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ABSTRACT

Verifying strategic behaviour in real-time multi-agent systems un-
der uncertainty is vital for safety- and security-critical domains.
Existing obstruction logics treat either adversarial timing (TOL) or
probabilistic risk (POTL), but real scenarios require both. We intro-
duce Probabilistic Timed Obstruction Temporal Logic (PTOTL), which
unifies dense time, probabilities, and cost-bounded obstruction for
real-time security games. Interpreted over Weighted Probabilistic
Timed Automaton (WPTA), PTOTL models attacker—defender in-
teractions where discrete actions and time elapse evolve, and the
defender may disable transitions under a per-step budget. We give
syntax and semantics, and a symbolic model-checking procedure on
a probabilistic zone graph. Despite added strategic and probabilistic
features, verification remains PSPACE, not highter than PTCTL or
PTATL while offering greater temporal expressiveness. An auto-
motive Moving Target Defense (MTD) case study demonstrates
practicality as a specification and verification language.
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1 INTRODUCTION

Cyber—physical-system (CPS) requires guarantees under timing,
stochasticity, and purposeful interference, particularly when im-
plementing security measures. With autonomous, intelligent, and
asynchronous components modeled as Multi-Agent Systems (MAS),
strategic interactions become explicit while preserving clocks, prob-
abilities, and resource limits. Timed automata with zone abstrac-
tions capture dense time [3], and probabilistic model checking
quantifies risk on Markov decision processes (MDP) and Probabilistic
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Timed Automata (PTA) [12, 49]. In this context, security questions
are strategic: which agents can enforce which objectives within a
deadline. Alternating-time Temporal Logic (ATL) formalizes coali-
tional ability [4] to work on these strategic conditions; timed TATL
adds deadlines [34]; and Strategic Timed CTL (STCTL) extends CTL
with strategy binders under dense time [8]. Despite differences,
these logics reason about time-bounded ability on a fixed arena; in
particular, they characterize attacker choices, not how a defender
can reshape the arena under operational constraints. We therefore
use Attack graphs (AG) as the concrete modeling layer for attacker
behavior, while reserving the logical layer for specification and
verification of defender objectives. AG support reasoning about
security scenarios by encoding multi-stage intrusions as paths over
conditions and exploits [39]. While AG handle reachability, cut
sets, and time-to-compromise, they are static: they assume a fixed
configuration which is a real problem given the evolution of attacks
in modern campaigns, where attackers exploit knowledge of these
static defenses. To address this, dynamic maneuver becomes essen-
tial: periodic changes in topology, or exposure invalidate routes
learned by an attacker within security boundaries, increase the
attacker’s per-step cost, and devalue reconnaissance, all under real-
time CPS constraints. Moving Target Defense (MTD) techniques
operate this shift via time-bounded reconfiguration, isolation, route
randomization, and service relocation to truncate or delay attack
paths and reduce compromise probabilities [26, 47, 56], under con-
straints. However, without a principled model, the orchestration of
these techniques remains heuristic. We must therefore be able to for-
mally specify, from the defender’s all this objectives under explicit
constraints, e.g., “within T time units the probability of reaching
a critical asset remains below a when at most n actions can be
inhibited per step”. This requires evolving AG where suppressing
an exploit opportunity corresponds to removing an edge and elimi-
nating its outcome. Obstruction and sabotage logics formalize this
dynamic action view: a player may delete or disable a bounded set
of edges and reason about residual paths [9, 20, 46, 55]. Yet timed
strategic logics (TATL, STCTL) lack cost-bounded edge disabling
with explicit accounting of removed probability mass [8, 34]. Prob-
abilistic real-time logics such as Probabilistic Timed CTL (PTCTL)
quantify timed behaviors of PTA but keep transitions immutable
[38, 49]. Recent obstruction logics treat dense time Timed Obstruc-
tion Logic (TOL) or probabilities Probabilistic Obstruction Temporal
Logic (POTL) in isolation, not their combination [21, 44, 45]. We



therefore need a logic that unifies dense time, quantitative thresh-
olds, and real-time cost-bounded obstruction.

To fill this gap, we propose PTOTL, interpreted over a WPTA that
extend PTA with per-transition sabotage costs. PTOTL uses a single
top-level sabotage binder ranging over memoryless defender strate-
gies that, at each step, may disable a subset of currently enabled
edges whose cumulative cost does not exceed a per-step budget
that resets after each jump. Dense-time windows are expressed
with freeze clocks, and path modalities include a probabilistic next
and dense-time until/release. Probabilities are evaluated on sub-
stochastic successor kernels—disabled outcomes drop their mass
rather than renormalize reflecting AG/MTD practice. In short, AG
model the attacker’s feasible progress in the plant, while PTOTL
specifies the defender’s guarantees and their constraints. We work
in a perfect-information setting with one sabotage envelope to
retain decidability while capturing the engineering intent.

