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ABSTRACT

The exponential growth of Decentralized Finance (DeFi) has under-
scored the critical need for formal verification methods that can
reason about the financial properties of smart contracts. Traditional
formal methods such as Alternating-time Temporal Logic (ATL) can-
not express liquidity properties—guarantees about users’ ability to
access assets based on wallet balances. We introduce Wallet ATL
(WATL), an extension of ATL with wallet predicates and financially
constrained strategic operators. WATL ensures that actions are
both strategically and economically feasible. We formalize the se-
mantics of WATL, provide model checking algorithms within the
VITAMIN framework, and address scalability through the Meta-
Agent Abstraction, which collapses all non-coalition agents into
a single meta-agent with a sum-aggregated wallet. This abstrac-
tion preserves liquidity properties while significantly reducing the
verification space. Through case studies such as a crowdfunding
smart contract, we demonstrate how WATL formally specifies and
verifies liquidity guarantees. Our results show that WATL, imple-
mented in the VITAMIN tool, bridges the gap between multi-agent
strategic reasoning and financial correctness, providing a practi-
cal step towards the formal verification of smart contracts with
liquidity-awareness.
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1 INTRODUCTION

Smart contracts are self-executing programs deployed on blockchain
platforms[26], where digital assets are transferred and managed
according to predefined rules. Their transparency, immutability,
and automation enable novel applications in finance, supply chains,
and decentralized governance[5, 26]. However, the same properties
that make smart contracts powerful also make them error-prone
and difficult to repair: once deployed, vulnerabilities may lead to
irrevocable financial loss [5, 6, 14].
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A particularly critical aspect of smart contract correctness is lig-
uidity [12, 24]—the guarantee that agents can withdraw or transfer
their funds according to the contract’s intended rules. Unlike safety
or liveness[25], liquidity properties depend not only on the logical
structure of the contract but also on the availability of financial
resources. Ensuring liquidity requires reasoning simultaneously
about strategies of interacting agents and their wallet balances.

Traditional logics for Multi-Agent Systems, like Alternating-time
Temporal Logic (ATL) [4, 21], provide powerful tools for reasoning
about strategic abilities of coalitions. Yet, they are insufficient for
smart contracts because they cannot express whether a strategy
is financially feasible. In particular, ATL assumes that agents can
execute any action permitted by the transition system, ignoring
whether the action requires tokens, deposits, or payments.

To address this limitation, we introduce Wallet Alternating-time
Temporal Logic (WATL), an extension of ATL with wallet predicates
and wallet-constrained strategy operators. WATL allows specifying
and verifying properties such as: “Coalition A can ensure even-
tual payout, provided each member has sufficient funds to perform
their part of the strategy”. We formalize WATL’s syntax and se-
mantics over Wallet Concurrent Game Structures (WCGS), and we
present a model checking algorithm[9, 22] that extends fixed-point
techniques used in ATL.

Since the state space of WCGS grows rapidly with the number
of agents and wallet values, we further propose an abstraction
technique—Meta Agent abstraction—that collapses all non-coalition
agents into a single meta-agent with a sum-aggregated wallet. This
reduces the complexity of verification while preserving wallet-
based strategic properties of the coalition.

Our contributions are threefold:

(1) A new logic with wallet constraint (WATL) to express liquid-
ity properties in smart contracts.

(2) A verification algorithm integrated into the VITAMIN [19]
tool, extending model checking to WATL.

(3) Introduce WATL Meta Agent abstraction to reduce state
space and enable tractable verification.

Through detailed case studies, including auction and crowdfund-
ing contracts, we demonstrate that WATL provides a precise and
efficient framework for the formal verification of liquidity in smart
contracts. Note that, although smart contracts are the primary moti-
vation, WATL applies broadly to MAS scenarios involving financial
or resource transfers, such as auctions, economic simulations, and
market-driven multi-agent environments.

1.1 Related Work

Our work on WATL intersects with several lines of research, primar-
ily in formal verification of smart contracts, secondly in strategic
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reasoning with resource constraints and finally the abstraction that
ensures practical scalability.

Formal Verification of Smart Contracts. A significant body of
work applies formal methods to smart contracts, ranging from the-
orem proving [17] to model checking [12, 23]. The Solvent tool [12]
focuses on detecting insolvency vulnerabilities but operates at the
code level. In contrast, WATL offers a logical framework for spec-
ifying and verifying general strategic liquidity properties across
agents. Game-theoretic models [17] capture strategic behavior but
lack integration with temporal logic, hindering automated verifica-
tion of dynamic financial interactions.

