holds.

5.2 Wallet Predicate Filter Function
The function wPre(𝐺,𝐴, {⊲𝑣𝑎}𝑎∈𝐴, 𝑄𝑠 ) is a core component of the

model checking algorithm. It filters a set of states 𝑄𝑠 to return

only those states where every agent 𝑎 in the coalition 𝐴 satisfies

its wallet constraint wallet (𝑎, ⊲𝑣𝑎). This acts as a precondition for

enabling coalition strategies.

Algorithm 2 – Wallet Predicate Filter.



• Input:
– 𝐺 = (𝐴𝑔,𝑄,Π, 𝜋, 𝑑, 𝐴𝑐𝑡, 𝛿,𝑊 ): the Wallet CGS

– 𝐴 ⊆ 𝐴𝑔: coalition of agents.

– {𝑣𝑎}𝑎∈𝐴: mapping assigning each 𝑎 ∈ 𝐴 a minimum re-

quired balance.

– 𝑄𝑠 ⊆ 𝑄 : the set of states to filter the wallet constraint if it

holds.

• Output: a set of states 𝑄 ′ ⊆ 𝑄 such that for every 𝑞 ∈ 𝑄 ′
and all 𝑎 ∈ 𝐴𝑔, we have𝑊 (𝑞, 𝑎) ▷ 𝑣𝑎 holds.

Algorithm 2 wPre(𝐺,𝐴, {▷𝑣𝑎}𝑎∈𝐴𝑔, 𝑄𝑠 )

1: 𝑄 ′ ← ∅
2: for all 𝑞 ∈ 𝑄𝑠 do
3: ok← true

4: for all 𝑎 ∈ 𝐴 do
5: if not𝑊 (𝑞, 𝑎) ▷ 𝑣𝑎 then
6: ok← false

7: break
8: end if
9: end for
10: if ok then
11: 𝑄 ′ ← 𝑄 ′ ∪ {𝑞}
12: end if
13: end for
14: return 𝑄 ′

Theorem 5.1 (Complexity of WATL Model Checking). The

model checking problem for WATL is PTIME-complete in the size of

the model and of the formula
2
, the same as for ATL.

Proof. It is well established that the ATL model checking prob-

lem is PTIME-complete in the size of the model [4, 9, 27]. WATL

extends ATL by enriching the semantics of strategic operators with

wallet constraints. The only additional step introduced by this ex-

tension is the evaluation of the wPre filter, which ensures that every

agent in a coalition satisfies the required wallet balance before

executing a strategy.

Let |𝑄 | denote the number of states, |𝐴𝑔| the number of agents,

and |𝐴𝑐𝑡 | the size of the joint action space. As in ATL, the evalua-

tion of each strategic operator is polynomial in |𝑄 | and |𝐴𝑐𝑡 |. The
computation of wPre requires scanning the balances of the coali-

tion members at each state, which incurs an overhead bounded by

𝑂 ( |𝑄 | · |𝐴|), where |𝐴| is the coalition size.

This additional factor remains polynomial and does not alter the

asymptotic complexity of the model checking procedure. Therefore,

WATL model checking inherits the PTIME-completeness of ATL.

□

6 META-AGENT ABSTRACTION FORWCGS
In this section we introduces an abstraction technique designed to

reduce the complexity of verifying properties in Wallet-Concurrent

Game Structures (WCGS). The key idea is to reduce the size of the

2
Note that, wallet values are encoded in unary, following the same encoding used in

most of strategic logics, such as RB-ATL and RB±ATL.

strategic space by focusing on the coalition of interest, while aggre-

gating the behavior of all other agents into a singlemeta-agent. This

abstraction makes model checking more tractable, while preserving

the essential strategic interactions relevant to the coalition. In the

following subsections, we present the intuition behind the abstrac-

tion, the formal construction of the abstract model and prove its

soundness.

6.1 Intuition and Overview
A primary challenge in model checking multi-agent systems is state

space explosion, where computational complexity grows intractably

with the number of agents. The Wallet Concurrent Game Structure

(WCGS) model is particularly susceptible, as the strategy space is

influenced by the parametric actions and their possible values.