In addition, we compare PTOTL with PTCTL and Probabilistic
Timed ATL (PTATL). PTOTL extends PTCTL [38] by obstruction ca-
pability. Relative to PTATL, which quantifies coalitional strategies
on fixed arenas, PTOTL targets edge-centric disabling under explicit
budgets; the formalisms are complementary and incomparable in
general, and we provide a sound coalition-to-sabotage abstraction
on compiled models [14, 16, 25, 36, 37]. Furthermore, we prove that
the model checking is PSPACE-complete for one clock by tight
reductions with PTCTL [38, 49]. Finally, we evaluate PTOTL on an
automotive case study grounded in documented in-vehicle attacks
[23, 48, 51], using PTOTL specifications to assess moving-target
defenses under time and probability constraints, yielding quantita-
tive guarantees on bounded-time reachability, and demonstrating
practicality to verify the security level and the robustness of these
MTD techniques against new threats, to improve safety-critical
CPS and support risk—performance trade-offs.

Related Work. Timed and probabilistic verification build on timed
automata with zone abstractions and on probabilistic model check-
ing for MDP/CTMC/PTA, with mature reductions and tools (e.g.,
PRISM) [1, 3, 12, 27, 41, 49]. Non-strategic real-time probabilis-
tic logics (e.g., TCTL/PTCTL) use PTA abstractions [49]. Strategic
verification originates from ATL/ATL" and their refinements with
epistemic operators, recall, and strategy contexts, as well as Strat-
egy Logic [4, 22, 43, 52]. In real time, timed game automata and
the logics TATL and STCTL extend strategic reasoning with dense
time and map expressiveness/decidability frontiers [8, 19, 29, 34].
Probabilistic strategic variants quantify stochastic coalition success:
PATL/PATL”* and PTATL integrate probabilities (and, for PTATL,
dense time), with model checking under memoryless imperfect
information and IMITATOR/PRISM workflows [7, 24, 25, 37, 41].
Related work studies equilibria and controller synthesis in prob-
abilistic real-time and partially observable games [15, 35, 42, 57].
Edge-centric interference has been formalised via Sabotage Modal
Logic (SML) and its subset variant (SSML), and by Dynamic Escape
Games for weighted reachability [9, 20, 46, 53, 55]. Obstruction
Logic and its timed/probabilistic extensions (TOL, POTL) add tem-
poral operators, budgets, and quantitative thresholds [21, 44, 45],
but treat dense time or probability in isolation rather than over PTA.
As an application backdrop, attack graphs (AG) support multi-stage
intrusion analysis, while surveys of Moving Target Defense (MTD)
document dynamic reconfiguration (routing/ACL/policy rotation,

service relocation) to reshape feasible paths under resource and
timing constraints [26, 39, 47, 56]. These lines motivate formalisms
that reason about time-bounded, budgeted edge disabling under
uncertainty on real-time probabilistic models.

Structure of the work. The paper is structured as follows: Sec-
tion 2 covers background. Section 3 defines PTOTL. Section 4
gives the model-checking algorithm and complexity. Section 5
presents the MTD automotive case study. Section 6 relates PTOTL
to PTCTL/PTATL. Section 7 explain future work and concludes.

2 BACKGROUND

In this section, we discuss the basic notions used in the technical
part, and begin with some general concepts. Let N be the set of
natural numbers containing 0 as N, R, the set of non-negative
reals and Z the set of integers. Let X and Y be two sets and |X]|
denotes its cardinality. The set operations of intersection, union,
complementation, set difference, and Cartesian product are denoted
XNY,XUY, )_(,X \ 'Y, and X X Y, respectively. Inclusion and strict
inclusion are denoted X C Y and X C Y, respectively. The empty
set is denoted 0. Let # = x1,...,x, be a finite sequence, last ()
denotes the last element x,, of 7.

2.1 General Concepts

Probability Distribution and Space. Let Q be a finite set and p :
Q — [0, 1] be a probability distribution function over Q such that
2qeo #(q) = 1. We denote by D(Q) the set of all such distributions
over Q. For a given p € D(Q), supp(p) = {q € Q | u(q) > 0} is
called the support of u. The standard notation of a probability space
is a triple (Q, 7, Pr), where Q is a sample space that represents all
possible outcomes, ¥ C 2%isa o-algebra over Q, i.e., it includes
the empty subset, and it is closed under countable unions and
complement, and Pr: # — [0, 1] is a probability measure over
(Q, F). We denote the set of all finite and infinite sequences of
elements of Q by O* and Q*, respectively.

Kripke Structure and Markov Chain. Here, we will formally de-
fine Kripke structure (KS) and Markov Chain (MC).