Strategic Logics with Resource Constraints. ATL [4, 18] provides
the basis for reasoning about coalitional abilities but assumes that all
actions are feasible. Resource-Bounded ATL (RB-ATL) [2, 15] incorpo-
rates resource limits but employs static, global bounds that cannot
model the dynamic, transferable nature of blockchain tokens. It also
lacks per-agent wallet predicates, which are essential for expressing
balance-dependent feasibility. Other extensions—such as bounded
temporal logics [20] or probabilistic ATL (pATL) [16]—address tem-
poral or stochastic constraints rather than economic ones. WATL
extends these frameworks by introducing wallet-awareness and
financial executability as first-class concepts.

Abstraction and Scalability. State-space explosion is a persistent
challenge in multi-agent verification. Existing abstraction meth-
ods [7, 8, 10, 11] reduce complexity but are not designed for finan-
cially constrained systems. Our Meta-Agent Abstraction specifically
targets WCGS, collapsing all non-coalition agents into an aggre-
gated meta-agent while preserving wallet-sensitive strategies. This
approach maintains the correctness of liquidity properties and dras-
tically reduces computational complexity.

Moreover, while existing research has addressed correctness,
resource-bounded logics, or scalability independently, WATL fills
this gap by combining strategic expressiveness with explicit finan-
cial feasibility, supported by an abstraction technique that ensures
practical scalability.

2 BACKGROUND

The formal verification of multi-agent systems requires logics ca-
pable of expressing strategic interactions between autonomous
entities. Alternating-time Temporal Logic (ATL) is a powerful for-
mal logic specifically designed for reasoning about the strategic
capabilities of agents in Multi-Agent Systems (MAS) [4]. Unlike
traditional temporal logics such as LTL or CTL [9, 13], which focus
on what must or can happen in a system, ATL explicitly addresses
what a coalition of agents can enforce or achieve through their
coordinated actions, regardless of the choices made by other agents.
This makes ATL particularly suitable for analyzing systems where
autonomous entities interact and make decisions that collectively
determine the system’s evolution, such as in game theory [4, 6],
distributed systems [14], and, increasingly, blockchain-based smart
contracts [17, 24].
The syntax of ATL is defined by the following grammar:

pu=pl-gploVel(A)Xe | (A)Go | (A)eUe

where p is an atomic proposition, A C Ag represents a coalition
of agents, and X (next), G (globally), and U (until) are temporal
operators. The operator F (eventually) is derived as Fo = true U ¢.

The semantics of ATL is defined over Concurrent Game Structures
(CGS) = (Ag, Q,I1, 7, Act, d, §) which include a set of agents Ag, a
finite set of states Q, a valuation function x that specifies which
propositions hold in each state, and a transition function § that
determines the next state based on the current state and the actions
selected by all agents. The key innovation of ATL is the strategy-
based semantics [4]: a state satisfies ((A))y if there exists a collective
strategy for coalition A such that, when A follows this strategy, the
temporal property ¢ is guaranteed to hold regardless of how other
agents behave.

Strategies in ATL can be either perfect recall strategies (depending
on the entire history of states) or memoryless strategies (depending
only on the current state). A collective strategy for coalition A is
a tuple containing individual strategies for each agent in A. The
outcome function out(q,ss) returns all possible paths that may
occur when coalition A follows strategy s4 from state q.

The model-checking complexity for ATL is PTIME-complete,
making it computationally more tractable than its extension ATL”,
where arbitrary nesting of temporal operators yields 2EXPTIME-
completeness [1, 4]. This balance between expressiveness and com-
plexity has made ATL a fundamental framework for specifying and
verifying strategic abilities in multi-agent systems, serving as the
basis for numerous extensions, including the Wallet Alternating-
time Temporal Logic (WATL) variant we present in this work.

The strategic perspective of ATL provides the foundation for our
work on WATL, which extends these concepts to incorporate re-
source constraints that directly affect agents’ strategic capabilities.

3 OUR MODEL

Resource availability—particularly liquidity in the sense of wallet
balances—is central to reasoning about smart contracts. Standard
Concurrent Game Structures (CGS) [4] capture multi-agent strate-
gies but assume that every action listed in the protocol is always
feasible. This is unrealistic in blockchain systems[14, 28], where
agents are constrained by their wallets. To address this, we extend
CGS into Wallet Concurrent Game Structures (WCGS).

3.1 Formal Definition

Definition 3.1. A Wallet Concurrent Game Structure (WCGS) is a
tuple G = (Ag, Q,11, 7, Act, d, §, W), where:

o Ag: afinite set of agents including the contract itself.

e (: a finite set of global system states.

e II: a set of smart contract atomic propositions!.

e 7 : Q — 2': a labeling function that assigns to each state
the set of propositions that hold in it.

o Act: the set of parameterized actions, partitioned into three
disjoints categories: Act = Act! U ActT U Act?, where Act! N
Act’ N Act® = 0.

1Since the verification process is related to checking the correctness of the contract,
the atoms are tied to its evolution and do not convey information about the other
agents involved in the MAS. Information about the latter can be derived through the
wallet function.



