
A Verification Framework for Obstruction, Probability, and Time
Wissal Dahani

Télécom Paris, Institut Polytechnique

de Paris

Palaiseau, France

wissal.dahani.whyma@gmail.com

Jean Leneutre

Télécom Paris, Institut Polytechnique

de Paris

Palaiseau, France

jean.leneutre@telecom-paris.fr

Vadim Malvone

Télécom Paris, Institut Polytechnique

de Paris

Palaiseau, France

vadim.malvone@telecom-paris.fr

James Ortiz

Télécom Paris, Institut Polytechnique

de Paris

Palaiseau, France

james.ortizvega@telecom-paris.fr

Axel Oscar

Télécom Paris, Institut Polytechnique

de Paris

Palaiseau, France

axel.oscar@telecom-paris.fr

ABSTRACT
Verifying strategic behaviour in real-time multi-agent systems un-

der uncertainty is vital for safety- and security-critical domains.

Existing obstruction logics treat either adversarial timing (TOL) or
probabilistic risk (POTL), but real scenarios require both. We intro-

duce Probabilistic Timed Obstruction Temporal Logic (PTOTL), which

unifies dense time, probabilities, and cost-bounded obstruction for

real-time security games. Interpreted over Weighted Probabilistic

Timed Automaton (WPTA), PTOTL models attacker–defender in-

teractions where discrete actions and time elapse evolve, and the

defender may disable transitions under a per-step budget. We give

syntax and semantics, and a symbolic model-checking procedure on

a probabilistic zone graph. Despite added strategic and probabilistic

features, verification remains PSPACE, not highter than PTCTL or

PTATL while offering greater temporal expressiveness. An auto-

motive Moving Target Defense (MTD) case study demonstrates

practicality as a specification and verification language.

KEYWORDS
Strategic reasoning, Cybersecurity, Model checking, Quantitative

verification, Security games, Moving Target Defense mechanisms

ACM Reference Format:
Wissal Dahani, Jean Leneutre, Vadim Malvone, James Ortiz, and Axel Oscar.

2026. A Verification Framework for Obstruction, Probability, and Time. In

Proc. of the 25th International Conference on Autonomous Agents and Multia-

gent Systems (AAMAS 2026), Paphos, Cyprus, May 25 – 29, 2026, IFAAMAS,

10 pages.

1 INTRODUCTION
Cyber–physical-system (CPS) requires guarantees under timing,

stochasticity, and purposeful interference, particularly when im-

plementing security measures. With autonomous, intelligent, and

asynchronous components modeled as Multi-Agent Systems (MAS),

strategic interactions become explicit while preserving clocks, prob-

abilities, and resource limits. Timed automata with zone abstrac-

tions capture dense time [3], and probabilistic model checking

quantifies risk onMarkov decision processes (MDP) and Probabilistic

Proc. of the 25th International Conference on Autonomous Agents and Multiagent Systems

(AAMAS 2026), C. Amato, L. Dennis, V. Mascardi, J. Thangarajah (eds.), May 25 – 29,

2026, Paphos, Cyprus. © 2026 International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). This work is licenced under the Creative

Commons Attribution 4.0 International (CC-BY 4.0) licence.

Timed Automata (PTA) [12, 49]. In this context, security questions

are strategic: which agents can enforce which objectives within a

deadline. Alternating-time Temporal Logic (ATL) formalizes coali-

tional ability [4] to work on these strategic conditions; timed TATL
adds deadlines [34]; and Strategic Timed CTL (STCTL) extends CTL
with strategy binders under dense time [8]. Despite differences,

these logics reason about time-bounded ability on a fixed arena; in

particular, they characterize attacker choices, not how a defender

can reshape the arena under operational constraints. We therefore

use Attack graphs (AG) as the concrete modeling layer for attacker

behavior, while reserving the logical layer for specification and

verification of defender objectives. AG support reasoning about

security scenarios by encoding multi-stage intrusions as paths over

conditions and exploits [39]. While AG handle reachability, cut

sets, and time-to-compromise, they are static: they assume a fixed

configuration which is a real problem given the evolution of attacks

in modern campaigns, where attackers exploit knowledge of these

static defenses. To address this, dynamic maneuver becomes essen-

tial: periodic changes in topology, or exposure invalidate routes

learned by an attacker within security boundaries, increase the

attacker’s per-step cost, and devalue reconnaissance, all under real-

time CPS constraints. Moving Target Defense (MTD) techniques

operate this shift via time-bounded reconfiguration, isolation, route

randomization, and service relocation to truncate or delay attack

paths and reduce compromise probabilities [26, 47, 56], under con-

straints. However, without a principled model, the orchestration of

these techniques remains heuristic. Wemust therefore be able to for-

mally specify, from the defender’s all this objectives under explicit

constraints, e.g., “within 𝑇 time units the probability of reaching

a critical asset remains below 𝛼 when at most 𝑛 actions can be

inhibited per step”. This requires evolving AG where suppressing

an exploit opportunity corresponds to removing an edge and elimi-

nating its outcome. Obstruction and sabotage logics formalize this

dynamic action view: a player may delete or disable a bounded set

of edges and reason about residual paths [9, 20, 46, 55]. Yet timed

strategic logics (TATL, STCTL) lack cost-bounded edge disabling

with explicit accounting of removed probability mass [8, 34]. Prob-

abilistic real-time logics such as Probabilistic Timed CTL (PTCTL)

quantify timed behaviors of PTA but keep transitions immutable

[38, 49]. Recent obstruction logics treat dense time Timed Obstruc-

tion Logic (TOL) or probabilities Probabilistic Obstruction Temporal

Logic (POTL) in isolation, not their combination [21, 44, 45]. We

therefore need a logic that unifies dense time, quantitative thresh-

olds, and real-time cost-bounded obstruction.

To fill this gap, we propose PTOTL, interpreted over aWPTA that

extend PTAwith per-transition sabotage costs. PTOTL uses a single

top-level sabotage binder ranging over memoryless defender strate-

gies that, at each step, may disable a subset of currently enabled

edges whose cumulative cost does not exceed a per-step budget

that resets after each jump. Dense-time windows are expressed

with freeze clocks, and path modalities include a probabilistic next

and dense-time until/release. Probabilities are evaluated on sub-

stochastic successor kernels—disabled outcomes drop their mass

rather than renormalize reflecting AG/MTD practice. In short, AG

model the attacker’s feasible progress in the plant, while PTOTL

specifies the defender’s guarantees and their constraints. We work

in a perfect-information setting with one sabotage envelope to

retain decidability while capturing the engineering intent.

In addition, we compare PTOTL with PTCTL and Probabilistic

Timed ATL (PTATL). PTOTL extends PTCTL [38] by obstruction ca-

pability. Relative to PTATL, which quantifies coalitional strategies

on fixed arenas, PTOTL targets edge-centric disabling under explicit

budgets; the formalisms are complementary and incomparable in

general, and we provide a sound coalition-to-sabotage abstraction

on compiled models [14, 16, 25, 36, 37]. Furthermore, we prove that

the model checking is PSPACE-complete for one clock by tight

reductions with PTCTL [38, 49]. Finally, we evaluate PTOTL on an

automotive case study grounded in documented in-vehicle attacks

[23, 48, 51], using PTOTL specifications to assess moving-target

defenses under time and probability constraints, yielding quantita-

tive guarantees on bounded-time reachability, and demonstrating

practicality to verify the security level and the robustness of these

MTD techniques against new threats, to improve safety-critical

CPS and support risk–performance trade-offs.

RelatedWork. Timed and probabilistic verification build on timed

automata with zone abstractions and on probabilistic model check-

ing forMDP/CTMC/PTA, with mature reductions and tools (e.g.,

PRISM) [1, 3, 12, 27, 41, 49]. Non-strategic real-time probabilis-

tic logics (e.g., TCTL/PTCTL) use PTA abstractions [49]. Strategic

verification originates from ATL/ATL* and their refinements with

epistemic operators, recall, and strategy contexts, as well as Strat-

egy Logic [4, 22, 43, 52]. In real time, timed game automata and

the logics TATL and STCTL extend strategic reasoning with dense

time and map expressiveness/decidability frontiers [8, 19, 29, 34].

Probabilistic strategic variants quantify stochastic coalition success:

PATL/PATL* and PTATL integrate probabilities (and, for PTATL,
dense time), with model checking under memoryless imperfect

information and IMITATOR/PRISM workflows [7, 24, 25, 37, 41].

Related work studies equilibria and controller synthesis in prob-

abilistic real-time and partially observable games [15, 35, 42, 57].

Edge-centric interference has been formalised via Sabotage Modal

Logic (SML) and its subset variant (SSML), and by Dynamic Escape

Games for weighted reachability [9, 20, 46, 53, 55]. Obstruction

Logic and its timed/probabilistic extensions (TOL, POTL) add tem-

poral operators, budgets, and quantitative thresholds [21, 44, 45],

but treat dense time or probability in isolation rather than over PTA.
As an application backdrop, attack graphs (AG) support multi-stage

intrusion analysis, while surveys of Moving Target Defense (MTD)
document dynamic reconfiguration (routing/ACL/policy rotation,

service relocation) to reshape feasible paths under resource and

timing constraints [26, 39, 47, 56]. These lines motivate formalisms

that reason about time-bounded, budgeted edge disabling under

uncertainty on real-time probabilistic models.

Structure of the work. The paper is structured as follows: Sec-

tion 2 covers background. Section 3 defines PTOTL. Section 4

gives the model-checking algorithm and complexity. Section 5

presents the MTD automotive case study. Section 6 relates PTOTL

to PTCTL/PTATL. Section 7 explain future work and concludes.

2 BACKGROUND
In this section, we discuss the basic notions used in the technical

part, and begin with some general concepts. Let N be the set of

natural numbers containing 0 as N≥0, R≥0 the set of non-negative
reals and Z the set of integers. Let 𝑋 and 𝑌 be two sets and |𝑋 |
denotes its cardinality. The set operations of intersection, union,

complementation, set difference, and Cartesian product are denoted

𝑋 ∩𝑌 ,𝑋 ∪𝑌 ,𝑋 ,𝑋 \𝑌 , and𝑋 ×𝑌 , respectively. Inclusion and strict

inclusion are denoted 𝑋 ⊆ 𝑌 and 𝑋 ⊂ 𝑌 , respectively. The empty

set is denoted ∅. Let 𝜋 = 𝑥1, . . . , 𝑥𝑛 be a finite sequence, 𝑙𝑎𝑠𝑡 (𝜋)
denotes the last element 𝑥𝑛 of 𝜋 .

2.1 General Concepts
Probability Distribution and Space. Let 𝑄 be a finite set and 𝜇 :

𝑄 → [0, 1] be a probability distribution function over 𝑄 such that∑
𝑞∈𝑄 𝜇 (𝑞) = 1. We denote byD(𝑄) the set of all such distributions

over 𝑄 . For a given 𝜇 ∈ D(𝑄), 𝑠𝑢𝑝𝑝 (𝜇) = {𝑞 ∈ 𝑄 | 𝜇 (𝑞) > 0} is
called the support of 𝜇. The standard notation of a probability space

is a triple (Ω, F , Pr), where Ω is a sample space that represents all

possible outcomes, F ⊆ 2
Ω
is a 𝜎-algebra over Ω, i.e., it includes

the empty subset, and it is closed under countable unions and

complement, and Pr: F → [0, 1] is a probability measure over

(Ω, F). We denote the set of all finite and infinite sequences of

elements of 𝑄 by 𝑄+ and 𝑄∗, respectively.