DEFINITION 1 (KRIPKE STRUCTURE). A Kripke Structure (KS) over a
set Ap of atomic propositions is a tuple K = {(Q, qo, R, L) where Q is a
finite, non-empty set of states, qo € Q is the initial state, R C QX Q isa
binary serial relation over Q (i.e., for any q € Q thereisaq’ € Q such
that (q,q’) € R) and L : Q — 2P is a labeling function assigning a
set of atomic propositions to any state q € Q.

DEFINITION 2 (MARKOV CHAIN). A Markov Chain (MC) is a pair
H = (Q,P) where Q is a (countable) set of states and P: Q x Q —
[0, 1] is a transition probability function such that for all state q € Q,
qeoP(q,q") = 1. If Q is finite, we consider P as a transition matrix.

A KS can be extended via MC [40] to define Probabilistic Kripke
Structure (PKS) as follows.

DEFINITION 3 (PKS). A PKS over a set Ap of atomic propositions
is a tuple G = (Q, qo, P, L) where (Q,P) is a MC, qo is the initial state
and £ : Q — 2™ is a labeling function assigning a set of atomic
propositions to any state q € Q.

Path. A (finite or infinite) path over G is a sequence 7 = qq, 1, q2,
... starting at the initial state gy such that P(q;, qi+1) > 0 for all



i € N. We write 7; for the i-th state g;, 7<; for the prefix qq, . . ., gi,
and 7>; for the suffix q;, qi+1, . . .. Let Paths;q be the set of non-
empty finite paths from g, and Paths(, o the set of infinite paths
from q. A history is any finite prefix of a path; H denotes the set of
histories and last(h) the last state of h.

Cylinder. We measure probabilities of path sets via the standard
cylinder construction. For each g € Q, let (Qq, For Prqg) be the
probability space where Q is the set of infinite paths starting at g
and ¥ is the o-algebra generated by cylinder sets. For a finite path
& =4qo,q1--->qn, its cylinder is Cyl(%) = {7 € Paths‘é,qo | 7 €
Prefix(r) }. The measure on cylinders is defined b Pr‘g)(Cyl(ﬁ)) =

[175"' P(gi, gi+1), and it extends uniquely from cylinders to F, (we
keep the notation Pr?). Not every subset of paths is measurable, but
all sets considered here are, see [12] for measure-theoretic details.

Predecessors and Successors. Let G be a PKS and q € Q one of
its states, pre(q) denotes the set of predecessors of g, i.e., pre(q) =
{q¢’ € O | P(q’,q) > 0}. Similarly, post(g) denotes the set of succes-
sorsof g, i.e., post(q) = {q’ € Q | P(q,q") > 0}, and E(q) denotes its
outgoing edges E(q) = {e € OXQ | e = (g, ¢’) for some ¢’ € Q and
P(q.q") > 0}.

Here, we show Probabilistic Obstruction Temporal Structure (POTS)
an extension of PKS [44], enabling weighted properties in a model.

DEFINITION 4 (POTS). A POTS (model for short) is given by a tuple
M =(G,C) where G = (Q,qo, P, L) isa PKSandC : Q x Q — N is
a function assigning to any pairs (q,q’) a natural numbern € Nx.

2.2 Weighted Timed Automata

We now explore the relation between WTS and Weighted Timed
Automata (WTA) [5]. A WTA is an extension of a TA [2] with
weight/cost information at both locations and edges, and it can be
used to address several interesting questions [5, 19].

DEFINITION 5 (CLOCK CONSTRAINTS AND INVARIANTS). Let X be
a finite set of variables over R, called clocks. The set ®* (X)) of clock
constraints over the set of clocks X is given by the following grammar:
p:=true|x~clx—y~cld A ¢
where x,y € X, ce N,and~ € {<, >, <, >, =}.

The clock constraints of the form true, x ~ care called non-diagonal
constraints and those of the form x — y ~ ¢ are called diagonal
constraints. The set of non-diagonal constraints over X is denoted
by ®(X). Clock invariants A(X) are constraints where ~€ {<, <}.

DEFINITION 6 (CLOCK VALUATIONS). Given a finite set of clocks X,
a clock valuation function, v : X — Ry assigning to each clock x €
X a non-negative value v(x). We denote R§O the set of all valuations.
For a clock valuation v € R}fo and a time value d € R, v + d is the
valuation satisfied by (v + d)(x) = v(x) + d for each x € X. Given
a clock subset Y C X, we denote v[Y « 0] the valuation defined as

follows: v[Y « 0](x) =0 ifx € Y and v[Y « 0] (x) = v(x) else.

Here, we only consider the weight/cost in the edges (transitions) in
our WTA. Formally, a WTA is defined as follows [5].

DEFINITION 7 (WTA). Let X be a finite set of clocks and Ap a
finite set of atoms. A WTA is a tuple A = (L, 1, X, 2, T, Inv, W, K),
where: (i) L is a finite set of locations. (ii) ly € L is an initial location.