- Consumption actions (Act}): actions that reduce the wal-
let of the executing agent, e.g., Act! = {deposit(v), bid(v),
stake(v), transfer (v, recipient), donate(v)},v € N*, An ac-
tion a, € Act! is feasible for agent ag in state ¢ only if
W(g,a) >o.

— Income actions (Act'): actions that increase the wallet of
the executing agent, e.g., Act! = {withdraw(v), reclaim(v),
redeem(v), refund(v), unstake(v)}.

- Neutral actions (Act®): actions that do not change the
wallet balance of the executing agent, e.g., Act® = {close(),
openAuction(), approve(), reject()}. These actions may
change the system state but have no direct financial cost
or reward.

o d: Agx Q — 24 the protocol function specifying the set
of moves available to an agent ag € Ag in state ¢ € Q. It
considers both contract rules and wallet feasibility: d(a, q) =
{ac € Act | a enabledin g A (a. € Act! UAct® v (a. €
Actt AW (g, a) > 0))}.

® 5 : QX (Actg X - - X Actg,) — Q: the transition func-
tion, mapping a state and the joint actions of all agents to a
successor state.

e W:QXxAg — Q*: the wallet function, assigning each agent
a non-negative balance in every state.

This definition extends the standard Concurrent Game Structure
(CGS) with perfect information used in ATL[4] by introducing eco-
nomic feasibility as a constraint on available actions. In classical
ATL, the protocol function d depends only on the game rules: every
enabled action can be executed. In contrast, in WCGS, action avail-
ability additionally depends on the agent’s wallet balance. Actions
in Act! are always permitted, as they increase the wallet. Actions
in Act! are restricted to agents with sufficient balance W (g, a).
This ensures that strategies in WATL are not only strategically
possible but also financially executable, thereby capturing liquidity
constraints inherent to smart contracts.

Example 3.2. As an example, we now define a simplified crowd-
funding campaign where a project seeks to raise funds from two
potential contributors, namely Alice (Agent 1) and Bob (Agent 2).
The campaign is managed by a smart contract (Agent 3), which acts
as an autonomous and impartial agent for the collection of funds.
The contract’s role is to accept contributions, track the total amount
raised, and ultimately determine if the funding goal has been met.
For the campaign, Alice and Bob want to support a community-
driven project such as the renovation of a local library. The contract
guarantees that their contributions are secure and transparent: if
enough funds are collected, the project can proceed; otherwise, the
backers retain the ability to withdraw their deposits.

Alice and Bob may choose to deposit a fixed amount of tokens
(D20), withdraw (W 20), or remain idle (I). We encode the contract
actions using numbers which represent the id of each agent and 0 is
for no operation for the contract agent, that is: 1 (accept from Alice),
2 (accept from Bob), 0 (no operation). For an intuitive definition of
the crowdfunding WCGS, see Figure 1. Note that, each self-loop
transition labeled (, *, ) represents all possible combinations of
actions by the agents (Alice, Bob, and the Contract) that are not
explicitly defined by another outgoing transition from that state.

Here we have k = 3 players: Alice, Bob, and the Smart Contract.
The set of states is defined as Q = {so, s1, $2, S3, S4, S5, S¢ }- The initial
state s corresponds to both Alice and Bob holding their full balance
and the pool being empty. States s; and s, represent a single agent
deposit, while s3 corresponds to both agents having contributed.
States s4 and ss capture partial withdrawals, and s represents the
final outcome.

The set of propositions consists of seven elements:

AP = {pool_empty, partial_deposited, deposited, withdraw_done,
goal_achieved, campaign_closed}.

For clarity in state of the model in Figure 1, we use the following
abbreviations: pe for pool_empty, pd for partial_deposited, dp for
deposited, ga for goal_achieved, wd for withdraw_done, and cc for
campaign_closed. The labeling function and the wallet can be read
directly from the graph. For the actions we have,

Act) = {D20} (deposit reduces wallet),
Acty = {W20} (withdraw increases wallet), I is neutral.
For simplicity, we will omit a formal definition of the action function

d and the transition function J, as these are implicitly defined by
the transition-arcs of the graph.

w20,1,1

100:100:0 W20,W20,0 -
020,020, 07 80040
- @®
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Figure 1: WCGS for Crowdfunding Campaign

The color-coded state transitions visualize the campaign lifecy-
cle: " (so) represents the initial open campaign with an empty pool;

(s1, s2) denote partial commitments, where one of the two con-
tributors has deposited funds. The campaign has progressed but is
still in an intermediate phase, awaiting further action. m (s3) marks
the critical threshold where both parties have contributed, and the
funding target has been met. In this phase, the campaign remains
open, and contributors still have the right to withdraw their funds.

(4, s5) signify completed withdrawals where contributors can
reclaim funds; and m (s¢) denotes the successful campaign closure
where the funding goal is achieved and the project can proceed.

3.2 Dynamics

The wallet function W evolves along with the system state, updated
according to the transition function §.