Kripke Structure and Markov Chain. Here, we will formally de-

fine Kripke structure (KS) and Markov Chain (MC).

Definition 1 (Kripke Structure). A Kripke Structure (KS) over a
set Ap of atomic propositions is a tupleK = ⟨𝑄,𝑞0, 𝑅,L⟩ where𝑄 is a

finite, non-empty set of states, 𝑞0 ∈𝑄 is the initial state, 𝑅 ⊆ 𝑄×𝑄 is a

binary serial relation over𝑄 (i.e., for any 𝑞 ∈ 𝑄 there is a 𝑞′ ∈ 𝑄 such

that ⟨𝑞, 𝑞′⟩ ∈ 𝑅) and L : 𝑄 → 2
Ap

is a labeling function assigning a

set of atomic propositions to any state 𝑞 ∈ 𝑄 .
Definition 2 (Markov Chain). A Markov Chain (MC) is a pair

H = (𝑄, P) where 𝑄 is a (countable) set of states and P: 𝑄 × 𝑄 →
[0, 1] is a transition probability function such that for all state 𝑞 ∈ 𝑄 ,
Σ𝑞′∈𝑄P(𝑞, 𝑞′) = 1. If 𝑄 is finite, we consider P as a transition matrix.

A KS can be extended via MC [40] to define Probabilistic Kripke

Structure (PKS) as follows.

Definition 3 (PKS). A PKS over a set Ap of atomic propositions

is a tuple G = ⟨𝑄,𝑞0, P,L⟩ where (𝑄, P) is aMC, 𝑞0 is the initial state
and L : 𝑄 → 2

Ap
is a labeling function assigning a set of atomic

propositions to any state 𝑞 ∈ 𝑄 .
Path. A (finite or infinite) path overG is a sequence 𝜋 = 𝑞0, 𝑞1, 𝑞2,

. . . starting at the initial state 𝑞0 such that P(𝑞𝑖 , 𝑞𝑖+1) > 0 for all

𝑖 ∈ N. We write 𝜋𝑖 for the 𝑖-th state 𝑞𝑖 , 𝜋≤𝑖 for the prefix 𝑞0, . . . , 𝑞𝑖 ,
and 𝜋≥𝑖 for the suffix 𝑞𝑖 , 𝑞𝑖+1, Let Paths+G,𝑞 be the set of non-

empty finite paths from 𝑞, and Paths𝜔G,𝑞 the set of infinite paths

from 𝑞. A history is any finite prefix of a path; 𝐻 denotes the set of

histories and last (ℎ) the last state of ℎ.

Cylinder. We measure probabilities of path sets via the standard

cylinder construction. For each 𝑞 ∈ 𝑄 , let (Ω𝑞, F𝑞, Pr𝑞G) be the

probability space where Ω𝑞 is the set of infinite paths starting at 𝑞

and F𝑞 is the 𝜎-algebra generated by cylinder sets. For a finite path

𝜋 = 𝑞0, 𝑞1, . . . , 𝑞𝑛 , its cylinder is Cyl(𝜋) = { 𝜋 ∈ Paths𝜔G,𝑞0 | 𝜋 ∈
Prefix(𝜋) }. The measure on cylinders is defined b Pr𝑞0G

(
Cyl(𝜋)

)
=∏𝑛−1

𝑖=0 P(𝑞𝑖 , 𝑞𝑖+1), and it extends uniquely from cylinders to F𝑞 (we

keep the notation Pr𝑞G). Not every subset of paths is measurable, but

all sets considered here are, see [12] for measure-theoretic details.

Predecessors and Successors. Let G be a PKS and 𝑞 ∈ 𝑄 one of

its states, pre(𝑞) denotes the set of predecessors of 𝑞, i.e., pre(𝑞) =
{𝑞′ ∈ 𝑄 | P(𝑞′, 𝑞) > 0}. Similarly, post(𝑞) denotes the set of succes-
sors of𝑞, i.e., post(𝑞) = {𝑞′ ∈ 𝑄 | P(𝑞, 𝑞′) > 0}, and E(𝑞) denotes its
outgoing edges E(𝑞) = {𝑒 ∈ 𝑄×𝑄 | 𝑒 = (𝑞, 𝑞′) for some 𝑞′ ∈ 𝑄 and

P(𝑞, 𝑞′) > 0}.
Here, we show Probabilistic Obstruction Temporal Structure (POTS)

an extension of PKS [44], enabling weighted properties in a model.

Definition 4 (POTS). A POTS (model for short) is given by a tuple

M = (G,C) where G = (𝑄,𝑞0, P,L) is a PKS and C : 𝑄 ×𝑄 → N is

a function assigning to any pairs (𝑞, 𝑞′) a natural number 𝑛 ∈ N≥0.

2.2 Weighted Timed Automata
We now explore the relation betweenWTS and Weighted Timed

Automata (WTA) [5]. A WTA is an extension of a TA [2] with

weight/cost information at both locations and edges, and it can be

used to address several interesting questions [5, 19].

Definition 5 (Clock constraints and invariants). Let X be

a finite set of variables over R≥0, called clocks. The set Φ+ (𝑋) of clock
constraints over the set of clocks X is given by the following grammar:

𝜙 := 𝑡𝑟𝑢𝑒 | x ∼ c | x − y ∼ c | 𝜙 ∧ 𝜙

where x, 𝑦 ∈ X, c ∈ N, and ∼ ∈ {<, >, ≤, ≥, =}.

The clock constraints of the form 𝑡𝑟𝑢𝑒 , x ∼ c are called non-diagonal

constraints and those of the form x − y ∼ 𝑐 are called diagonal

constraints. The set of non-diagonal constraints over X is denoted

by Φ(𝑋). Clock invariants Δ(X) are constraints where ∼∈ {<,≤}.

Definition 6 (Clock valuations). Given a finite set of clocks X,

a clock valuation function, 𝜈 : X→ R≥0 assigning to each clock 𝑥 ∈
X a non-negative value 𝜈 (𝑥). We denote R𝑋

≥0 the set of all valuations.

For a clock valuation 𝜈 ∈ R𝑋
≥0 and a time value d ∈ R≥0, 𝜈 + d is the

valuation satisfied by (𝜈 + 𝑑) (𝑥) = 𝜈 (𝑥) + 𝑑 for each 𝑥 ∈ X. Given
a clock subset 𝑌 ⊆ 𝑋 , we denote 𝜈 [𝑌 ← 0] the valuation defined as

follows: 𝜈 [𝑌 ← 0] (𝑥) = 0 if 𝑥 ∈ 𝑌 and 𝜈 [Y← 0] (𝑥) = 𝜈 (𝑥) else.

Here, we only consider the weight/cost in the edges (transitions) in

ourWTA. Formally, aWTA is defined as follows [5].

Definition 7 (WTA). Let 𝑋 be a finite set of clocks and Ap a

finite set of atoms. A WTA is a tuple A = (𝐿, 𝑙0, 𝑋, Σ,𝑇 , 𝐼𝑛𝑣,𝑊 , 𝐾),
where: (𝑖) 𝐿 is a finite set of locations. (𝑖𝑖) 𝑙0 ∈ 𝐿 is an initial location.

(𝑖𝑖𝑖) 𝑋 is a finite set of clocks. (𝑖𝑣) Σ is a finite set of actions. (𝑣)
𝑇 ⊆ 𝐿 × Σ × Φ(𝑋) × 2𝑋 × 𝐿 is a finite set of transitions. (𝑣𝑖) 𝐼𝑛𝑣 :

𝐿 → Δ(𝑋) is a function assigning to each location a clock invariant.

(𝑣𝑖𝑖) 𝑊 : 𝑇 → N≥0 is a labeling function on elements of 𝑇 . (𝑣𝑖𝑖𝑖)
𝐾 : 𝐿 → 2

Ap
is a labeling function for locations.

We write ℓ
𝑎,𝜙,𝑌
−−−−→

𝑤
ℓ ′ as shorthand for (ℓ, 𝑎, 𝜙, 𝑌 , ℓ ′)𝑤 ∈ 𝑇 , where 𝑎 is

an action, 𝜙 ∈ Φ(𝑋) a guard, 𝑌 ⊆ 𝑋 a reset set, and 𝑤 ∈ N≥0. Let
W : 𝑇 → N≥0 map an edge 𝑡 = (ℓ, 𝑎, 𝜙, 𝑌 , ℓ ′)𝑤 to its weightW(𝑡) =
𝑤 , interpreted as the (de)activation cost. Costs are annotations only:

they don’t appear in guards/invariants and so don’t affect which

discrete transitions are enabled. This avoids undecidability issues of

HA [33] and preserves the decidability results for WTA [19]. Thus,

the semantics of WTA are given by a weighted transition system

(WTS), an extension of labelled transition systems (LTS)[50].
Definition 8 (Semantics of WTA). Let A = (𝐿, 𝑙0, 𝑋, Σ,𝑇 , 𝐼𝑛𝑣,

𝑊 , 𝐾) be a WTA. The semantics of WTA A is given by a WTS(A) =
(S, s0, ΣΔ, 𝐸,𝑊

′, 𝐾 ′, S𝐹) where: (𝑖) 𝑆 ⊆ 𝐿 × RX

≥0 is a set of states. (𝑖𝑖)
𝑠0 = (𝑙0, 𝜈0) with 𝜈0 (𝑥) = 0 for all 𝑥 ∈ X and 𝜈0 |= 𝐼𝑛𝑣 (𝑙0). (𝑖𝑖𝑖) ΣΔ =

Σ ⊎ R≥0. (𝑖𝑣) 𝐸 ⊆ 𝑆 × ΣΔ × 𝑆 is a transition defined by two rules:

• Discrete transition: (𝑙, 𝜈) 𝑎−→
𝑤
(𝑙 ′, 𝜈 ′) for 𝑎 ∈ Σ and𝑤 ∈ N≥0

iff l

𝑎,𝜙,𝑌
−−−−→

𝑤
l
′
, 𝜈 |= 𝜙 , 𝜈 ′ = 𝜈 [𝑌 ← 0] and 𝜈 ′ |= Inv(𝑙 ′) and,

• Delay transition: (𝑙, 𝜈) 𝑑−→ (𝑙, 𝜈 + 𝑑), for some 𝑑 ∈ R≥0 iff
𝜈 + 𝑑 |= Inv(𝑙).

(𝑣)𝑊 ′ = 𝐸 → N≥0. (𝑣𝑖) 𝐾 ′ ((𝑙, 𝜈)) = 𝐾 (𝑙) ∪ {𝜙 ∈ Φ(𝑋) | 𝜈 |= 𝜙}.