(iii) X is a finite set of clocks. (iv) X is a finite set of actions. (v)
T € LxXX®(X)x2X XL is a finite set of transitions. (vi) Inv :
L — A(X) is a function assigning to each location a clock invariant.
(vii) W: T — Ny is a labeling function on elements of T. (viii)
K : L — 2" is q labeling function for locations.

bY
We write ¢ if——> ¢’ as shorthand for (¢,a,¢,Y,¢’),, € T, where a is

w

an action, ¢ € ®(X) a guard, Y C X a reset set, and w € N. Let
W:T — Nyomap anedget = (£,a,¢,Y,{'),, to its weight W(t) =
w, interpreted as the (de)activation cost. Costs are annotations only:
they don’t appear in guards/invariants and so don’t affect which
discrete transitions are enabled. This avoids undecidability issues of
HA [33] and preserves the decidability results for WTA [19]. Thus,
the semantics of WTA are given by a weighted transition system
(WTS), an extension of labelled transition systems (LTS)[50].

DEFINITION 8 (SEMANTICS OF WTA). Let A = (L, 1o, X, %, T, Inv,
W, K) be a WTA. The semantics of WTA A is given by a WTS(A) =
(S, 50, 2p, E, W', K’, Sp) where: (i) S C L X R}z{o is a set of states. (ii)
so = (Lo, vo) withvo(x) = 0 for allx € X and vy |=Inv(ly). (iii) Zp =
3 W Ryxg. (iv) E C SX X XS is a transition defined by two rules:

e Discrete transition: (I,v) N (I',v") fora € £ andw € Ny,
w
,$.Y
122 1 g v =Y — 0] and ' | Inv(l') and,
w

e Delay transition: (I,v) 4 (I v +d), for somed € Ry iff
v+d = Inv(l).
() W =E — Nyo. (0i) K'((Lv)) =K() U{p € 2(X) | v = ¢}.

2.3 Predecessor operator and Zone Graph

Since a WTA has infinitely many states, one cannot build a finite-
state automaton. Instead, the zone graph provides a finite symbolic
semantics for TA behaviours [18]. It is both the core implementation
technique in TA tools and a basis of decidability results. In a zone
graph, clock zones symbolically denote sets of valuations. Over a
set of clocks X, a zone Z C R‘;{O is the set of evaluations satisfying a
constraints conjunction ¢, i.e., Z = {v € R}fo | v = ¢ }. Asymbolic
state zone is a pair Z = (I, Z) where [ is a location and Z a clock
zone, it represents all concrete states (I’,v) with !’ =land v € Z.

DEFINITION 9 (DISCRETE AND TIME PREDECESSOR). Let Z be a
zone and e an edge of WTS(A) (withw € Ny ). Define:

disc-pred(e,Z) = {z |37 € Z: 257},

time-pred(Z) = {z]32 € Z, Ad€Rsp: z 4 ).

Both disc-pred(e, Z) and time-pred(Z) are zones (closure under
predecessors). Dually, time-succ(l, Z) and post(e, (I, Z)) denote, re-
spectively, the sets of time-successors of any state in (I, Z) and the
discrete successors of ([, Z) via e.

DEFINITION 10 (PREDECESSOR). Let Z be a zone and e an edge of
WTS(A). Define
pred(e, Z) = disc-pred|(e, time-pred(Z)).
In words, pred(e, Z) collects all states that, after one discrete e-
step followed by some time delay, reach a state in Z. We write

time-succ(l, Z) for the set of time-successors of any state in (1, Z),
and post(e, (I, Z)) for discrete e-successors of (I, Z) with Z = (I, Z).



3 MODEL AND LOGIC

In this section, we define the model WPTA and the PTOTL syntax
and semantics, extending previous obstruction logics [21, 44, 45],
by unified the quantitative and real-time temporal aspect.

DEFINITION 11 (WPTA). The WPTA is an extension of WTA [6]
and PTA [49]. A WPTA is a tuple M = (L, , X, Inv, T, Prob, W, K),
where: (i) L is a finite set of locations. (ii) &, € L is the initial location.
(iii) X is a finite set of clocks. (iv) Inv : L — ®(X) associates an
invariant to each location. (v) T C L x ®(X) x 2% X L is the finite set
of edge transitions. A transition (¢, g, r,£") consists of source location ¢,
guard g, reset r, and target location t’. (vi) Prob : T — D(L) assigns
a probability distribution on targets once a transition is chosen. (vii)
W : T — Ny assigns a non-negative integer weight (cost) to each
transition. (viii) K : L — 2" is a labeling function for the location.