Consumption Action. If in state q an agent a executes a consump-
tion action Act! (e.g., token contributions) towards the contract
agent c, then in the successor state ¢’ the wallets are updated as:

W(q',a) =W(q,a) - v, W(q',c) =W(g.c) +o,

while all other wallets remain unchanged.

Income Action. If in state g an agent a executes an income action
Act! (e.g., reclaiming tokens) from the contract agent c, then in the
successor state g’

W(q',a) =W(q,a) + v, W(q',c) =W(q,c) — o,

while other wallets remain unchanged.

Example 3.3. Illustration (based on Figure 1). Consider the
initial state sy, where: W (s, Alice) = 100, W (sq, Bob) = 100, W (s,
Contract) = 0. If Alice executes a consumption action deposit(20),
the system transitions to state s;, with updated wallets: W (sy, Alice)
=100 — 20 = 80, W (s, Contract) = 0+ 20 = 20, while Bob’s balance
remains unchanged: W (s;, Bob) = 100.

This dynamic reflects the economic semantics of smart contracts: ac-
tions consume or reallocate liquidity, shaping which future actions
remain feasible.

4 OUR LOGIC

The Wallet Alternating-time Temporal Logic (WATL) is a strategic
logic designed to specify and reason about the abilities of agents and
coalitions under wallet constraints. It extends standard temporal
and strategic logics to account explicitly for the availability of
financial resources.

4.1 Syntax

WATL formulas are built from atomic propositions using standard
Boolean and temporal operators, extended with a wallet predicate
and a wallet-constrained strategy operator. Let Ag be the set of agents.
WATL formulas are defined by the following grammar:

pu=p|-p|eVe|wallet(arv) | (A: /\ wallet(a,>v,) )Y
ac€Ag

Ve=Xy |1 Uy | Gy

where p € II is an atomic proposition; wallet(a,>v) is a wallet
predicate, which expresses that agent a € Ag satisfies the wallet
condition relative to value v with the comparison operator » € {=
<S> 2 and (A A\ geag wallet(a,»0,) )Y states that coalition
A has a strategy to enforce the path formula ¢/, provided all wallet
constraints are satisfied.

4.2 Semantics

The semantics of WATL is defined overa WCGS G = (Ag, Q, 11, r, Act,
d, §, W), which includes categorized actions and wallet-dependent
protocols (a protocol is wallet-dependent if the availability of cer-
tain actions depends on the agent’s current wallet balance) . We
denote by Q% the set of infinite sequences of states (computations).
For a computation A = qoq; ... € Q% we write A[i] = g; for the i-th
state, and A[i, j] = g; ... q; for the subsequence from g; to q;. The
set of finite non-empty sequences of states is denoted by Q*.

Definition 4.1 (Feasible Actions). Given a WCGS G, a state g € Q,
and an agent a € Ag, an action a € Act is feasible for a in q if:

(1) @ € d(a,q) (enabled by protocol), and
(2) if @ € Act! with parameter v, then W (g, a) > 0.

Definition 4.2 (Joint Moves and Outcomes). A joint move for coali-
tion A C Ag at state q is a tuple my = (mg)qsea Where each
mg € d(a, q) is feasible. The set of all such moves is Da(q).

The outcome of ma € Da(q) is

out(q,ma) ={q' € Q| Im € D(q) : ma = (my)aearq =5(q,m) }.

Definition 4.3 (Strategies). A strategy for coalition A C Ag is a
function o4 : Q* — Ugep Da(q) mapping every history 1q € Q*
to a feasible move o4(Aq) € Da(q).

A computation A = qoq; ... € Q% is consistent with o4 if for all
i >0, A[i + 1] € out(A[i], ca(A[0,1])).

The set of all such computations from q is out(q, g4)-

Definition 4.4 (Wallet Update). For a transition g LN q’ with
m = (mg)acag, wallets update as:

if m, € Act!(v) :
if mg € Act! (v)

W(q',a) =W(g.a) -0,
W(q',a) =W(q,a) +0,
otherwise m, € Act® : W(q',a) =W(q,a).

Definition 4.5 (C-Consistent Computations). Given a constraint
C = NAgeawallet(a,>v,), a computation A € out(g,04) is C-
consistent if in the initial state g,
YaeA: W(q a)> v,
We denote by out(q, o4, C) the set of all such computations.

Truth Definition for WATL. Given a WCGS G and state g € Q,
the satisfaction relation G, q |= ¢ is defined inductively as follows:

GqEp & pen(q
GgF-p < Ggqlro
GagkFe1Ve, &= GqlEporGqle:
G, q |= wallet(a,<v) &= W(gq,a) > v

G,ql= (A:C)y & 3 C-strategy o4
VA € out(q,04,C), G, A =¥

The satisfaction relation for path formulas ¢ is defined over com-
putations A = go, g1, g2, . . . as follows:

GAEXYy G, A |= ¢, where M= q1-92 - - -
GAEGYy & Vi=0, GA =y

G AUy &= Fi20,GA Y, AVO<j<i, GN
This semantics captures financial dynamics of smart contracts,

where actions directly modify wallets and strategies depend both
on protocol rules and economic feasibility.