2.3 Predecessor operator and Zone Graph
Since aWTA has infinitely many states, one cannot build a finite-

state automaton. Instead, the zone graph provides a finite symbolic

semantics for TA behaviours [18]. It is both the core implementation

technique in TA tools and a basis of decidability results. In a zone
graph, clock zones symbolically denote sets of valuations. Over a

set of clocks𝑋 , a zone 𝑍 ⊆ R𝑋
≥0 is the set of evaluations satisfying a

constraints conjunction 𝜙 , i.e., 𝑍 = { 𝜈 ∈ R𝑋
≥0 | 𝜈 |= 𝜙 }. A symbolic

state zone is a pairZ = (𝑙, 𝑍) where 𝑙 is a location and 𝑍 a clock

zone, it represents all concrete states (𝑙 ′, 𝜈) with 𝑙 ′ = 𝑙 and 𝜈 ∈ 𝑍 .
Definition 9 (Discrete and Time Predecessor). LetZ be a

zone and 𝑒 an edge ofWTS(A) (with𝑤 ∈ N≥0). Define:
disc-pred(𝑒,Z) = { 𝑧 | ∃𝑧′ ∈ Z : 𝑧

𝑒−→
𝑤
𝑧′ },

time-pred(Z) = { 𝑧 | ∃𝑧′ ∈ Z, ∃𝑑 ∈ R≥0 : 𝑧
𝑑−→
𝑤
𝑧′ }.

Both disc-pred(𝑒,Z) and time-pred(Z) are zones (closure under
predecessors). Dually, time-succ(𝑙, 𝑍) and post(𝑒, (𝑙, 𝑍)) denote, re-
spectively, the sets of time-successors of any state in (𝑙, 𝑍) and the

discrete successors of (𝑙, 𝑍) via 𝑒 .
Definition 10 (Predecessor). LetZ be a zone and 𝑒 an edge of

WTS(A). Define
pred(𝑒,Z) = disc-pred

(
𝑒, time-pred(Z)

)
.

In words, pred(𝑒,Z) collects all states that, after one discrete 𝑒-

step followed by some time delay, reach a state in Z. We write

time-succ(𝑙, 𝑍) for the set of time-successors of any state in (𝑙, 𝑍),
and post(𝑒, (𝑙, 𝑍)) for discrete 𝑒-successors of (𝑙, 𝑍) withZ = (𝑙, 𝑍).

3 MODEL AND LOGIC
In this section, we define the model WPTA and the PTOTL syntax

and semantics, extending previous obstruction logics [21, 44, 45],

by unified the quantitative and real-time temporal aspect.

Definition 11 (WPTA). The WPTA is an extension ofWTA [6]

and PTA [49]. A WPTA is a tupleM = ⟨𝐿, ℓ0,X, Inv,𝑇 , 𝑃𝑟𝑜𝑏,𝑊 ,𝐾⟩,
where: (𝑖) 𝐿 is a finite set of locations. (𝑖𝑖) ℓ0 ∈ 𝐿 is the initial location.
(𝑖𝑖𝑖) X is a finite set of clocks. (𝑖𝑣) Inv : 𝐿 → Φ(X) associates an
invariant to each location. (𝑣) 𝑇 ⊆ 𝐿 ×Φ(X) × 2X ×𝐿 is the finite set

of edge transitions. A transition (ℓ, 𝑔, 𝑟, ℓ ′) consists of source location ℓ ,
guard 𝑔, reset 𝑟 , and target location ℓ ′. (𝑣𝑖) 𝑃𝑟𝑜𝑏 : 𝑇 → D(𝐿) assigns
a probability distribution on targets once a transition is chosen. (𝑣𝑖𝑖)
𝑊 : 𝑇 → N≥0 assigns a non-negative integer weight (cost) to each

transition. (𝑣𝑖𝑖𝑖) 𝐾 : 𝐿 → 2
Ap

is a labeling function for the location.

We write ℓ
𝑎,𝜙,𝑌
−−−−→
𝑤, 𝑝

ℓ ′ as shorthand for (ℓ, 𝑎, 𝜙, 𝑌 , ℓ ′)𝑝𝑤 ∈ 𝑇 , where
𝑎 is an action, 𝜙 ∈ Φ(𝑋) a guard, 𝑌 ⊆ 𝑋 a reset set, 𝑤 ∈ N≥0
and 𝑝 ∈ D(𝐿) is a discrete probability distribution over target

locations (finite support). In this notation, the next location ℓ ′ is
drawn according to 𝑝 , in particular, ℓ ′ ∈ supp(𝑝) iff 𝑝 (ℓ ′) > 0. The

semantics of WTA is presented byWTS. To define the semantics

of WPTA, we employ Probabilistic Timed Kripke Structure (PTKS),
which extend Markov Chain (MC) with real-valued duration [40].

Definition 12 (WPTA semantics). LetM = ⟨𝐿, 𝑙0,X, Inv,𝑇 ,
𝑃𝑟𝑜𝑏,𝑊 , 𝐾⟩ be aWPTA. Semantics ofWPTAM is given by a PTKS(M)
= (S, s0, 𝑃,𝑊̂ , 𝐾̂) where: (𝑖) 𝑆 ⊆ 𝐿 × RX

≥0 is a set of states. (𝑖𝑖)
𝑠0 = (𝑙0, 𝜈0) with 𝜈0 (𝑥) = 0 for all 𝑥 ∈ X and 𝜈0 |= 𝐼𝑛𝑣 (𝑙0). (𝑖𝑖𝑖)
𝑃 ⊆ 𝑆 × D(𝑆) is a probabilistic transition relation. For 𝑠 = (𝑙, 𝜈) ∈ 𝑆 :

• Discrete transition: For 𝑡 = (ℓ, 𝑔, 𝑟, ℓ ′𝑒)
𝑝
𝑤 ∈ 𝑇 with 𝜈 |= 𝑔, let

𝑝 := 𝑃𝑟𝑜𝑏 (𝑡) ∈ D(𝐿) and define 𝜇𝑡 ∈ D(𝑆) by

𝜇𝑡
(
ℓ ′, 𝜈 [𝑟 := 0]

)
=

{
𝑝 (ℓ ′) if 𝜈 [𝑟 := 0] |= Inv(ℓ ′),
0 otherwise.

Then (𝑠, 𝜇𝑡) ∈ 𝑃 and,

• Delay transition: For any 𝑑 ∈ R≥0 with 𝜈 + 𝑡 |= Inv(ℓ) for
all 𝑡 ∈ [0, 𝑑], let 𝜇𝑑 = 𝛿 (ℓ,𝜈+𝑑) ∈ D(𝑆). Then (𝑠, 𝜇𝑑) ∈ 𝑃 .

(𝑣) 𝑊̂ :

{
(𝑠, 𝜇, 𝑠′) | (𝑠, 𝜇) ∈ 𝑃, 𝜇 (𝑠′) > 0

}
→ N≥0 is the weight

function:

𝑊̂ (𝑠, 𝜇, 𝑠′) =

{
𝑊 (𝑡) if 𝜇 = 𝜇𝑡 for some enabled 𝑡 ∈ 𝑇,
0 if 𝜇 = 𝜇𝑑 for some 𝑑 ≥ 0.

(𝑣𝑖) 𝐾̂ : 𝑆 → 2
Ap

is the labelling, e.g. 𝐾̂ (ℓ, 𝜈) = 𝐾 (ℓ).

Strategy and Outcomes. A symbolic state is a pair 𝑞 = (ℓ, 𝑍)
with ℓ ∈ 𝐿 and 𝑍 ∈ Φ+ (𝑋). Let 𝑄 ⊆ 𝐿 × Φ+ (𝑋) be the set of

reachable symbolic states ofM, and 𝐻 the set of finite histories

over 𝑄 (finite sequences). Let 𝑊 : 𝑇 → N≥0 be the edge-cost

function and 𝑛 ∈ N≥0 a fixed per-step budget. For 𝑞 = (ℓ, 𝑍) define
the enabled set Enabled(𝑞) = { (ℓ, 𝑔, 𝑟, ℓ ′) ∈ 𝑇 | 𝑍 ∧ 𝑔 ≠ ∅ }.

A zone-based 𝑛-strategy is a function S : 𝐻 → 2
𝑇
such that, for

each history ℎ ∈ 𝐻 with 𝑞 = last(ℎ) and 𝐸ℎ = S(ℎ),

𝐸ℎ ⊆ Enabled(𝑞) and

∑︁
𝑒∈𝐸ℎ

𝑊 (𝑒) ≤ 𝑛.

𝐸ℎ are the transitions desactivadas at 𝑞 under budget 𝑛. The strategy

is memoryless if S(ℎ) = S(ℎ′) whenever last(ℎ) = last(ℎ′); i.e.,
it can be viewed as S : 𝑄 → 2

𝑇
with the same constraints. A

(symbolic) path is a sequence 𝜌 = 𝑞0
𝜎0−−→ 𝑞1

𝜎1−−→ 𝑞2 · · · over the
zone graph. It is compatible with S if, for all 𝑖 ≥ 0, (𝑞𝑖 , 𝜎𝑖 , 𝑞𝑖+1) ∉
S(𝜌≤𝑖), where 𝜌≤𝑖 = 𝑞0, . . . , 𝑞𝑖 . The set of outcomes from 𝑞 is

Out(𝑞,S) = { 𝜌 infinite path from 𝑞 | 𝜌 compatible with S }.
We now introduce the syntax of our logic PTOTL.

Definition 13. Let Ap be a (at most countable) set of atomic

propositions, 𝑋 a finite set of clocks, ⊲⊳ and ∼ ∈ {<,≤,=,≥, >}, 𝑛 ∈
N≥0 a cost budget, and 𝑘 ∈ [0, 1] ∩Q a probability threshold. PTOTL

is stratified into four layers, state, clock, probabilistic, and timed

formulas all evaluated over the event trace (the sequence of discrete

jumps) of the underlying model as follows:

(1) State formulas 𝜑 :

𝜑 ::= ⊤ | 𝑝 | ¬𝜑 | 𝜑 ∧ 𝜑 | 𝛽 | 𝑗 .𝜓
(2) State–clock formulas 𝛼 :

𝛼 ::= 𝜑 | 𝑥 ∼ 𝑐 | 𝛼 ∧ 𝛼 (𝑥,𝑦 ∈ 𝑋, 𝑐 ∈ Z)
(3) Timed path formulas𝜓 :

𝜓 ::= 𝛼 𝑈 𝛼 | 𝛼 𝑅 𝛼
(Until/Release over the event index; each 𝛼 is checked at the

state reached after each discrete jump. The freeze 𝑗 .𝜓 locally

binds the formula clock 𝑗 to 0.)

(4) Probabilistic obstruction formulas 𝛽 :

𝛽 ::=
〈

⊲⊳𝑘
𝑛

〉
𝜒 where 𝜒 ::= ⃝disc 𝜑 | 𝜓

(States that there exists an 𝑛-budget sabotage strategy such

that the probability of paths satisfying 𝜒 meets the threshold

⊲⊳ 𝑘 ; only a single outermost occurrence is allowed.)

(i) We use the event-next operator ⃝disc (next discrete jump) only

inside the probabilistic modality ⟨ ⊲⊳𝑘
𝑛 ⟩ (i.e., in 𝜒), not as a primi-

tive timed operator, thereby avoiding ambiguity with dense time

and name clashes with the clock set 𝑋 . (ii) The binder 𝑗 .𝜓 is a

(TPTL-style) freeze operator that binds a fresh time variable 𝑗 to the

current time point, allowing 𝜓 to compare future times against 𝑗

via clock constraints. As usual, other Boolean/temporal connectives

are defined as abbreviations: 𝜑1 ∨ 𝜑2 ≡ ¬(¬𝜑1 ∧ ¬𝜑2), F𝛼 ≡ ⊤𝑈 𝛼 ,

G𝛼 ≡ 𝛼 𝑅 ⊥, etc.