,P,Y
We write ¢ iL ¢’ as shorthand for (¢,a,¢,Y, t”)ﬁ, e T, where
wp

a is an action, ¢ € ®(X) a guard, Y C X a reset set, w € Ny,
and p € D(L) is a discrete probability distribution over target
locations (finite support). In this notation, the next location ¢’ is
drawn according to p, in particular, ¢ € supp(p) iff p(¢£’) > 0. The
semantics of WTA is presented by WTS. To define the semantics
of WPTA, we employ Probabilistic Timed Kripke Structure (PTKS),
which extend Markov Chain (MC) with real-valued duration [40].

DEerFINITION 12 (WPTA semanTIcSs). Let M = (L, ), X,Inv, T,

Prob, W, K) bea WPTA. Semantics of WPTA M is given by a PTKS(M)

= (S, 50, P, W,K) where: (i) S € L x R;(O is a set of states. (ii)
so = (lo,vo) with vo(x) = 0 for all x € X and vy |= Inv(ly). (iii)
P C S X D(S) is a probabilistic transition relation. Fors = (I,v) € S :

e Discrete transition: Fort = (¢, g,r, {’e’)ﬁ, € T withv |=g, let
p :=Prob(t) € D(L) and define ji; € D(S) by

p(’) ifv[r:=0] EInv(¢),
0 otherwise.

e, v[r=0]) = {

Then (s, jir) € P and,
o Delay transition: For anyd € Ry withv + t |=Inv(¢) for
allt € [0,d], let g = 8(.v+ay € D(S). Then (s, ug) € P.
(0) W : {(s,y, ') | (s,p) € P, u(s’y > 0} — Ny is the weight
function:

W(t) ifu=py for some enabledt € T,

Wis,ps") =
0 if g = pg for somed > 0.

(0i) K : S — 2/ is the labelling, e.g. K(e,v) = K(¢).

Strategy and Outcomes. A symbolic state is a pair g = (£,2)
with £ € Land Z € ®*(X). Let Q C L x ®*(X) be the set of
reachable symbolic states of M, and H the set of finite histories
over Q (finite sequences). Let W : T — Ny, be the edge-cost
function and n € Ny a fixed per-step budget. For g = (¢, Z) define
the enabled set Enabled(q) = {(f,g.r,¢') €T|ZAg+0}.

A zone-based n-strategy is a function S : H — 27 such that, for
each history h € H with g = last(h) and Ej, = S(h),

Z W(e) < n.

ecEy

Ej, C Enabled(q) and

Ej, are the transitions desactivadas at q under budget n. The strategy
is memoryless if S(h) = S(K’) whenever last(h) = last(h’); i.e.,
it can be viewed as S : Q — 2T with the same constraints. A
(symbolic) path is a sequence p = qo i ¢ Z qz -+ over the
zone graph. It is compatible with S if, for all i > 0, (q;, 0, qiv1) ¢
S(p<i), where p<; = qo,...,q;.- The set of outcomes from ¢ is
Out(q,S) = { p infinite path from q | p compatible with S }.
We now introduce the syntax of our logic PTOTL.

DEFINITION 13. Let Ap be a (at most countable) set of atomic
propositions, X a finite set of clocks,>< and ~ € {<,<,=,2,>},n €
Ny a cost budget, and k € [0,1] N Q a probability threshold. PTOTL
is stratified into four layers, state, clock, probabilistic, and timed
formulas all evaluated over the event trace (the sequence of discrete
Jjumps) of the underlying model as follows:

(1) State formulas ¢:

=T lpl-elere | Bljy
(2) State-clock formulas a:

ax=¢ | x~c|lara (x,yeX, ceZ)
(3) Timed path formulas y:
Yy s=aUa | aRa

(Until/Release over the event index; each « is checked at the
state reached after each discrete jump. The freeze j.i locally
binds the formula clock j to 0.)

(4) Probabilistic obstruction formulas f3:

B o= (4R where y == Qugisc@ | ¥
(States that there exists an n-budget sabotage strategy such

that the probability of paths satisfying y meets the threshold
> k; only a single outermost occurrence is allowed.)

(i) We use the event-next operator Qgjsc (next discrete jump) only
inside the probabilistic modality (+>*) (i.e., in y), not as a primi-
tive timed operator, thereby avoiding ambiguity with dense time
and name clashes with the clock set X. (ii) The binder j.y is a
(TPTL-style) freeze operator that binds a fresh time variable j to the
current time point, allowing i/ to compare future times against j
via clock constraints. As usual, other Boolean/temporal connectives
are defined as abbreviations: @1 V ¢y = =(=¢1 A =¢3), Fa = T U «,
Ga=aRl,etc.