4.3 Relation with existing logics

WATL is a conservative extension of ATL [4]. If all wallet constraints
C in a formula are trivially satisfied (e.g., v, = 0 for all a € A),
the operator (A : C)) coincides with the standard ATL operator
(ApY. Likewise, if the wallet function in a WCGS imposes no
constraints on action availability, the model is behaviorally identical
to a standard CGS. In this sense, ATL forms a syntactic and semantic
fragment of WATL.

The novelty of WATL does not lie in merely accounting for re-
source usage, but in capturing wallet-constrained strategic feasibility.
Unlike RB+ATL [2, 3], which reasons about cumulative path costs
along executions, WATL embeds per-agent wallet balances directly
into the system state and enforces that actions are enabled only if
the executing agent can afford them at the time of execution. As a
result, WATL rules out strategies that require temporary overdrafts
or infeasible intermediate transitions, which cannot be excluded in
RB+ATL. For example, an agent with an initial wallet of 10 tokens
may, in RB+ATL, be allowed to execute a strategy that incurs a cost
of 100 tokens and later gains 95 tokens, since the net cost is 5. In
WATL, such a strategy is impossible, as the 100-token action is not
enabled in the initial state. Consequently, WATL and RB+ATL are
semantically incomparable, and WATL is not subsumed by RB+ATL;
only WATL can exclude strategies that exceed an agent’s available
resources at any point during execution.

5 MODEL CHECKING ALGORITHM

The verification of WATL properties requires extending the stan-
dard ATL model checking procedure [4, 18, 23] to incorporate
wallet-based constraints. In this section, we formalize the algo-
rithm used to decide whether a WATL formula holds in a given
Wallet-Constrained Game Structure (WCGS).

The main difference from classical ATL is the introduction of a
wallet predicate filter that prunes states where the coalition cannot
afford the required actions. This mechanism ensures that only feasi-
ble strategies (those consistent with agents’ wallets) are considered.

This algorithm has been implemented in the VITAMIN [19]
tool, which has been extended to support WATL model checking.
The implementation allows users to specify WATL formulas, con-
struct Wallet Concurrent Game Structures, and automatically verify
liquidity-related properties. In particular, VITAMIN integrates the
wallet predicate filter into its symbolic fixed-point computation,
ensuring that the semantics of WATL are faithfully captured in
practice.

5.1 Model Checking Procedure

The main model checking algorithm mcheck_watl(G, ¢) proceeds
bottom-up on the structure of the formula, extending the standard
ATL fixed-point computation [4, 9, 22]. For each subformula, the
algorithm computes the set of states where it holds.

The novelty lies in the treatment of strategic operators con-
strained by wallets:

UA - /\ wallet(a,> va) ).

acAg

Before computing the pre-image for coalition A, we apply the
wPre filter to ensure only states where the coalition can afford the
strategy are retained.

Algorithm 1 Model Checking WATL

Require: ¢: a WATL state formula
Require: G = (Ag, Q,1I1, 7, d, Act, §, W): Wallet CGS
1: for all ¢’ € Sub(¢) do
2: if ¢’ = p then
[[¢’]l < Reg(p)
else if ¢’ = =6 then
o'l —Q\ 0]

3
4
5
6: else if ¢’ = 0; Vv 6, then
7
8
9

[[o'll < [[6:11 v [[6:11
else if ¢" = ((A: Ngea wallet(a,>0v,)) X6 then
: [[¢"]] « wPre(G, A, {>va}aea, Pre(A [[0]]))
10: else if ¢" = ((A: A\ycq wallet(a,>v,))G6 then

11: p — [[true]]

12: T [[6]]

13: while p # 7 do

14: pe—rT

15: 7« wPre(G, A, {>vg}aea, Pre(A, p)) N [[6]]
16: end while

17: [e'll < p

18: else if ¢ = ((A: A\geq wallet(a,>v,))0; U 6, then
19: p — [[false]]

20: T [[6]]

21: while p # 7 do

22 pe—T

23: 7« pU(wPre(G, A, {>vg}aea, Pre(A, p)) N [[6:1])
24: end while

25 o' — p

26: end if

27: end for

28: return [[¢]]

Algorithm 1 — Model Checking WATL.

(1) For atomic and Boolean subformulas: proceed as in ATL[4].
(2) The function Reg, when given a proposition p € II, returns
the set of states in Q that satisfy p.
(3) For strategic operators {A : C)y:
(a) Apply the wallet predicate filter wPre(A, C, Qs) to restrict
feasible states.
(b) Compute the fixed-point set of states from which coalition
A has a strategy to enforce i/, restricted to feasible states.
(4) Return the set of states where ¢ holds.