Definition 14 (PTOTL Semantics). LetM = ⟨𝐿, ℓ0,X, Inv,𝑇 ,
𝑃𝑟𝑜𝑏,𝑊 , 𝐾⟩ be a WPTA. A configuration is a pair 𝑞 = (ℓ, 𝑣) with
ℓ ∈ 𝐿 and valuation 𝑣 : X ∪ J → R≥0 for system clocks and

formula clocks. A timed run 𝜌 alternates time elapse and discrete edges,

respecting invariants and guards, and, under the PTKS semantics and

a fixed budget-𝑛 sabotage strategy 𝜎 , induces a probability measure

Pr
M,𝑞
𝜎 on runs from 𝑞. From each run 𝜌 we extract the event trace

𝐽 (𝜌) = 𝑠0𝑠1𝑠2 . . . where 𝑠𝑖 = (ℓ𝑖 , 𝜈𝑖) is the state immediately after the

𝑖-th discrete jump (𝑠0 is the initial configuration). Path modalities are

interpreted on this discrete event index.

Satisfaction of state formulas 𝜑 .
• M, 𝑞 |= ⊤ always.

• M, 𝑞 |= 𝑝 iff 𝑝 ∈ 𝐾 (ℓ).
• M, 𝑞 |= ¬𝜑 iff M, 𝑞 ̸ |= 𝜑 .

• M, 𝑞 |= 𝜑1 ∧ 𝜑2 iff M, 𝑞 |= 𝜑1 andM, 𝑞 |= 𝜑2.
• M, 𝑞 |= 𝑗 .𝜓 iff M, (ℓ, 𝑣 [𝑗 := 0]) |=𝜓 .

Satisfaction of state–clock formulas 𝛼 .
• If 𝛼 is a state formula, use the rules above.

• M, 𝑞 |= (𝑥 ∼ 𝑐) iff 𝑣 (𝑥) ∼ 𝑐 , with 𝑥 ∈ X ∪ J , 𝑐 ∈ Q≥0.
• M, 𝑞 |= (𝛼1 ∧ 𝛼2) iff M, 𝑞 |= 𝛼1 andM, 𝑞 |= 𝛼2.

Timed path formulas (event-indexed)𝜓 .We write (𝜌, 𝑖) |=disc ·
when evaluating on the event index 𝑖 of 𝐽 (𝜌) = 𝑠0𝑠1𝑠2 . . ., and 𝑠𝑖 |= ·
for state-level satisfaction.

(𝜌, 𝑖) |=disc 𝛼1𝑈 𝛼2 ⇐⇒ ∃ 𝑗 ≥ 𝑖 : 𝑠 𝑗 |= 𝛼2 ∧ ∀𝑚 ∈ [𝑖, 𝑗) : 𝑠𝑚 |= 𝛼1,

(𝜌, 𝑖) |=disc 𝛼1 𝑅 𝛼2 ⇐⇒ ∀𝑗 ≥ 𝑖 :
((
∀𝑚 ∈ [𝑖, 𝑗) : 𝑠𝑚 ̸ |= 𝛼1

)
⇒ 𝑠 𝑗 |= 𝛼2

)
.

By design,𝜓 contains no event-next operator.

Probabilistic obstruction 𝛽 . Let 𝑛 be the set of budget-𝑛 sabotage

strategies (transition-disabling schedulers). For a path subformula

𝜒 ∈ {⃝disc 𝜑, 𝛼1𝑈𝛼2, 𝛼1𝑅𝛼2},

M, 𝑞 |=
〈

⊲⊳𝑘
𝑛

〉
𝜒 ⇐⇒ ∃𝜎 ∈ 𝑛 :

M,𝑞

Pr

𝜎

(
{ 𝜌 | (𝜌, 0) |=disc 𝜒 }

)
⊲⊳ 𝑘,

with ⊲⊳∈ {<,≤,=,≥, >} and𝑘 ∈ [0, 1]. Here⃝disc = ⃝disc denotes the

next discrete jump and is used only inside the probabilistic envelope.

(i) For any 𝜒 , the set {𝜌 | (𝜌, 0) |=disc 𝜒} is a countable union of

cylinder sets, hence measurable; the probability above is well defined.

(ii) Any occurrence of a formula clock 𝑗 must lie within the scope of a

binder 𝑗 .𝜓 . (iii) To preserve decidability, PTOTL admits at most one

(non-nested) sabotage envelope per formula.

4 MODEL CHECKING
Given a WPTAM and a closed PTOTL formula 𝜑 , model checking

computes the satisfaction set Sat(𝜑,M) ⊆ 𝑄 over the probabilistic

zone graphZ = (𝑄,→, 𝑃) and then checks whether the initial sym-

bolic state belongs to it. The distinctive difficulty is the probabilistic

sabotage operator ⟨ ⊲⊳𝑘
𝑛 ⟩𝜒 , which quantifies over per-step budget-𝑛

strategies that disable outgoing edges and compares the induced

path probability with 𝑘 . Let 𝔖𝑛 be the set of per-step budget-𝑛

sabotage strategies. Under the PTKS semantics, each 𝜎 ∈ 𝔖𝑛 and

state 𝑞 induce a probability measure Pr
M,𝑞
𝜎 on runs 𝜌 from 𝑞. For a

path pattern 𝜒 ∈ {⃝disc 𝜑, 𝛼1𝑈𝛼2, 𝛼1𝑅𝛼2}, define

M,𝑞

Pr

𝜎
(𝜒) :=

M,𝑞

Pr

𝜎

(
{𝜌 | (𝜌, 0) |=disc 𝜒}

)
Sat

(
⟨ ⊲⊳𝑘
𝑛 ⟩𝜒

)
= {𝑞 | ∃𝜎 ∈ 𝔖𝑛 :

M,𝑞

Pr

𝜎
(𝜒) ⊲⊳ 𝑘 }

The path sets are measurable (countable unions of cylinder sets),

hence the probabilities are well-defined. A symbolic state is 𝑞 =

(ℓ, 𝑍) with location ℓ and canonical convex zone 𝑍 (DBM) over

system and formula clocks. The enabled set at 𝑞 is

𝐸𝑞 = { 𝑡 = (ℓ, 𝑔, 𝑟, ℓ ′) ∈ 𝑇 | 𝑍 ∩ J𝑔K ≠ ∅ }.

A sabotage configuration picks 𝐸′ ⊆ 𝐸𝑞 such that

∑
𝑒∈𝐸𝑞\𝐸′𝑊 (𝑒) ≤

𝑛. Disabled edges contribute no probability mass (no renormalisa-

tion): for successors 𝑞′,

𝑃𝐸
′ (𝑞, 𝑞′) :=

{
𝑃 (𝑞, 𝑞′) if some kept edge in 𝐸′ leads from 𝑞 to 𝑞′,

0 otherwise.

Algorithm 1Model-Checking over a Probabilistic Zone Graph

1: Input: Probabilistic Zone GraphZ = (𝑄,→, 𝑃) of WPTAM,

closed PTOTL formula 𝜑

2: Output: Sat(𝜑) ⊆ 𝑄
3: for 𝑖 = 1 to |𝜑 | do ⊲ bottom-up by syntactic depth

4: for all𝜓 ∈ Sub(𝜑) with depth |𝜓 | = 𝑖 do
5: switch𝜓 do
6: case ⊤
7: Sat(𝜓) ← 𝑄

8: case 𝑝 ∈ Ap
9: Sat(𝜓) ← { (ℓ, 𝑍) ∈ 𝑄 | 𝑝 ∈ 𝐾 (ℓ) }
10: case 𝑥 ∼ 𝑐
11: Sat(𝜓) ← { (ℓ, 𝑍) ∈ 𝑄 | 𝑍 |= 𝑥 ⌣ 𝑐 }
12: case𝜓1 ∧𝜓2

13: Sat(𝜓) ← Sat(𝜓1) ∩ Sat(𝜓2)
14: case ¬𝜓1

15: Sat(𝜓) ← 𝑄 \ Sat(𝜓1)
16: case 𝑗 .𝜓1

17: Sat(𝜓) ← { (ℓ, 𝑍 [𝑗 ← 0]) | (ℓ, 𝑍) ∈ Sat(𝜓1) }
18: case ⟨ ⊲⊳𝑘

𝑛 ⟩ ⃝disc 𝜑1
19: Sat(𝜓) ← Pre𝑛,⊲⊳𝑘

(
Sat(𝜑1)

)
20: case ⟨ ⊲⊳𝑘

𝑛 ⟩ 𝛼1𝑈 𝛼2
21: Sat(𝜓) ← Until𝑛,⊲⊳𝑘

(
Sat(𝛼1), Sat(𝛼2)

)
22: case ⟨ ⊲⊳𝑘

𝑛 ⟩ 𝛼1 𝑅 𝛼2
23: Sat(𝜓) ← Release𝑛,⊲⊳𝑘

(
Sat(𝛼1), Sat(𝛼2)

)
24: return Sat(𝜑)

The sabotage budget resets at every discrete step.Z is finite because

zones are DBMs closed under time elapse and resets, with all con-

stants drawn fromM and 𝜑 ; thus only finitely many canonical

DBMs arise. For 𝐿 ⊆ 𝑄 define the masked, thresholded predecessor

Pre𝑛,⊲⊳𝑘 (𝐿) :=
{
𝑞
�� ∃𝐸′ ⊆ 𝐸𝑞 :

∑
𝑒∈𝐸𝑞\𝐸′𝑊 (𝑒) ≤ 𝑛

∧
∑︁
𝑞′∈𝐿

𝑃𝐸
′ (𝑞, 𝑞′) ⊲⊳ 𝑘

}
Let 𝐿1 = Sat(𝛼1), 𝐿2 = Sat(𝛼2). Then

Sat
(
⟨ ⊲⊳𝑘
𝑛 ⟩ ⃝disc 𝜑

)
= Pre𝑛,⊲⊳𝑘

(
Sat(𝜑)

)
,

Sat
(
⟨ ⊲⊳𝑘
𝑛 ⟩ 𝛼1𝑈 𝛼2

)
= 𝜇𝑆. 𝐿2 ∪

(
𝐿1 ∩ Pre𝑛,⊲⊳𝑘 (𝑆)

)
,

Sat
(
⟨ ⊲⊳𝑘
𝑛 ⟩ 𝛼1 𝑅 𝛼2

)
= 𝜈𝑆. 𝐿2 ∩

(
𝐿1 ∪ Pre𝑛,⊲⊳𝑘 (𝑆)

)
,

with 𝜇/𝜈 denoting least/greatest fixpoints over the finite lattice 2
𝑄
.

We now present the concrete algorithms that implement PTOTL
model checking over the symbolic probabilistic zone graph induced

by theWPTA structure, detailing each semantic case of the grammar

and the strategy outcomes.