DEFINITION 14 (PTOTL SEMANTICS). Let M = (L, &, X, Inv, T,
Prob,W,K) be a WPTA. A configuration is a pair q = ({,v) with
¢t € L and valuationv : X U J — Ry for system clocks and
formula clocks. A timed run p alternates time elapse and discrete edges,
respecting invariants and guards, and, under the PTKS semantics and
a fixed budget-n sabotage strategy o, induces a probability measure
Pr{,"l 1 on runs from q. From each run p we extract the event trace
J(p) =sos1S2... wheres; = (£, v;) is the state immediately after the
i-th discrete jump (s is the initial configuration). Path modalities are
interpreted on this discrete event index.

Satisfaction of state formulas ¢.

e M,ql=T always.
e M.qEp iff p € K(¢).
o M.gE-¢ iff M.ql~e.



s Mgl=p1 Aoz iff M,q = @1 and M, q |= .

e Mg l=j.y iff M.(¢0lj:=0]) =Y.
Satisfaction of state—clock formulas a.

o Ifa is a state formula, use the rules above.

e M,gl=(x~c) iff v(x) ~ ¢, withx e XU T, c € Qxo.

e Mg (an Aew) iff Miql= o and M, q |5 a,.
Timed path formulas (event-indexed) ). We write (p, i) Fdisc -
when evaluating on the event index i of J(p) = sos182..., and s; |= -
for state-level satisfaction.

(p,1) Faise crUay &= Jj2i: sjlFaAVme[i,j):smFai,

(p,i) Fdisc c1 Ray = Vj>i: ((Vm €li,j) ismEai) =5 ocz).

By design, { contains no event-next operator.

Probabilistic obstruction . Let 4, be the set of budget-n sabotage
strategies (transition-disabling schedulers). For a path subformula
X € {Ouisc ¢, aUas, a1Raz},

pak Mg
Mg ) &= 3oty Pr({p](p.0) Fase x}) > k.

withee {<, <, =,2,>} andk € [0, 1]. Here Qgisc = QOuisc denotes the
next discrete jump and is used only inside the probabilistic envelope.
(i) For any y, the set {p | (p,0) |=dgisc x} is a countable union of
cylinder sets, hence measurable; the probability above is well defined.
(ii) Any occurrence of a formula clock j must lie within the scope of a
binder j.y. (iii) To preserve decidability, PTOTL admits at most one
(non-nested) sabotage envelope per formula.

4 MODEL CHECKING

Given a WPTA M and a closed PTOTL formula ¢, model checking
computes the satisfaction set Sat(p, M) C Q over the probabilistic
zone graph Z = (Q, —, P) and then checks whether the initial sym-
bolic state belongs to it. The distinctive difficulty is the probabilistic
sabotage operator (+"°¥) y, which quantifies over per-step budget-n
strategies that disable outgoing edges and compares the induced
path probability with k. Let &, be the set of per-step budget-n
sabotage strategies. Under the PTKS semantics, each o € &, and
state g induce a probability measure Préw ! on runs p from g. For a
path pattern y € {Ougisc ¢, t1Uaz, a1 Ra,}, define

Mg Mg
Pr(y) = Pr({p|(p.0) Faisc x})

M.q
Sat((4 " )x) = {q130€ G+ Pr(y) »= k}

The path sets are measurable (countable unions of cylinder sets),
hence the probabilities are well-defined. A symbolic state is g =
(¢, Z) with location ¢ and canonical convex zone Z (DBM) over
system and formula clocks. The enabled set at q is

E, ={t=(grt)eT|Zn[g)#0}.

A sabotage configuration picks E” C Eg such that },cp \p» W (e) <
n. Disabled edges contribute no probability mass (no renormalisa-
tion): for successors ¢’,

PE/( ) = P(q.q’) if some kept edge in E’ leads from q to ¢,
’ "o otherwise.

Algorithm 1 MoDEL-CHECKING over a Probabilistic Zone Graph

1: Input: Probabilistic Zone Graph Z = (Q, —, P) of WPTA M,
closed PTOTL formula ¢

2. Output: Sat(p) C Q

3: fori=1to |¢p| do > bottom-up by syntactic depth

4 for all € Sub(¢) with depth |¢/| =i do

5 switch ¢ do

6: case T

7: Sat(y) < Q

8: case p € Ap

% Sat(y) —{(t.2) e Q| p € K(¢) }

10: case x ~ ¢

11: Sat() — {(£,2) e Q| Z|=x— ¢}

12: case 1 Ay

13: Sat()) « Sat(y;) N Sat(y»)

14: case

15: Sat(y) < Q\ Sat(y1)

16: case j.y;

17: Sat(y) — { (£, Z[j < 0]) | (£, Z) € Sat(y1) }
18: case <*n><k> Odisc ?1

19: Sat(y)) « Pre,«(Sat(¢1))

20: case ank) a1 U az

21: Sat(y) < Until, .o (Sat(a), Sat(az))
22: case (+"*%y oy Rar,

23: Sat(y)) « Release, o (Sat(a), Sat(az))

24: return Sat(¢p)