5.2 Wallet Predicate Filter Function

The function wPre(G, A, {>v,}4ea, Qs) is a core component of the
model checking algorithm. It filters a set of states Qs to return
only those states where every agent a in the coalition A satisfies
its wallet constraint wallet(a, >v,). This acts as a precondition for
enabling coalition strategies.

Algorithm 2 — Wallet Predicate Filter.



e Input:
- G =(Ag,Q,1I, 7,d, Act, 5, W): the Wallet CGS
- A C Ag: coalition of agents.
— {va}qeca: mapping assigning each a € A a minimum re-
quired balance.
— Qs C Q: the set of states to filter the wallet constraint if it
holds.
e Output: a set of states Q" C Q such that for every g € Q’
and all a € Ag, we have W(q, a) > v, holds.

Algorithm 2 wPre(G, A, {>0a}aeag, Os)

:Q «0

2: for all g € Qs do

3: ok « true

4 foralla e Ado

5 if not W(q, a) > v, then
6: ok « false
7 break

8 end if

9: end for

10: if ok then

1 Q' — Q' U{g}
12: end if

13: end for
14: return Q’

THEOREM 5.1 (CoMPLEXITY OF WATL MoODEL CHECKING). The
model checking problem for WATL is PTIME-complete in the size of
the model and of the formula®, the same as for ATL.

Proor. It is well established that the ATL model checking prob-
lem is PTIME-complete in the size of the model [4, 9, 27]. WATL
extends ATL by enriching the semantics of strategic operators with
wallet constraints. The only additional step introduced by this ex-
tension is the evaluation of the wPre filter, which ensures that every
agent in a coalition satisfies the required wallet balance before
executing a strategy.

Let |Q| denote the number of states, |Ag| the number of agents,
and |Act| the size of the joint action space. As in ATL, the evalua-
tion of each strategic operator is polynomial in |Q| and |Act|. The
computation of wPre requires scanning the balances of the coali-
tion members at each state, which incurs an overhead bounded by
O(|Q] - |A|), where |A| is the coalition size.

This additional factor remains polynomial and does not alter the
asymptotic complexity of the model checking procedure. Therefore,
WATL model checking inherits the PTIME-completeness of ATL.

O

6 META-AGENT ABSTRACTION FOR WCGS

In this section we introduces an abstraction technique designed to
reduce the complexity of verifying properties in Wallet-Concurrent
Game Structures (WCGS). The key idea is to reduce the size of the

2Note that, wallet values are encoded in unary, following the same encoding used in
most of strategic logics, such as RB-ATL and RB+ATL.

strategic space by focusing on the coalition of interest, while aggre-
gating the behavior of all other agents into a single meta-agent. This
abstraction makes model checking more tractable, while preserving
the essential strategic interactions relevant to the coalition. In the
following subsections, we present the intuition behind the abstrac-
tion, the formal construction of the abstract model and prove its
soundness.

6.1 Intuition and Overview

A primary challenge in model checking multi-agent systems is state
space explosion, where computational complexity grows intractably
with the number of agents. The Wallet Concurrent Game Structure
(WCGS) model is particularly susceptible, as the strategy space is
influenced by the parametric actions and their possible values.

To verify properties of a specific coalition A (e.g., a protocol’s
participants), we introduce a meta-agent abstraction. The core
idea is to preserve the coalition A of interest in the strategic operator
explicitly while collapsing all other agents O = Ag \ A into a single
meta-agent m. This leads to a relevant reduction in the strategic
interaction space that a model checker must analyze.

6.2 Formal Definition
Let G = (Ag, Q.11 m,d, Act, 5, W) be a concrete WCGS and ¢ a
WATL formula. Let A € Ag be the coalition of interest in ¢ and
O = Ag \ A be the set of opponents to be abstracted.

We define the abstract WCGS G’ = (Ag’, Q' IL n’,d’, Act’, 8’ W")
as follows:

Agents. The agent set consists of the original coalition A and a
new meta-agent m, which represents the collective behavior of all
opponents in O. That is, Ag’ = AU {m}.

State. The original state space is partitioned into equivalence
classes based on wallet distributions:

l[q] ={q" € Q1 {W(q.D)}ica ={W(q". D) }iea
A W(g i)} = D {W(g. )}
jeo jeo
This means, two states are equivalent if they:
e preserve the exact wallet information for coalition agents
i€ A and

e preserve the aggregate wallet sum of all opponents j € O.

The abstract state space is then defined as: Q' = {[q] €S Q| g € Q}.

Propositions and Labeling. Since the atomic propositions are
related to the contract, we have II” = II. For the same reason, for

all [q] € Q", n'([q]) = =(q).
Action Sets.

e For each agent i € A: Act] = Act; (the actions available to
each agent in A remain unchanged).

e For the meta-agent m: Act;, = [];co Act;. An action for
m is a tuple a,, = (@});jco, specifying one action for each
opponent in O.