The four procedures in Algorithms 1-4 implement the symbolic

model checking of PTOTL over the probabilistic zone graph of a

WPTA. Algorithm 1 traverses the syntax tree of 𝜑 bottom-up and

computes Sat(𝜓) ⊆ 𝑄 for each subformula𝜓 . Base cases are han-

dled directly: atomic propositions via the location labelling 𝐾 (ℓ),
and clock constraints by DBM entailment (𝑍 |= 𝑥 ∼ 𝑐). Boolean
connectives are realised as set operations over symbolic states. The

Algorithm 2 Pre𝑛,⊲⊳𝑘 (𝐿)
1: Input: budget 𝑛, target set 𝐿 ⊆ 𝑄 , threshold relation ⊲⊳, value

𝑘 ∈ [0, 1]
2: Output: 𝑆 = {𝑞 ∈ 𝑄 | ∃𝐸′ ⊆ 𝐸𝑛𝑎𝑏𝑙𝑒𝑑 (𝑞) :∑

𝑒∈𝐸𝑛𝑎𝑏𝑙𝑒𝑑 (𝑞)\𝐸′𝑊 (𝑒) ≤ 𝑛 ∧
∑

𝑞′∈𝐿 𝑃
𝐸′ (𝑞, 𝑞′) ⊲⊳ 𝑘 }

3: 𝑆 ← ∅
4: for all 𝑞 ∈ 𝑄 do
5: 𝐸𝑞 ← 𝐸𝑛𝑎𝑏𝑙𝑒𝑑 (𝑞)
6: for all 𝐸′ ⊆ 𝐸𝑞 such that

∑
𝑒∈𝐸𝑞\𝐸′𝑊 (𝑒) ≤ 𝑛 do

7: 𝑝 ← ∑
𝑞′∈𝐿

𝑃𝐸
′ (𝑞, 𝑞′) ⊲ masked probability, no

renormalisation

8: if 𝑝 ⊲⊳ 𝑘 then
9: 𝑆 ← 𝑆 ∪ {𝑞}; break
10: return 𝑆

Algorithm 3 Until𝑛,⊲⊳𝑘 (𝐿1, 𝐿2) (least fixpoint)

1: Input: budget 𝑛, label sets 𝐿1, 𝐿2 ⊆ 𝑄 , threshold relation ⊲⊳,

value 𝑘

2: Output: 𝑆 = 𝜇𝑋 . 𝐿2 ∪ (𝐿1 ∩ Pre𝑛,⊲⊳𝑘 (𝑋))
3: 𝑆 ← 𝐿2; 𝑐ℎ𝑎𝑛𝑔𝑒𝑑 ← true
4: while 𝑐ℎ𝑎𝑛𝑔𝑒𝑑 do
5: 𝑐ℎ𝑎𝑛𝑔𝑒𝑑 ← false
6: for all 𝑞 ∈ (𝐿1 \ 𝑆) do
7: 𝐸𝑞 ← 𝐸𝑛𝑎𝑏𝑙𝑒𝑑 (𝑞); 𝑎𝑑𝑑𝑒𝑑 ← false
8: for all 𝐸′ ⊆ 𝐸𝑞 with

∑
𝑒∈𝐸𝑞\𝐸′𝑊 (𝑒) ≤ 𝑛 do

9: 𝑝 ← ∑
𝑞′∈𝑆

𝑃𝐸
′ (𝑞, 𝑞′)

10: if 𝑝 ⊲⊳ 𝑘 then
11: 𝑆 ← 𝑆 ∪ {𝑞}; 𝑐ℎ𝑎𝑛𝑔𝑒𝑑 ← true; 𝑎𝑑𝑑𝑒𝑑 ← true;

break
12: return 𝑆

freeze operator 𝑗 .𝜓 is interpreted symbolically by resetting the

formula clock in the current zone, i.e. 𝑍 [𝑗 ← 0], before recur-

sively evaluating𝜓 . Strategic (sabotage) constructs are delegated

to the dedicated procedures: (i) Algorithm 2 computes Pre𝑛,⊲⊳𝑘 (𝐿)
and is invoked for ⟨ ⊲⊳𝑘

𝑛 ⟩ ⃝disc 𝜑1. For each zone state 𝑞, it enu-

merates sabotage configurations 𝐸′ ⊆ 𝐸𝑛𝑎𝑏𝑙𝑒𝑑 (𝑞) with per-step

cost

∑
𝑒∈𝐸𝑛𝑎𝑏𝑙𝑒𝑑 (𝑞)\𝐸′𝑊 (𝑒) ≤ 𝑛, and checks the masked probability∑

𝑞′∈𝐿 𝑃
𝐸′ (𝑞, 𝑞′) ⊲⊳ 𝑘 , where sabotaged edges contribute zero mass

(no renormalisation). (ii) Algorithm 3 realises the least-fixpoint

characterisation of ⟨ ⊲⊳𝑘
𝑛 ⟩ 𝛼1𝑈 𝛼2: it starts from 𝐿2 = Sat(𝛼2) and

expands backward through 𝐿1 = Sat(𝛼1), adding any 𝑞 ∈ 𝐿1 that
admits a budget-feasible sabotage 𝐸′ with

∑
𝑞′∈𝑆 𝑃

𝐸′ (𝑞, 𝑞′) ⊲⊳ 𝑘 ,

where 𝑆 is the current approximation. (iii) Algorithm 4 implements

the greatest-fixpoint for ⟨ ⊲⊳𝑘
𝑛 ⟩ 𝛼1 𝑅 𝛼2: it starts from 𝑆 = 𝑄 and

removes states that either violate 𝐿2 or cannot sustain the release

condition, i.e. states 𝑞 ∉ 𝐿1 for which every budget-feasible sabo-

tage configuration 𝐸′ yields
∑

𝑞′∈𝑆 𝑃
𝐸′ (𝑞, 𝑞′) ̸⊲⊳ 𝑘 . These procedures

are faithful to the event-indexed semantics of PTOTL: ⃝disc refers

to the next discrete jump; the sabotage budget is per-step and resets

after each jump; and probability mass on disabled edges is simply

dropped (no redistribution). Since the probabilistic zone graph 𝑄

Algorithm 4 Release𝑛,⊲⊳𝑘 (𝐿1, 𝐿2) (greatest fixpoint)

1: Input: budget 𝑛, label sets 𝐿1, 𝐿2 ⊆ 𝑄 , threshold relation ⊲⊳,

value 𝑘

2: Output: 𝑆 = 𝜈𝑋 . 𝐿2 ∩ (𝐿1 ∪ Pre𝑛,⊲⊳𝑘 (𝑋))
3: 𝑆 ← 𝑄 ; 𝑐ℎ𝑎𝑛𝑔𝑒𝑑 ← true
4: while 𝑐ℎ𝑎𝑛𝑔𝑒𝑑 do
5: 𝑐ℎ𝑎𝑛𝑔𝑒𝑑 ← false
6: for all 𝑞 ∈ 𝑆 do
7: if 𝑞 ∉ 𝐿2 then
8: 𝑆 ← 𝑆 \ {𝑞}; 𝑐ℎ𝑎𝑛𝑔𝑒𝑑 ← true; continue
9: if 𝑞 ∈ 𝐿1 then
10: continue ⊲ kept by 𝐿1

11: 𝐸𝑞 ← 𝐸𝑛𝑎𝑏𝑙𝑒𝑑 (𝑞); 𝑜𝑘 ← false
12: for all 𝐸′ ⊆ 𝐸𝑞 with

∑
𝑒∈𝐸𝑞\𝐸′𝑊 (𝑒) ≤ 𝑛 do

13: 𝑝 ← ∑
𝑞′∈𝑆

𝑃𝐸
′ (𝑞, 𝑞′)

14: if 𝑝 ⊲⊳ 𝑘 then
15: 𝑜𝑘 ← true; break
16: if not 𝑜𝑘 then
17: 𝑆 ← 𝑆 \ {𝑞}; 𝑐ℎ𝑎𝑛𝑔𝑒𝑑 ← true
18: return 𝑆

is finite (canonical DBMs under bounded constants) and both fix-

point iterations in Algorithms 3 and 4 are monotone over 2
𝑄
, each

loop stabilises in at most |𝑄 | iterations. Hence Algorithm 1 always

terminates on finite inputs. Let us now prove the termination and

correctness of the Algorithm 1. We first prove that the algorithm

always halts on finite inputs.

Lemma 1 (Finiteness of the Probabilistic Zone Graph). Let

Z be the probabilistic zone graph constructed from aWPTAM us-

ing canonical DBMs and a standard finite extrapolation (e.g. LU-

extrapolation) whose bounds are drawn from guards ofM and clock

bounds occurring in 𝜑 . ThenZ has finitely many symbolic states.

Sketch. Symbolic states are pairs (ℓ, 𝑍) with ℓ ∈ 𝐿 and 𝑍 a

canonical convex zone (DBM) over system/formula clocks. Since

all clock constraints use constants from a finite set, the chosen

extrapolation guarantees only finitely many canonical DBMs are

reachable under time-elapse closure and reset operations. As 𝐿 is

finite, the set 𝑄 = {(ℓ, 𝑍)} is finite. □

Theorem 4.1 (Termination). For any closed PTOTL formula 𝜑

and any finite probabilistic zone graphZ, Algorithm 1 terminates.

Sketch. The algorithm processes subformulas of𝜑 by increasing

syntactic depth; there are finitely many subformulas. For strategic

cases, Algorithms 2–4 operate on the finite state set 𝑄 . In Pre,
each state 𝑞 admits finitely many sabotage configurations 𝐸′ ⊆
𝐸𝑛𝑎𝑏𝑙𝑒𝑑 (𝑞); enumeration thus terminates. In Until and Release, the
sets 𝑆 ⊆ 𝑄 evolve by monotone additions/removals. Since 𝑄 is

finite, each fixpoint stabilises in at most |𝑄 | iterations. Hence the
overall procedure halts. □

Theorem 4.2 (Soundness & Completeness (Correctness)).

For every closed PTOTL formula 𝜑 , the set computed by Algorithm 1

equals the denotational satisfaction set induced by the PTOTL seman-

tics over the PTKS of the underlyingWPTA: for all 𝑞 ∈ 𝑄 ,

𝑞 ∈ Satalg (𝜑) ⇐⇒ Z, 𝑞 |= 𝜑.

Proof sketch by structural induction on 𝜑 . Base cases. ⊤
is satisfied everywhere; for 𝑝 ∈ Ap the algorithm selects all (ℓ, 𝑍)
with 𝑝 ∈ 𝐾 (ℓ); clock constraints are checked by DBM entailment

𝑍 |= 𝑥 ∼ 𝑐 . These coincide with the semantics.

Booleans. ¬ and ∧ are implemented as complement and intersec-

tion over 𝑄 , matching the Boolean semantics.

Freeze. For 𝑗 .𝜓 , the algorithm symbolically resets the formula

clock via the standard DBM update 𝑍 [𝑗 ← 0] and then evaluates

𝜓 in (ℓ, 𝑍 [𝑗 ← 0]). This implements the denotation “bind 𝑗 to the

current time and evaluate𝜓”.

Event-next under sabotage. For ⟨ ⊲⊳𝑘
𝑛 ⟩ ⃝disc 𝜑1, Algorithm 2

computes the set of 𝑞 for which there exists a budget-feasible 𝐸′ ⊆
𝐸𝑛𝑎𝑏𝑙𝑒𝑑 (𝑞) with masked non-renormalised probability

∑
𝑞′∈Sat(𝜑1)

𝑃𝐸
′ (𝑞, 𝑞′) ⊲⊳ 𝑘 . This is exactly the event-indexed probabilistic clause

of the semantics.