The sabotage budget resets at every discrete step. Z is finite because
zones are DBMs closed under time elapse and resets, with all con-
stants drawn from M and ¢; thus only finitely many canonical
DBMs arise. For L C Q define the masked, thresholded predecessor

Prensk (L) = {q|3E' CEq: Seepp W(e) <n
A D PP (qq) = k)

q’eL
Let L; = Sat(ay), L, = Sat(az). Then

Sat((+,**) Ouise @) = Preq,ai (Sat(p)),
Sat((#n"qk) o Uaz) =uS. L, U (Ll N Pren’wk(S)),
Sat{(h*yay Ray) =vS. Ly N (L U Pre,,(S)),

with p/v denoting least/greatest fixpoints over the finite lattice 29.
We now present the concrete algorithms that implement PTOTL
model checking over the symbolic probabilistic zone graph induced
by the WPTA structure, detailing each semantic case of the grammar
and the strategy outcomes.

The four procedures in Algorithms 1-4 implement the symbolic
model checking of PTOTL over the probabilistic zone graph of a
WPTA. Algorithm 1 traverses the syntax tree of ¢ bottom-up and
computes Sat(y/) € Q for each subformula . Base cases are han-
dled directly: atomic propositions via the location labelling K (¢),
and clock constraints by DBM entailment (Z |= x ~ c). Boolean
connectives are realised as set operations over symbolic states. The



Algorithm 2 Pre,, .« (L)

Algorithm 4 Release,, .« (L1, L;) (greatest fixpoint)

1: Input: budget n, target set L C Q, threshold relation <, value
k€ [0,1]

22 Output: S = {q € Q | 3JE C Enabled(q)
ZeEEnabled(q)\E’ W(e) =n A Zq’eL PE,(‘I, CI') > k}

3: S0

4: forallg € Q do

5 Eq < Enabled(q)

6 for all E’ C Eg such that },cp \» W(e) < ndo

7: pe— X PY(qq) > masked probability, no
q’€L
renormalisation
8: if p > k then
9 S « SU {q}; break

10: return S

Algorithm 3 Until,, . (L1, L)

1: Input: budget n, label sets Ly, L, € Q, threshold relation »<,
value k

2. Output: S = pX. Ly U (L; N Pre, ek (X))

3: § « Ly; changed < true

4: while changed do

(least fixpoint)

5 changed « false
6 forallq e (L; \ S) do
7 Ey < Enabled(q); added « false
8 forall E" C Eq with }.cp \p» W(e) < ndo
0 pe— X PPq.q)
q’'eS
10: if p >« k then
11: S « SU{q}; changed « true; added « true;
break

12: return S

freeze operator j.y is interpreted symbolically by resetting the
formula clock in the current zone, i.e. Z[j < 0], before recur-
sively evaluating /. Strategic (sabotage) constructs are delegated
to the dedicated procedures: (i) Algorithm 2 computes Pre, .ok (L)
and is invoked for (4,1""]‘) Quisc ¢1- For each zone state ¢, it enu-
merates sabotage configurations E’ C Enabled(q) with per-step
oSt Yeepnabied(q)\E W (e) < n, and checks the masked probability
Yqel PE'(g,q') »« k, where sabotaged edges contribute zero mass
(no renormalisation). (ii) Algorithm 3 realises the least-fixpoint
characterisation of (+°*%) a; U ay: it starts from L, = Sat(a;) and
expands backward through L; = Sat(;), adding any g € L, that
admits a budget-feasible sabotage E’ with ¥ y/es PE(q,q) » k,
where S is the current approximation. (iii) Algorithm 4 implements
the greatest-fixpoint for (4.°%) a; Ray: it starts from S = Q and
removes states that either violate L, or cannot sustain the release
condition, i.e. states q ¢ L; for which every budget-feasible sabo-
tage configuration E’ yields Y ocs PE' (g, q') v k. These procedures
are faithful to the event-indexed semantics of PTOTL: QOgjs refers
to the next discrete jump; the sabotage budget is per-step and resets
after each jump; and probability mass on disabled edges is simply
dropped (no redistribution). Since the probabilistic zone graph Q

1: Input: budget n, label sets Ly, L; C Q, threshold relation »<,
value k

2. Output: S =vX. Ly N (L UPre, (X))

3: S « Q; changed « true

4: while changed do

5 changed « false
6 forallg € S do
7: if ¢ ¢ L, then
8: S « S\ {q}; changed < true; continue
9: if g € L, then
10: continue > kept by Ly
11: Eq < Enabled(q); ok « false
12: forall E C Eg with }¥.cp \p» W(e) < n do
13: p— X PP(qq)
q'eS
14: if p > k then
15: ok « true; break
16: if not ok then
17: S « S\ {q}; changed « true

18: return S

is finite (canonical DBMs under bounded constants) and both fix-
point iterations in Algorithms 3 and 4 are monotone over 29, each
loop stabilises in at most |Q| iterations. Hence Algorithm 1 always
terminates on finite inputs. Let us now prove the termination and
correctness of the Algorithm 1. We first prove that the algorithm
always halts on finite inputs.