Wallet Function.
s W(q, i) ifi € A,

Wi(g.i) = N e
2ZjeoW(q.j) ifi=m.



The wallet of each coalition agent i € A is preserved exactly,
while the wallet of the meta-agent m is the sum of the wallets of all
opponents it represents. This captures the total financial resources
available to the opposition.

Protocol Function.

e For each agent i € A: d’(i, q) = d(i, q) (the available actions
for A are unchanged).
o For the meta-agent m:

[am] =A{a,, € l_[ Act;j | ay, is a permutation of oy, }
jeo
Formally,
[O{m] = {Ol;n € nACtj | V{O{i}ieo El{a}}jeo, a; = a}_
jeo

A V{a;}ieo E”{“j}jeo. a; = (xj}

d'(m,q) = {lam] € [ |d(j. @)}
jeo
That is, the meta-agent can choose any tuple of actions that
are individually available to the opponents in the current
state.

Transition Function.

&' (ql. (aa, am)) = 8(q, (a4, 20))
where:
am = (@j)jeos
Thus, the transition function of the abstract model G’ is defined

by executing the concrete transition function § with the actions
prescribed by the abstract agents.

aa = ()ieas ao = Q.

6.3 Soundness of the Abstraction

The following theorem establishes that our abstraction is sound,
meaning any definitive result from the abstract model holds in the
concrete one.

THEOREM 6.1 (SOUNDNESS OF META-AGENT ABSTRACTION). Let
G be a concrete WCGS and G’ its meta-agent abstraction w.r.t. a
coalition A C Ag. Let ¢ be a WATL state formula where all strategic
operators are limited to coalition A. Then, for any state q € Q:

(1) Preservation of Truth: (G',[q]) F¢ = (G,q) FFo.

(2) Preservation of Falsehood: (G, [q]) ¢ = (G,q) |~ ¢.

Proor. By structural induction on ¢. We present the case for
@ = (A : C)y; other cases follow from standard preservation
results and the Induction Hypothesis (IH).

Induction Hypothesis (IH). The theorem holds for all subfor-
mulas, including . Part 1: Preservation of Truth (tt).
Assume (G’, [q]) |= (A : C)y. Then the following hold:

(1) The constraint C holds in the abstract state [g]
(2) There exists a strategy o7, in G’ such that

VA € out([ql,0}) : (G',2) = ¢.
We now prove that (G, q) |= (A : CHy.

(1) Constraint C: For a € A, W' ([q],a) = W(q, a) by abstract
construction. Thus, the wallet constraints also hold in the
concrete model G.

(2) Strategy: Lift the abstract strategy: define 04(a, h) = 0/, (a, h)
for a € A. Let op be an arbitrary opponent strategy in G.
Construct oy, in G’ from oo: 0,,(h’) = (6o (h"))oco. By defi-
nition of ¢, the path A = out(q, (64, 00)) in G is identical to
A =out([ql, (d',0,,)) in G’. By assumption, (G’,1") |= ¢.
By IH, (G, 1) |= ¢. Since oo was arbitrary, o4 is a winning
strategy.

Part 2: Preservation of Falsehood (ff). This part is the sym-

metric of the above proof.
[m]

7 CASE STUDY: VERIFYING LIQUIDITY IN
CROWDFUNDING

Building upon the formal WCGS model defined in Example 3.2 and
presented in Figure 1, we now demonstrate how WATL enables the
verification of crucial liquidity properties in smart contracts. This
case study illustrates the practical application of our framework to
analyze strategic behaviors under financial constraints.

We can specify some illustrative properties in WATL as follows:

®; = ({Alice, Bob} : wallet(Alice, > 20) A wallet(Bob, > 20))F ga

If Alice and Bob have at least 20 tokens each, they (as a coalition) can
force that the campaign eventually reaches the funding goal.

D, = ({Alice} : wallet(Alice, > 20))F(=ga — Fwd)

Alice has a wallet-feasible strategy that guarantees that whenever
the goal is not reached, she can eventually withdraw her funds.

@5 = ({Alice, Contract} : wallet(Alice, > 20))F pd

If Alice has at least 20 tokens and cooperates with the smart contract,
then they can ensure that her donation is eventually processed.

@4 = (({Alice, Bob, Contract} : wallet(Alice, > 20)
Awallet(Bob, > 20) )G (ga — cc)

The coalition of Alice, Bob, and the Contract, provided each of them
Alice and Bob have at least 20 tokens, has a strategy to eventually
reach a state where goal_achieved then campaign_closed will be
true.

As the reader can easily infer, the formula @, is false (without
the contract’s cooperation the goal cannot be achieved), whereas
®,, @3, and ®4 are true.