Until/Release under sabotage. For ⟨ ⊲⊳𝑘
𝑛 ⟩ 𝛼1𝑈 𝛼2 and ⟨ ⊲⊳𝑘

𝑛 ⟩ 𝛼1 𝑅 𝛼2
the algorithm computes, respectively, the least and greatest fix-

points of the standard backward-characterisations:

𝜇𝑆. 𝐿2 ∪ (𝐿1 ∩ Pre𝑛,⊲⊳𝑘 (𝑆)) and 𝜈𝑆. 𝐿2 ∩ (𝐿1 ∪ Pre𝑛,⊲⊳𝑘 (𝑆)),

with 𝐿𝑖 = Sat(𝛼𝑖). These match the denotational semantics by stan-

dard arguments for temporal fixpoints with one-step predecessors.

Thus each constructor is computed correctly. □

Theorem 4.3 (Complexity). Let |𝜑 | be the size of the formula,

|𝑄 | the number of zone states, and 𝑑 = max𝑞∈𝑄 |𝐸𝑛𝑎𝑏𝑙𝑒𝑑 (𝑞) |. Then
the time to compute Sat(𝜑) is O

(
|𝜑 | · |𝑄 | + |𝑄 | · 2𝑑

)
for non-

temporal/next-only cases, and O
(
|𝜑 | · |𝑄 |2 · 2𝑑

)
with Until/Release,

up to polynomial DBM-manipulation costs. In particular:

• If |X| = 1 (single system clock), the zone graph size is polyno-

mial, and model checking is in PSPACE.
• For |X| ≥ 2, the zone graph can be exponential in the in-

put, yielding an EXPTIME upper bound; hardness follows

from classical multi-clock timed model-checking results, so the

bound is tight.

Justification. The bottom-up traversal contributes O(|𝜑 | · |𝑄 |).
For each state, sabotage enumerates subsets 𝐸′ ⊆ 𝐸𝑛𝑎𝑏𝑙𝑒𝑑 (𝑞), i.e.
up to 2

𝑑
configurations; each check requires only polynomial-time

DBM tests and summations. Until/Release iterate over 𝑆 ⊆ 𝑄 and

stabilise in at most |𝑄 | rounds, yielding the additional |𝑄 | factor.
For one clock, canonical extrapolations ensure |𝑄 | is polynomial,

so the overall space is polynomial; with ≥ 2 clocks, |𝑄 | may be

exponential, implying the stated bound. □

5 CASE STUDY: AUTOMOTIVE MTD
Modern connected vehicles expose Internet-facing IVI and telemat-

ics, an in-vehicle security gateway, and safety-critical controllers

over CAN/Ethernet with cellular/Wi-Fi/Bluetooth/V2X ingress. Em-

pirical studies show that multi-stage intrusions commonly enter

via IVI or external communications, pivot through the gateway, and

Figure 1: AutomotiveWPTA where nodes 𝑆6 and 𝑆7 represent
the attacker’s goals, and 𝑆4 with 𝑆5 the sensitive part and 𝑆3 a
control point. Larger version in supplementary material.

attempt to reach safety domains [10, 11, 23, 48, 51, 54, 58]. We in-

stantiate this centralized–domainal vehicle architecture as a WPTA

in the Fig. 1 and use PTOTL to certify defender MTD techniques

claims under time, probability, and budget. Locations S0–S7 denote
the external point of the vehicle (Init), the infotainment (IVI) and

communication (COMMS) system, a Secure gateway (SGW) be-

tween the external and core functionality, the compute central unit

(CCU), the telematic contol unit (TCU), the ADAS and Motion who

represent the most critical part of an automotive CPS. All external

ingress traverses S3. EachWPTA edge is labelled by an action label

𝑎𝑥 , a guard for the clock 𝑥 , an optional reset of 𝑥 , a base probability

𝑝 with sum to 1, and a deactivation cost𝑤 . The topology consists of

multiple ingress routes funnelling through the gateway, by timed

gateway to control transfers, and a single actuation jump to Motion

deactivatable within its guard window for fixed cost𝑤 ourMTD
lever. The model in Fig. 1 shows the validated guards, probabilities,

resets, and sabotage costs that drive verification.

We use the semantics of Sections 3–4 and assume: a unique

attacker location per discrete step observable by the defender, a per-

step budget that disables any subset of currently enabled outgoing

edges at that location, sub-stochastic masking with no renormalisa-

tion, and a single dense-time clock 𝑥 .

We evaluate a critical property that bounds the probability for

an attacker to reach Motion and thus control the vehicle. Let at_S7
label S7 and 𝑗 be a freeze clock. We denote the property by:

𝑔motion := 𝑗 .
〈 ≤𝛼

𝐵

〉 (
true𝑈 (𝑗 ≤ 𝑇 ∧ at_S7)

)
.

𝑔motion := 𝑗 .
〈 ≤0.76

4

〉 (
true𝑈 (𝑗 ≤ 9 ∧ at_S7)

)
.

i.e., there exists a budget 𝐵 obstruction strategy for the defender

that keeps the probability of reaching Motion within time𝑇 at most

𝛼 . Operationally, this bounds the risk of actuator takeover within

the mission horizon while respecting a per-step MTD cost limit. It

also captures the practical intent of MTD playbooks: to buy time for

detection/rollback or to contain lateral movement before Motion is

reachable, without assuming perfect patchability [10, 47].

An example of concrete witness strategy deactivates 𝑎25 when-

ever its guard holds, to protect the motion. Its per-step cost is

5, so any 𝐵 ≥ 5 suffices. Under sub-stochastic masking, we have

𝑃 (S4→ S7) = 0 whenever 𝑥 ≤ 3. Because every feasible route to

S7 factors through 𝑎25, the masked predecessor of S7 is empty, the

Until fixpoint never adds S7, and 𝑔motion holds from S0 for any

𝑇 and any 𝛼 ≥ 0. This last-hop certificate is minimal: if 𝐵 < 5, 𝑎25

cannot be disabled and positive mass toward Motion remains. If

actuation cannot be masked, upstream obstruction reduces risk.

Disabling both gateway families {𝑎14, 𝑎18} (cost 8) blocks S3→S4
throughout their active windows and suffices whenever all 𝑗 ≤𝑇
paths to S7must pass S4. Disabling only one family (cost 4) removes

either the compliant or the exploit traversal, dropping up to 0.270

or 0.200 base probability per enabled step; hardening ingress by

masking 𝑎11 (cost 5) suppresses a dominant OTA/back-end relay.

These effects are computed exactly by the masked predecessor op-

erator, and feasibility is monotone in 𝐵: if 𝑔motion holds at budget

𝐵, it holds for any 𝐵′ ≥𝐵. We can also thinks about another com-

plex real attack scenario were we can assume that if we force the

attacker to go from 𝑆3 (SGW) to 𝑆4 (TCU), this will save enough

time to detect the attacker or suspicious behavior the attacker hav-

ing to force the passage to go to 𝑆5 (CCU). Overall, the instance

shows how PTOTL expresses and certifies time- and risk-bounded

MTD claims on a stochastic real-time substrate, with constructive

witnesses and quantitative budgets that align with engineering

constraints [11, 26, 39, 47].

6 COMPARISONWITH EXISTING LOGIC
We position PTOTL against two reference formalisms for proba-

bilistic real-time reasoning: PTCTL [38] and PTATL [37].

6.1 PTOTL vs PTCTL
We compare PTOTL with PTCTL [38], whose syntax is:

𝜃 ::= 𝑎 | 𝜁 | ¬𝜃 | 𝜃 ∨ 𝜃 | 𝑧.𝜃 | 𝑃⊲⊳𝜆 [𝜃1𝑈 𝜃2],
where 𝑎 ∈ 𝐴𝑃 is an atomic proposition, 𝜁 a DBM zone constraint, 𝑧

a formula clock, and 𝜆 ∈ [0, 1] a probability threshold.

Let PTOTL
0
denote the 0-fragment of PTOTL, i.e., the set of

formulas where the sabotage budget 𝑛 is fixed to 0. Let At(𝜁) denote
the set of atomic DBM constraints composing 𝜁 (each of the form

𝑥 ∼ 𝑐 or 𝑥 − 𝑦 ∼ 𝑐) and 𝜒 the next operator where 𝜒 ::=

⃝disc 𝜑 | 𝜓 . We define a mapping (·)• from PTCTL formulas to

PTOTL
0
as follows:

(𝑎)• = 𝑎

(𝜁)• =
∧

𝜒∈At(𝜁) 𝜒

(¬𝜃)• = ¬(𝜃)•
(𝜃1 ∨ 𝜃2)• = ¬

(
¬(𝜃1)• ∧ ¬(𝜃2)•

)
(𝑧.𝜃)• = 𝑗 .(𝜃)•(

𝑃⊲⊳𝜆 [𝜃1𝑈𝜃2]
)•

= ⟨ ⊲⊳𝜆
0
⟩
(
(𝜃1)• 𝑈 (𝜃2)•

)
.

Disjunction is expressed via De Morgan’s law, since ∨ isn’t a prim-

itive operator of PTOTL. We shows that every PTCTL formula

translates to PTOTL
0
. Conversely, PTOTL

0
without the next opera-

tor, matches PTCTL in expressiveness.

Theorem 6.1. For every WPTAM, symbolic state 𝑠 , and PTCTL

formula 𝜃 , we have:

M, 𝑠 |=PTCTL 𝜃 iff M, 𝑠 |=
PTOTL

0\𝜒 (𝜃)• .

Discussion. This result shows that PTCTL is fully embeddable

into the 0-fragment of PTOTL. However, PTOTL is strictly more ex-

pressive: (i) positive budgets 𝑛>0 capture cost-bounded obstruction

absent from PTCTL; and (ii) even for 𝑛=0, the probabilistic next has

no counterpart in PTCTL.

6.2 PTOTL vs PTATL
We contrast PTOTL with PTATL [37], which extends ATL with

dense-time bounds and probabilistic thresholds for coalitions [14,

16, 25]. These logics differ in their primitives: PTATL quantifies

coalition power in concurrent timed games, while PTOTL specifies

cost-bounded transition disabling in timing via freeze with only 2

agents. We focus on single-layer PTATL formulas with no nested

coalition modalities, and we don’t claim completeness. We recall

PTATL syntax and give a term-by-term comparison with PTOTL.

𝜑 ::= 𝑝 | ¬𝜑 | 𝜑 ∧ 𝜑 | ⟨⟨𝐴⟩⟩⊲⊳𝑧 (𝜑 𝑈𝐼 𝜑) | ⟨⟨𝐴⟩⟩⊲⊳𝑧 (𝜑 𝑅𝐼 𝜑),

where 𝑝 ∈ 𝐴𝑃 is an atomic proposition, 𝐴 ⊆ A is a coalition,

⊲⊳∈ {<,≤,≥, >}, 𝑧 ∈ [0, 1], and 𝐼 ⊆ R≥0 is a time interval.