To verify properties of a specific coalition 𝐴 (e.g., a protocol’s

participants), we introduce ameta-agent abstraction. The core
idea is to preserve the coalition𝐴 of interest in the strategic operator

explicitly while collapsing all other agents𝑂 = 𝐴𝑔 \𝐴 into a single

meta-agent𝑚. This leads to a relevant reduction in the strategic

interaction space that a model checker must analyze.

6.2 Formal Definition
Let 𝐺 = (𝐴𝑔,𝑄,Π, 𝜋, 𝑑, 𝐴𝑐𝑡, 𝛿,𝑊 ) be a concrete WCGS and 𝜑 a

WATL formula. Let 𝐴 ⊆ 𝐴𝑔 be the coalition of interest in 𝜑 and

𝑂 = 𝐴𝑔 \𝐴 be the set of opponents to be abstracted.

We define the abstractWCGS𝐺 ′ = (𝐴𝑔′, 𝑄 ′,Π, 𝜋 ′, 𝑑 ′, 𝐴𝑐𝑡 ′, 𝛿 ′,𝑊 ′)
as follows:

Agents. The agent set consists of the original coalition 𝐴 and a

new meta-agent𝑚, which represents the collective behavior of all

opponents in 𝑂 . That is, 𝐴𝑔′ = 𝐴 ∪ {𝑚}.

State. The original state space is partitioned into equivalence

classes based on wallet distributions:

[𝑞] = {𝑞′ ∈ 𝑄 | {𝑊 (𝑞, 𝑖)}𝑖∈𝐴 = {𝑊 (𝑞′, 𝑖)}𝑖∈𝐴
∧
∑︁
𝑗∈𝑂
{𝑊 (𝑞, 𝑗)} =

∑︁
𝑗∈𝑂
{𝑊 (𝑞′, 𝑗)}}

This means, two states are equivalent if they:

• preserve the exact wallet information for coalition agents

𝑖 ∈ 𝐴, and
• preserve the aggregate wallet sum of all opponents 𝑗 ∈ 𝑂 .

The abstract state space is then defined as: 𝑄 ′ = {[𝑞] ⊆ 𝑄 | 𝑞 ∈ 𝑄}.

Propositions and Labeling. Since the atomic propositions are

related to the contract, we have Π′ = Π. For the same reason, for

all [𝑞] ∈ 𝑄 ′, 𝜋 ′ ( [𝑞]) = 𝜋 (𝑞).

Action Sets.
• For each agent 𝑖 ∈ 𝐴: 𝐴𝑐𝑡 ′𝑖 = 𝐴𝑐𝑡𝑖 (the actions available to

each agent in 𝐴 remain unchanged).

• For the meta-agent 𝑚: 𝐴𝑐𝑡 ′𝑚 =
∏

𝑗∈𝑂 𝐴𝑐𝑡 𝑗 . An action for

𝑚 is a tuple 𝛼𝑚 = (𝛼 𝑗 ) 𝑗∈𝑂 , specifying one action for each

opponent in 𝑂 .

Wallet Function.

𝑊 ′ (𝑞, 𝑖) =
{
𝑊 (𝑞, 𝑖) if 𝑖 ∈ 𝐴,∑

𝑗∈𝑂𝑊 (𝑞, 𝑗) if 𝑖 =𝑚.



The wallet of each coalition agent 𝑖 ∈ 𝐴 is preserved exactly,

while the wallet of the meta-agent𝑚 is the sum of the wallets of all

opponents it represents. This captures the total financial resources

available to the opposition.

Protocol Function.
• For each agent 𝑖 ∈ 𝐴: 𝑑 ′ (𝑖, 𝑞) = 𝑑 (𝑖, 𝑞) (the available actions
for 𝐴 are unchanged).