To demonstrate the practical use of our framework, the crowd-
funding model was encoded in the VITAMIN verification environ-
ment and analyzed under both the concrete and abstract semantics
introduced in Section 6. All four properties were automatically
verified using the extended WATL engine. The results confirmed
the expected truth values of the formulas, validating that the pro-
posed semantics correctly captures wallet-dependent strategic abil-
ity. Moreover, this case study provides the foundation for the ex-
perimental analysis discussed in the following section, where the
proposed verification framework is implemented and evaluated on
a wider range of automatically generated WCGS models under the
WATL semantics.
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Figure 2: Mean speedup of the abstraction-based verification
over the concrete procedure (ConcreteTime/AbstractTime)
across different numbers of agents and concrete states. Val-
ues greater than 1 indicate configurations where abstraction
achieved faster verification.

8 IMPLEMENTATION AND EXPERIMENTS

The proposed approach has been implemented as an extension of
the VITAMIN model checker. The integration introduces a new
module for the verification of WCGS under the WATL semantics,
supporting both concrete and abstract model checking.

Implementation. The framework has been implemented in Python
as an extension of the VITAMIN® model checker [19]. The new
module introduces explicit support for WCGS and extends the
ATL verification engine with WATL semantics. The implementa-
tion supports both concrete model checking on WCGS (Section 5)
and abstraction-based verification (Section 6). All components are
fully integrated into VITAMIN’s existing infrastructure, ensuring
compatibility with its input language, model representation, and
fixed-point computation engine.

Experimental setup. We evaluated the framework on randomly
generated WCGS with varying numbers of agents, states, and wal-
let bounds, where wallet bounds were sampled uniformly from
the interval [0, 100]. For each configuration, multiple WATL for-
mulas were automatically generated, involving different coalitions
and wallet constraints. Both the concrete and abstraction-based
verification procedures were executed on each instance to com-
pare performance and scalability. Experiments considered up to 20
agents; this upper bound was chosen solely to avoid overly clut-
tered figures and does not reflect any hardware or implementation
limitation. All experiments were conducted on a machine equipped
with an Intel® Core™ i7-7700HQ CPU @ 2.80,GHz, with four cores,
eight threads, and 16,GB of DDR4 RAM.

Results and discussion. Figure 2 reports the mean verification
time ratio between concrete and abstract procedures across all
configurations. For smaller models (below roughly 500 states), ab-
straction yields limited benefit, as generation overhead may offset
its gains. As model size increases, abstraction progressively outper-
forms concrete verification. For example, a model with 4000 states
and 15 agents required 1.16 s for concrete verification, while its

3https://vitamin-organisation.github.io/website/
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Figure 3: Mean model size reduction achieved by abstrac-
tion (ConcreteSize/AbstractSize), combining concrete states,
agents, and transitions. Values greater than 1 indicate that
the abstract model is smaller than its concrete counterpart.

abstract version—containing only 258 states—was verified in 0.33 s.
Overall, concrete verification times ranged from 0.78 s to 44.06 s
(median 4.69 s), whereas abstract verification ranged from 0.27 s to
25.47 s (median 0.60 s), yielding an approximate eightfold median
speedup. These results show that abstraction improves average per-
formance and mitigates worst-case runtime spikes as complexity
grows. A small number of outliers for configurations with 15 agents
and around 4000 states arise from randomly generated transition
structures less amenable to abstraction and do not affect the overall
trend. Figure 3 complements these results by comparing the size of
concrete and abstract models. The abstract representation consis-
tently reduces states and transitions, with reduction ratios of up to
two to three in the largest configurations. This effect strengthens
as model size and agent count grow, confirming that abstraction
systematically lowers computational cost. The close correlation
between reduced model size (Figure 3) and improved runtime (Fig-
ure 2) shows that the technique preserves verification correctness
while providing a clear scalability benefit.

9 CONCLUSIONS AND FUTURE WORKS

Strategic logics such as ATL and ATL* [4] support multi-agent
reasoning but fail to capture financial feasibility, a key aspect of
blockchain systems where action executability depends on wal-
let balances. We introduce Wallet Alternating-time Temporal Logic
(WATL), which extends ATL with wallet predicates and wallet-
constrained strategic operators. Built on Wallet-Concurrent Game
Structures (WCGS), WATL ensures that strategies are both strategi-
cally valid and financially executable. We present a PTIME-complete
model checking algorithm implemented in VITAMIN [19], enabling
automated verification of liquidity properties in smart contracts.
To address scalability, we propose a Meta-Agent Abstraction that
aggregates all non-coalition agents into a single meta-agent with
summed wallet resources, preserving wallet-aware properties while
alleviating state-space explosion. Future work includes extending
WATL to WATL* to allow arbitrary temporal nesting, as well as
investigating quantitative, probabilistic, and imperfect-information
extensions to model token values and uncertainty in DeFi protocols.
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