To relate these logics (coalition→sabotage), we define (·)† map-

ping PTATL to a PTOTL fragment by replacing coalition power

with per-step, cost-bounded sabotage. Choose 𝐵 : 2
A→N giving

each coalition 𝐴 a budget 𝐵(𝐴), and encode time bounds with a

freeze clock 𝑗 :

(𝑝)† = 𝑝
(¬𝜑)† = ¬(𝜑)†

(𝜑1 ∧ 𝜑2)† = (𝜑1)† ∧ (𝜑2)†(
⟨⟨𝐴⟩⟩⊲⊳𝑧 (𝜑1 𝑈 [𝑎,𝑏] 𝜑2)

)†
= 𝑗 . ⟨ ⊲⊳𝑧

𝐵 (𝐴) ⟩
(
(𝜑1)† 𝑈

(
(𝜑2)† ∧ 𝑎 ≤ 𝑗 ≤ 𝑏

))
(
⟨⟨𝐴⟩⟩⊲⊳𝑧 (𝜑1 𝑈 (𝑎,𝑏] 𝜑2)

)†
= 𝑗 . ⟨ ⊲⊳𝑧

𝐵 (𝐴) ⟩
(
(𝜑1)† 𝑈

(
(𝜑2)† ∧ 𝑎 < 𝑗 ≤ 𝑏

))
(⟨⟨𝐴⟩⟩⊲⊳𝑧 (𝜑1 𝑅𝐼 𝜑2))† = 𝑗 . ⟨ ⊲⊳𝑧

𝐵 (𝐴) ⟩
(
(𝜑1)† 𝑅

(
(𝜑2)† ∧ 𝑗 ∈ 𝐼

))
Here, 𝑗 ∈ 𝐼 denotes the guard, and 𝑗 . aligns the dense-time win-

dow for𝑈 /𝑅. We use a single sabotage envelope per formula; nested

coalitions are over-approximated bottom-up. Under assumptions

(A1) joint actions compiled to transitions, (A2) coalition power

over-approximated by per-step disabling up to 𝐵(𝐴), and (A3) time

bounds encoded by 𝑗 , one-way soundness holds:

M |=PTATL 𝜙 ⇒ M |=PTOTL 𝜙
† .

Completeness does not hold in general; coalition quantification and

imperfect information in PTATL have no primitive in PTOTL.

Theorem 6.2 (Incomparability). LPTOTL and LPTATL are incom-

parable but complementary: there exist formulas expressible in PTOTL

but not in PTATL, and vice versa.

Discussion. For MTD style defenses, where operators disable

transitions under per-step budgets within timed windows, PTOTL

gives concise residual-risk bounds and constructive witnesses.

7 CONCLUSION AND FUTUREWORK
We introduced PTOTL, a logic overWPTA that unifies dense time,

probabilistic thresholds, and cost-bounded transition disabling un-

der sub-stochastic semantics. We provided syntax/semantics and a

symbolic zone-based model checker via masked predecessors and

fixpoints. Complexity matches classical bounds PSPACE-complete,

we show that PTOTL extend PTCTL and is complementary with

PTATL. An automotive case study shows concisely capturesMTD
claims—time-bounded, budgeted reduction of compromise proba-

bility with quantitative guarantees and constructive witnesses.

Future work includes considering cumulative global budgets and

introducing optimizations; multiple interacting sabotage envelopes

to approximate coalitional behaviour; imperfect information and

bounded recall, using sound approximations or hybrid methods

[13, 17, 28, 30, 31]; quantitative and parametric synthesis; and a ref-

erence implementation integrated into VITAMIN [32] for empirical

evaluation on realistic security scenarios.

ACKNOWLEDGMENTS
This work is conducted within the Intelligent Cybersecurity for

Mobility Systems (ICMS) research chair at Télécom Paris, founded

by Ampere, BCG, IRT SystemX, Renault, Solent, Thales, Valeo, and

ZF Group, and supported by the Fondation Mines-Télécom.

ACKNOWLEDGMENTS
Phrase de financement chair ICMS + remerciement + ...

REFERENCES
[1] R. Alur. (1991). Techniques for Automatic Verification of Real-Time Systems. Ph.D.

Dissertation. Stanford University.

[2] R. Alur and D. Dill. 1994. A theory of timed automata. Theoretical computer

science 126, 2 (1994), 183–235.

[3] Rajeev Alur and David L. Dill. 1994. A theory of timed automata. Theoretical

Computer Science 126, 2 (April 1994), 183–235. https://doi.org/10.1016/0304-

3975(94)90010-8

[4] R. Alur, T.A. Henzinger, and O. Kupferman. 2002. Alternating-time temporal

logic. J. ACM 49, 5 (2002), 672–713.

[5] R. Alur, S. La Torre, and G. J. Pappas. 2001. Optimal Paths in Weighted Timed

Automata. In Computation and Control. 49–62.

[6] Rajeev Alur, Salvatore La Torre, and George J. Pappas. 2001. Optimal Paths in

Weighted Timed Automata. Springer Berlin Heidelberg, 49–62. https://doi.org/

10.1007/3-540-45351-2_8

[7] Étienne André. 2021. IMITATOR 3: Synthesis of Timing Parameters Beyond Decid-

ability. Springer International Publishing, 552–565. https://doi.org/10.1007/978-

3-030-81685-8_26

[8] J. Arias, W. Jamroga, W. Penczek, L. Petrucci, and T. Sidoruk. (2023). Strategic

(Timed) Computation Tree Logic. arXiv:2302.13405 [cs.LO]

[9] G. Aucher, J. Van Benthem, and D. Grossi. 2018. Modal logics of sabotage revisited.

Journal of Logic and Computation 28, 2 (2018), 269 – 303. https://doi.org/10.1093/

logcom/exx034

[10] Maxime Ayrault. 2022. Dynamic Defenses for Improved Resilience of Connected

Cars. In Dynamic Defenses for Improved Resilience of Connected Cars. HAL. https:

//theses.hal.science/tel-04498523/file/107694_AYRAULT_2022_archivage.pdf

[11] Maxime Ayrault, Ulrich Kühne, and Étienne Borde. 2022. Finding Optimal Moving

Target Defense Strategies: A Resilience Booster for Connected Cars. Information

13, 5 (May 2022), 242. https://doi.org/10.3390/info13050242

[12] Christel Baier and Joost-Pieter Katoen. 2008. Principles of model checking. MIT

Press.

[13] F. Belardinelli, A. Ferrando, and V. Malvone. 2023. An abstraction-refinement

framework for verifying strategic properties in multi-agent systems with imper-

fect information. Artif. Intell. 316 (2023), 103847. https://doi.org/10.1016/j.artint.

2022.103847

[14] Francesco Belardinelli, Wojciech Jamroga, Damian Kurpiewski, Vadim Malvone,

and Aniello Murano. 2019. Strategy Logic with Simple Goals: Tractable Reasoning

about Strategies. In Proceedings of the Twenty-Eighth International Joint Conference

on Artificial Intelligence (IJCAI-2019). International Joint Conferences on Artificial

Intelligence Organization, 88–94. https://doi.org/10.24963/ijcai.2019/13

[15] Francesco Belardinelli, Wojciech Jamroga, Munyque Mittelmann, and Aniello

Murano. 2023. Strategic Abilities of Forgetful Agents in Stochastic Environments.

arXiv:2310.17240 [cs.MA] https://arxiv.org/abs/2310.17240

[16] Francesco Belardinelli, Wojtek Jamroga, Munyque Mittelmann, and Aniello Mu-

rano. 2024. Verification of Stochastic Multi-Agent Systems with Forgetful Strate-

gies. In Proceedings of the 23rd International Conference on Autonomous Agents and

Multiagent Systems (Auckland, New Zealand) (AAMAS ’24). International Foun-

dation for Autonomous Agents and Multiagent Systems, Richland, SC, 160–169.

[17] F. Belardinelli, A. Lomuscio, V. Malvone, and E. Yu. 2022. Approximating Perfect

Recall when Model Checking Strategic Abilities: Theory and Applications. J.

Artif. Intell. Res. 73 (2022), 897–932. https://doi.org/10.1613/jair.1.12539

[18] J. Bengtsson and W. Yi. 2004. Timed Automata: Semantics, Algorithms and Tools.

In Lectures on Concurrency and Petri Nets. 87–124. https://doi.org/10.1007/b98282

[19] P. Bouyer, U. Fahrenberg, K. G. Larsen, and N. Markey. 2011. Quantitative analysis

of real-time systems using priced timed automata. Communications of the ACM

(2011). https://doi.org/10.1145/1995376.1995396

[20] D. Catta, J. Leneutre, and V. Malvone. 2023. Attack Graphs & Subset Sabotage

Games. Intelligenza Artificiale 17, 1 (2023), 77–88. https://doi.org/10.3233/IA-

221080

[21] D. Catta, J. Leneutre, and V. Malvone. 2023. Obstruction Logic: A Strategic

Temporal Logic to Reason About Dynamic Game Models. In ECAI 2023 - 26th

European Conference on Artificial Intelligence. https://doi.org/10.3233/FAIA230292

[22] K. Chatterjee, T. Henzinger, and N. Piterman. 2007. Strategy Logic. In CONCUR07.

59–73.

[23] Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson,

Hovav Shacham, Stefan Savage, Karl Koscher, Alexei Czeskis, Franziska

Roesner, and Tadayoshi Kohno. 2011. Comprehensive Experimental

Analyses of Automotive Attack Surfaces. In 20th USENIX Security Sym-

posium (USENIX Security 11). USENIX Association, San Francisco, CA.

https://www.usenix.org/conference/usenix-security-11/comprehensive-

experimental-analyses-automotive-attack-surfaces

[24] Taolue Chen, Vojtěch Forejt, Marta Kwiatkowska, David Parker, and Aistis

Simaitis. 2013. Automatic verification of competitive stochastic systems. Formal

Methods in System Design 43, 1 (Feb. 2013), 61–92. https://doi.org/10.1007/s10703-

013-0183-7

[25] Taolue Chen and Jian Lu. 2007. Probabilistic Alternating-time Temporal Logic

and Model Checking Algorithm. In Fourth International Conference on Fuzzy

Systems and Knowledge Discovery (FSKD 2007), Vol. 2. 35–39. https://doi.org/10.

1109/FSKD.2007.458

[26] J. Cho, D. Sharma, H. Alavizadeh, S. Yoon, Noam B-A., T. Moore, Dan Kim, H.

Lim, and F. Nelson. 2020. Toward Proactive, Adaptive Defense: A Survey on

Moving Target Defense. IEEE Communications Surveys & Tutorials (2020).

[27] E. M. Clarke, O. Grumberg, and D. A. Peled. (1999). Model Checking. The MIT

Press, Cambridge, Massachusetts.

[28] C. Dima and F. L. Tiplea. 2011. Model-checking ATL under Imperfect Information

and Perfect Recall Semantics is Undecidable. CoRR (2011). http://arxiv.org/abs/

1102.4225

[29] M. Faella, S. La Torre, and A. Murano. 2014. Automata-theoretic decision of timed

games. Theor. Comput. Sci. 515 (2014), 46–63. https://doi.org/10.1016/J.TCS.2013.