• For the meta-agent𝑚:

[𝛼𝑚] = {𝛼 ′𝑚 ∈
∏
𝑗∈𝑂

𝐴𝑐𝑡 𝑗 | 𝛼 ′𝑚 is a permutation of 𝛼𝑚}

Formally,

[𝛼𝑚] = { 𝛼 ′𝑚 ∈
∏
𝑗∈𝑂

𝐴𝑐𝑡 𝑗 | ∀{𝛼𝑖 }𝑖∈𝑂 ∃!{𝛼 ′𝑗 } 𝑗∈𝑂 . 𝛼𝑖 = 𝛼 ′𝑗

∧ ∀{𝛼 ′𝑖 }𝑖∈𝑂 ∃!{𝛼 𝑗 } 𝑗∈𝑂 . 𝛼 ′𝑖 = 𝛼 𝑗 }

𝑑 ′ (𝑚,𝑞) = {[𝛼𝑚] ∈
∏
𝑗∈𝑂

𝑑 ( 𝑗, 𝑞)}

That is, the meta-agent can choose any tuple of actions that

are individually available to the opponents in the current

state.

Transition Function.

𝛿 ′ ( [𝑞], (𝛼𝐴, 𝛼𝑚)) = 𝛿 (𝑞, (𝛼𝐴, 𝛼𝑂 ))

where:

𝛼𝐴 = (𝛼𝑖 )𝑖∈𝐴, 𝛼𝑚 = (𝛼 𝑗 ) 𝑗∈𝑂 , 𝛼𝑂 = 𝛼𝑚 .

Thus, the transition function of the abstract model 𝐺 ′ is defined
by executing the concrete transition function 𝛿 with the actions

prescribed by the abstract agents.

6.3 Soundness of the Abstraction
The following theorem establishes that our abstraction is sound,

meaning any definitive result from the abstract model holds in the

concrete one.

Theorem 6.1 (Soundness of Meta-Agent Abstraction). Let

𝐺 be a concrete WCGS and 𝐺 ′ its meta-agent abstraction w.r.t. a

coalition 𝐴 ⊆ 𝐴𝑔. Let 𝜑 be a WATL state formula where all strategic

operators are limited to coalition 𝐴. Then, for any state 𝑞 ∈ 𝑄 :
(1) Preservation of Truth: (𝐺 ′, [𝑞]) |= 𝜑 ⇒ (𝐺,𝑞) |= 𝜑 .

(2) Preservation of Falsehood: (𝐺 ′, [𝑞]) ̸|= 𝜑 ⇒ (𝐺,𝑞) ̸|= 𝜑 .

Proof. By structural induction on 𝜑 . We present the case for

𝜑 = ⟨⟨𝐴 : 𝐶⟩⟩𝜓 ; other cases follow from standard preservation

results and the Induction Hypothesis (IH).

Induction Hypothesis (IH). The theorem holds for all subfor-

mulas, including𝜓 . Part 1: Preservation of Truth (tt).
Assume (𝐺 ′, [𝑞]) |= ⟨⟨𝐴 : 𝐶⟩⟩𝜓 . Then the following hold:

(1) The constraint 𝐶 holds in the abstract state [𝑞]
(2) There exists a strategy 𝜎 ′

𝐴
in 𝐺 ′ such that

∀𝜆 ∈ 𝑜𝑢𝑡 ( [𝑞], 𝜎 ′𝐴) : (𝐺 ′, 𝜆) |=𝜓 .

We now prove that (𝐺,𝑞) |= ⟨⟨𝐴 : 𝐶⟩⟩𝜓 .

(1) Constraint 𝐶 : For 𝑎 ∈ 𝐴,𝑊 ′ ( [𝑞], 𝑎) = 𝑊 (𝑞, 𝑎) by abstract

construction. Thus, the wallet constraints also hold in the

concrete model 𝐺 .

(2) Strategy: Lift the abstract strategy: define 𝜎𝐴 (𝑎, ℎ) = 𝜎 ′
𝐴
(𝑎, ℎ)

for 𝑎 ∈ 𝐴. Let 𝜎𝑂 be an arbitrary opponent strategy in 𝐺 .

Construct 𝜎 ′𝑚 in 𝐺 ′ from 𝜎𝑂 : 𝜎
′
𝑚 (ℎ′) = (𝜎𝑜 (ℎ′))𝑜∈𝑂 . By defi-

nition of 𝛿 ′, the path 𝜆 = 𝑜𝑢𝑡 (𝑞, (𝜎𝐴, 𝜎𝑂 )) in𝐺 is identical to

𝜆′ = 𝑜𝑢𝑡 ( [𝑞], (𝜎 ′
𝐴
, 𝜎 ′𝑚)) in 𝐺 ′. By assumption, (𝐺 ′, 𝜆′) |= 𝜓 .