08.021

[30] A. Ferrando and V. Malvone. 2022. Towards the Combination of Model Checking

and Runtime Verification onMulti-agent Systems. In 20th International Conference,

PAAMS 2022. https://doi.org/10.1007/978-3-031-18192-4_12

[31] A. Ferrando and V.Malvone. 2023. Towards the Verification of Strategic Properties

in Multi-Agent Systems with Imperfect Information. In Proceedings of the 2023

International Conference on Autonomous Agents and Multiagent Systems, AAMAS

2023. https://doi.org/10.5555/3545946.3598713

[32] Angelo Ferrando and Vadim Malvone. 2025. VITAMIN: VerIficaTion of A MultI

ageNt system. In Proceedings of the 24th International Conference on Autonomous

Agents and Multiagent Systems (Detroit, MI, USA) (AAMAS ’25). International

Foundation for Autonomous Agents and Multiagent Systems, Richland, SC,

3023–3025.

[33] T. A Henzinger, P-H. Ho, and H. Wong-Toi. 1997. HyTech: A model checker

for hybrid systems. In Computer Aided Verification: 9th International Conference,

CAV’97.

[34] T. A. Henzinger and V. S. Prabhu. 2006. Timed Alternating-Time Temporal

Logic. In 4th International Conferences on Formal Modelling and Analysis of Timed

Systems (FORMATS’06).

[35] Karel Horák and Branislav Bošanský. 2019. Solving Partially Observable Sto-

chastic Games with Public Observations. Proceedings of the AAAI Conference on

Artificial Intelligence 33, 01 (July 2019), 2029–2036. https://doi.org/10.1609/aaai.

v33i01.33012029

[36] Xiaowei Huang, Kaile Su, and Chenyi Zhang. 2012. Probabilistic Alternating-

Time Temporal Logic of Incomplete Information and Synchronous Perfect Recall.

Proceedings of the National Conference on Artificial Intelligence 1.

[37] Wojciech Jamroga, Marta Kwiatkowska, Wojciech Penczek, Laure Petrucci, and

Teofil Sidoruk. 2025. Probabilistic Timed ATL. In Proceedings of the 24th In-

ternational Conference on Autonomous Agents and Multiagent Systems (Detroit,

MI, USA) (AAMAS ’25). International Foundation for Autonomous Agents and

Multiagent Systems, Richland, SC, 1051–1059.

[38] Marcin Jurdzinski, Francois Laroussinie, and Jeremy Sproston. 2008. Model

Checking Probabilistic Timed Automata with One or Two Clocks. (2008). https:

//doi.org/10.48550/ARXIV.0809.0060

[39] K. Kaynar. 2016. A Taxonomy for Attack Graph Generation and Usage in Network

Security. J. Inf. Secur. Appl. 29, C (2016), 27–56.

https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1007/3-540-45351-2_8
https://doi.org/10.1007/3-540-45351-2_8
https://doi.org/10.1007/978-3-030-81685-8_26
https://doi.org/10.1007/978-3-030-81685-8_26
https://arxiv.org/abs/2302.13405
https://doi.org/10.1093/logcom/exx034
https://doi.org/10.1093/logcom/exx034
https://theses.hal.science/tel-04498523/file/107694_AYRAULT_2022_archivage.pdf
https://theses.hal.science/tel-04498523/file/107694_AYRAULT_2022_archivage.pdf
https://doi.org/10.3390/info13050242
https://doi.org/10.1016/j.artint.2022.103847
https://doi.org/10.1016/j.artint.2022.103847
https://doi.org/10.24963/ijcai.2019/13
https://arxiv.org/abs/2310.17240
https://arxiv.org/abs/2310.17240
https://doi.org/10.1613/jair.1.12539
https://doi.org/10.1007/b98282
https://doi.org/10.1145/1995376.1995396
https://doi.org/10.3233/IA-221080
https://doi.org/10.3233/IA-221080
https://doi.org/10.3233/FAIA230292
https://www.usenix.org/conference/usenix-security-11/comprehensive-experimental-analyses-automotive-attack-surfaces
https://www.usenix.org/conference/usenix-security-11/comprehensive-experimental-analyses-automotive-attack-surfaces
https://doi.org/10.1007/s10703-013-0183-7
https://doi.org/10.1007/s10703-013-0183-7
https://doi.org/10.1109/FSKD.2007.458
https://doi.org/10.1109/FSKD.2007.458
http://arxiv.org/abs/1102.4225
http://arxiv.org/abs/1102.4225
https://doi.org/10.1016/J.TCS.2013.08.021
https://doi.org/10.1016/J.TCS.2013.08.021
https://doi.org/10.1007/978-3-031-18192-4_12
https://doi.org/10.5555/3545946.3598713
https://doi.org/10.1609/aaai.v33i01.33012029
https://doi.org/10.1609/aaai.v33i01.33012029
https://doi.org/10.48550/ARXIV.0809.0060
https://doi.org/10.48550/ARXIV.0809.0060

[40] Samantha Kleinberg. 2012. Causality, Probability, and Time. Cambridge University

Press, 241–250.

[41] M. Kwiatkowska, G. Norman, and D. Parker. 2011. PRISM 4.0: Verification of Prob-

abilistic Real-time Systems. In Proc. 23rd International Conference on Computer

Aided Verification (CAV’11) (LNCS, Vol. 6806), G. Gopalakrishnan and S. Qadeer

(Eds.). Springer, 585–591.

[42] Marta Kwiatkowska, Gethin Norman, David Parker, and Gabriel Santos. 2021.

Automatic verification of concurrent stochastic systems. Formal Methods in

System Design 58, 1–2 (Jan. 2021), 188–250. https://doi.org/10.1007/s10703-020-

00356-y

[43] F. Laroussinie, N. Markey, and G. Oreiby. 2006. Model-Checking Timed ATL

for Durational Concurrent Game Structures. In Formal Modeling and Analysis of

Timed Systems, 4th International Conference, FORMATS 2006. https://doi.org/10.

1007/11867340_18

[44] Jean Leneutre, Vadim Malvone, and James Ortiz. 2024. Probabilistic Obstruction

Temporal Logic: a Probabilistic Logic to Reason about Dynamic Models. https:

//doi.org/10.48550/ARXIV.2411.00025

[45] Jean Leneutre, Vadim Malvone, and James Ortiz. 2025. Jean Leneutre, Vadim

Malvone, and James Ortiz. 2025. Timed Obstruction Logic: A Timed Approach to

Dynamic Game Reasoning IFAAMAS.

[46] C. Löding and P. Rohde. 2003. Model Checking and Satisfiability for Sabotage

Modal Logic. In FST TCS 2003: Foundations of Software Technology and Theoretical

Computer Science. https://doi.org/10.1007/978-3-540-24597-1_26

[47] Hector Marco-Gisbert and Ismael Ripoll Ripoll. 2019. Address Space Layout

Randomization Next Generation. Applied Sciences 9, 14 (2019).

[48] C. Miller and C. Valasek. 2015. Comprehensive Experimental Analyses of Auto-

motive Attack Surfaces. In Remote Exploitation of an Unaltered Passenger Vehicle.

Black Hat USA. USENIX Association. https://www.usenix.org/legacy/events/

sec11/tech/full_papers/Checkoway.pdf

[49] Gethin Norman, David Parker, and Jeremy Sproston. 2012. Model checking for

probabilistic timed automata. Formal Methods in System Design 43, 2 (Oct. 2012),

164–190. https://doi.org/10.1007/s10703-012-0177-x

[50] G. D. Plotkin. 1981. A Structural Approach to Operational Semantics. Tech-

nical Report DAIMI FN-19. University of Aarhus. http://citeseer.ist.psu.edu/

plotkin81structural.html

[51] Bradley Potteiger, Zhenkai Zhang, Long Cheng, and Xenofon Koutsoukos. [n.d.].

A Tutorial on Moving Target Defense Approaches within Automotive Cyber-

Physical Systems. Volume 2 - 2021 ([n. d.]). https://doi.org/10.3389/ffutr.2021.

792573

[52] P.Y. Schobbens. 2004. Alternating-Time Logic with Imperfect Recall. ENTCS 85,

2 (2004), 82–93.

[53] A. Di Stasio, P. D. Lambiase, V. Malvone, and A. Murano. 2018. Dynamic Escape

Game. In Proceedings of the 17th International Conference on Autonomous Agents

and MultiAgent Systems, AAMAS 2018. http://dl.acm.org/citation.cfm?id=3237984

[54] Bhosale Akshay Tanaji and Sayak Roychowdhury. 2024. A Survey of Cyberse-

curity Challenges and Mitigation Techniques for Connected and Autonomous

Vehicles. IEEE Transactions on Intelligent Vehicles (2024), 1–18. https://doi.org/

10.1109/TIV.2024.3493938

[55] J. van Benthem. 2005. An Essay on Sabotage and Obstruction. Springer Berlin

Heidelberg. https://doi.org/10.1007/978-3-540-32254-2_16

[56] Bryan C. Ward, Steven R. Gomez, Richard W. Skowyra, David Bigelow, Jason

Martin, James Landry, and Hamed Okhravi. 2018. Survey of Cyber Moving

Targets Second Edition. https://api.semanticscholar.org/CorpusID:70305693

[57] Rui Yan, Gabriel Santos, Gethin Norman, David Parker, and Marta Kwiatkowska.

2024. Partially Observable Stochastic Games with Neural Perception Mechanisms.

In Formal Methods: 26th International Symposium, FM 2024, Milan, Italy, September

9–13, 2024, Proceedings, Part I (Milan, Italy). Springer-Verlag, Berlin, Heidelberg,

363–380. https://doi.org/10.1007/978-3-031-71162-6_19

[58] Jianjun Zheng and Akbar Siami Namin. 2019. A Survey on the Moving Target

Defense Strategies: An Architectural Perspective. Journal of Computer Science and

Technology 34, 1 (Jan. 2019), 207–233. https://doi.org/10.1007/s11390-019-1906-z

https://doi.org/10.1007/s10703-020-00356-y
https://doi.org/10.1007/s10703-020-00356-y
https://doi.org/10.1007/11867340_18
https://doi.org/10.1007/11867340_18
https://doi.org/10.48550/ARXIV.2411.00025
https://doi.org/10.48550/ARXIV.2411.00025
https://doi.org/10.1007/978-3-540-24597-1_26
https://www.usenix.org/legacy/events/sec11/tech/full_papers/Checkoway.pdf
https://www.usenix.org/legacy/events/sec11/tech/full_papers/Checkoway.pdf
https://doi.org/10.1007/s10703-012-0177-x
http://citeseer.ist.psu.edu/plotkin81structural.html
http://citeseer.ist.psu.edu/plotkin81structural.html
https://doi.org/10.3389/ffutr.2021.792573
https://doi.org/10.3389/ffutr.2021.792573
http://dl.acm.org/citation.cfm?id=3237984
https://doi.org/10.1109/TIV.2024.3493938
https://doi.org/10.1109/TIV.2024.3493938
https://doi.org/10.1007/978-3-540-32254-2_16
https://api.semanticscholar.org/CorpusID:70305693
https://doi.org/10.1007/978-3-031-71162-6_19
https://doi.org/10.1007/s11390-019-1906-z

	Abstract
	1 Introduction
	2 Background
	2.1 General Concepts
	2.2 Weighted Timed Automata
	2.3 Predecessor operator and Zone Graph

	3 Model and Logic
	4 Model Checking
	5 Case Study: Automotive MTD
	6 Comparison with existing logic
	6.1 PTOTL vs PTCTL
	6.2 PTOTL vs PTATL

	7 Conclusion and Future Work
	Acknowledgments
	References