By IH, (𝐺, 𝜆) |=𝜓 . Since 𝜎𝑂 was arbitrary, 𝜎𝐴 is a winning

strategy.

Part 2: Preservation of Falsehood (ff). This part is the sym-

metric of the above proof.

□

7 CASE STUDY: VERIFYING LIQUIDITY IN
CROWDFUNDING

Building upon the formal WCGS model defined in Example 3.2 and

presented in Figure 1, we now demonstrate how WATL enables the

verification of crucial liquidity properties in smart contracts. This

case study illustrates the practical application of our framework to

analyze strategic behaviors under financial constraints.

We can specify some illustrative properties in WATL as follows:

Φ1 = ⟨⟨{𝐴𝑙𝑖𝑐𝑒, 𝐵𝑜𝑏} : 𝑤𝑎𝑙𝑙𝑒𝑡 (𝐴𝑙𝑖𝑐𝑒,≥ 20) ∧𝑤𝑎𝑙𝑙𝑒𝑡 (𝐵𝑜𝑏,≥ 20)⟩⟩F𝑔𝑎

If Alice and Bob have at least 20 tokens each, they (as a coalition) can

force that the campaign eventually reaches the funding goal.

Φ2 = ⟨⟨{𝐴𝑙𝑖𝑐𝑒} : 𝑤𝑎𝑙𝑙𝑒𝑡 (𝐴𝑙𝑖𝑐𝑒,≥ 20)⟩⟩F(¬𝑔𝑎 → F𝑤𝑑)

Alice has a wallet-feasible strategy that guarantees that whenever

the goal is not reached, she can eventually withdraw her funds.

Φ3 = ⟨⟨{𝐴𝑙𝑖𝑐𝑒,𝐶𝑜𝑛𝑡𝑟𝑎𝑐𝑡} : 𝑤𝑎𝑙𝑙𝑒𝑡 (𝐴𝑙𝑖𝑐𝑒,≥ 20)⟩⟩F 𝑝𝑑

If Alice has at least 20 tokens and cooperates with the smart contract,

then they can ensure that her donation is eventually processed.

Φ4 = ⟨⟨{𝐴𝑙𝑖𝑐𝑒, 𝐵𝑜𝑏,𝐶𝑜𝑛𝑡𝑟𝑎𝑐𝑡} : 𝑤𝑎𝑙𝑙𝑒𝑡 (𝐴𝑙𝑖𝑐𝑒,≥ 20)
∧𝑤𝑎𝑙𝑙𝑒𝑡 (𝐵𝑜𝑏,≥ 20)⟩⟩G (𝑔𝑎 → 𝑐𝑐)

The coalition of Alice, Bob, and the Contract, provided each of them

Alice and Bob have at least 20 tokens, has a strategy to eventually

reach a state where goal_achieved then campaign_closed will be

true.

As the reader can easily infer, the formula Φ1 is false (without

the contract’s cooperation the goal cannot be achieved), whereas

Φ2, Φ3, and Φ4 are true.

To demonstrate the practical use of our framework, the crowd-

funding model was encoded in the VITAMIN verification environ-

ment and analyzed under both the concrete and abstract semantics

introduced in Section 6. All four properties were automatically

verified using the extended WATL engine. The results confirmed

the expected truth values of the formulas, validating that the pro-

posed semantics correctly captures wallet-dependent strategic abil-

ity. Moreover, this case study provides the foundation for the ex-

perimental analysis discussed in the following section, where the

proposed verification framework is implemented and evaluated on

a wider range of automatically generated WCGS models under the

WATL semantics.



Figure 2: Mean speedup of the abstraction-based verification
over the concrete procedure (ConcreteTime/AbstractTime)
across different numbers of agents and concrete states. Val-
ues greater than 1 indicate configurations where abstraction
achieved faster verification.

8 IMPLEMENTATION AND EXPERIMENTS
The proposed approach has been implemented as an extension of

the VITAMIN model checker. The integration introduces a new

module for the verification of WCGS under the WATL semantics,

supporting both concrete and abstract model checking.

Implementation.The framework has been implemented in Python

as an extension of the VITAMIN
3
model checker [19]. The new

module introduces explicit support for WCGS and extends the

ATL verification engine with WATL semantics. The implementa-

tion supports both concrete model checking on WCGS (Section 5)

and abstraction-based verification (Section 6). All components are

fully integrated into VITAMIN’s existing infrastructure, ensuring

compatibility with its input language, model representation, and

fixed-point computation engine.

Experimental setup.We evaluated the framework on randomly

generated WCGS with varying numbers of agents, states, and wal-

let bounds, where wallet bounds were sampled uniformly from

the interval [0, 100]. For each configuration, multiple WATL for-

mulas were automatically generated, involving different coalitions

and wallet constraints. Both the concrete and abstraction-based

verification procedures were executed on each instance to com-

pare performance and scalability. Experiments considered up to 20

agents; this upper bound was chosen solely to avoid overly clut-

tered figures and does not reflect any hardware or implementation

limitation. All experiments were conducted on a machine equipped

with an Intel
®
Core™ i7–7700HQ CPU@ 2.80,GHz, with four cores,

eight threads, and 16,GB of DDR4 RAM.

Results and discussion. Figure 2 reports the mean verification

time ratio between concrete and abstract procedures across all

configurations. For smaller models (below roughly 500 states), ab-

straction yields limited benefit, as generation overhead may offset

its gains. As model size increases, abstraction progressively outper-

forms concrete verification. For example, a model with 4000 states

and 15 agents required 1.16 s for concrete verification, while its

3
https://vitamin-organisation.github.io/website/

Figure 3: Mean model size reduction achieved by abstrac-
tion (ConcreteSize/AbstractSize), combining concrete states,
agents, and transitions. Values greater than 1 indicate that
the abstract model is smaller than its concrete counterpart.

abstract version—containing only 258 states—was verified in 0.33 s.

Overall, concrete verification times ranged from 0.78 s to 44.06 s

(median 4.69 s), whereas abstract verification ranged from 0.27 s to

25.47 s (median 0.60 s), yielding an approximate eightfold median

speedup. These results show that abstraction improves average per-

formance and mitigates worst-case runtime spikes as complexity

grows. A small number of outliers for configurations with 15 agents

and around 4000 states arise from randomly generated transition

structures less amenable to abstraction and do not affect the overall

trend. Figure 3 complements these results by comparing the size of

concrete and abstract models. The abstract representation consis-

tently reduces states and transitions, with reduction ratios of up to

two to three in the largest configurations. This effect strengthens

as model size and agent count grow, confirming that abstraction

systematically lowers computational cost. The close correlation

between reduced model size (Figure 3) and improved runtime (Fig-

ure 2) shows that the technique preserves verification correctness

while providing a clear scalability benefit.

9 CONCLUSIONS AND FUTUREWORKS
Strategic logics such as ATL and ATL

∗
[4] support multi-agent

reasoning but fail to capture financial feasibility, a key aspect of

blockchain systems where action executability depends on wal-

let balances. We introduce Wallet Alternating-time Temporal Logic

(WATL), which extends ATL with wallet predicates and wallet-

constrained strategic operators. Built onWallet-Concurrent Game

Structures (WCGS), WATL ensures that strategies are both strategi-

cally valid and financially executable.We present a PTIME-complete

model checking algorithm implemented in VITAMIN [19], enabling

automated verification of liquidity properties in smart contracts.

To address scalability, we propose a Meta-Agent Abstraction that

aggregates all non-coalition agents into a single meta-agent with

summed wallet resources, preserving wallet-aware properties while

alleviating state-space explosion. Future work includes extending

WATL to WATL
∗
to allow arbitrary temporal nesting, as well as

investigating quantitative, probabilistic, and imperfect-information

extensions to model token values and uncertainty in DeFi protocols.

https://vitamin-organisation.github.io/website/
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