LEMMA 1 (FINITENESS OF THE PROBABILISTIC ZONE GRAPH). Let
Z be the probabilistic zone graph constructed from a WPTA M us-
ing canonical DBMs and a standard finite extrapolation (e.g. LU-
extrapolation) whose bounds are drawn from guards of M and clock
bounds occurring in ¢. Then Z has finitely many symbolic states.

SKETCH. Symbolic states are pairs (¢,Z) with £ € Land Z a
canonical convex zone (DBM) over system/formula clocks. Since
all clock constraints use constants from a finite set, the chosen
extrapolation guarantees only finitely many canonical DBMs are
reachable under time-elapse closure and reset operations. As L is
finite, the set Q = {(¢, Z)} is finite. O

THEOREM 4.1 (TERMINATION). For any closed PTOTL formula ¢
and any finite probabilistic zone graph Z, Algorithm 1 terminates.

SkeTCH. The algorithm processes subformulas of ¢ by increasing
syntactic depth; there are finitely many subformulas. For strategic
cases, Algorithms 2-4 operate on the finite state set Q. In Pre,
each state g admits finitely many sabotage configurations E’ C
Enabled(q); enumeration thus terminates. In Until and Release, the
sets S C© Q evolve by monotone additions/removals. Since Q is
finite, each fixpoint stabilises in at most |Q| iterations. Hence the
overall procedure halts. O

THEOREM 4.2 (SOUNDNESS ¢ COMPLETENESS (CORRECTNESS)).
For every closed PTOTL formula ¢, the set computed by Algorithm 1



equals the denotational satisfaction set induced by the PTOTL seman-
tics over the PTKS of the underlying WPTA: for all q € Q,

q€Satyg(p) = Z.qlFo.

PROOF SKETCH BY STRUCTURAL INDUCTION ON ¢. Base cases. T
is satisfied everywhere; for p € Ap the algorithm selects all (¢, Z)
with p € K(¢); clock constraints are checked by DBM entailment
Z |= x ~ c. These coincide with the semantics.

Booleans. — and A are implemented as complement and intersec-
tion over Q, matching the Boolean semantics.

Freeze. For j.i, the algorithm symbolically resets the formula
clock via the standard DBM update Z[j < 0] and then evaluates
Y in (¢, Z[j « 0]). This implements the denotation “bind j to the
current time and evaluate .

Event-next under sabotage. For (#,f"k) Odisc @1, Algorithm 2
computes the set of q for which there exists a budget-feasible E’ C
Enabled(q) with masked non-renormalised probability 3’/ esat(g:)
PE'(q,q’) >« k. This is exactly the event-indexed probabilistic clause
of the semantics.

Until/Release under sabotage. For (+"%) a; U oty and (+%) a; Rty
the algorithm computes, respectively, the least and greatest fix-
points of the standard backward-characterisations:

uS. Ly U (Ly N Pre,,ek(S)) and  vS. Ly N (L1 U Preg,a(S)),

with L; = Sat(a;). These match the denotational semantics by stan-
dard arguments for temporal fixpoints with one-step predecessors.
Thus each constructor is computed correctly. O

THEOREM 4.3 (COMPLEXITY). Let |@| be the size of the formula,
|Q| the number of zone states, and d = maxgcg |Enabled(q)|. Then

the time to compute Sat(p) is O(|<p| -1ol + 19| - Zd) for non-

with Until/Release,

up to polynomial DBM-manipulation costs. In particular:

temporal/next-only cases, and O(|q0| -|0)? - Zd)

o If|X| =1 (single system clock), the zone graph size is polyno-
mial, and model checking is in PSPACE.

e For |X| > 2, the zone graph can be exponential in the in-
put, yielding an EXPTIME upper bound; hardness follows
from classical multi-clock timed model-checking results, so the
bound is tight.

JusTiricaTION. The bottom-up traversal contributes O(|¢]|-|Q]).
For each state, sabotage enumerates subsets E’ C Enabled(q), i.e.
up to 29 configurations; each check requires only polynomial-time
DBM tests and summations. Until/Release iterate over S € Q and
stabilise in at most |Q| rounds, yielding the additional |Q| factor.
For one clock, canonical extrapolations ensure |Q| is polynomial,
so the overall space is polynomial; with > 2 clocks, |Q| may be
exponential, implying the stated bound. O

5 CASE STUDY: AUTOMOTIVE MTD

Modern connected vehicles expose Internet-facing IVI and telemat-
ics, an in-vehicle security gateway, and safety-critical controllers
over CAN/Ethernet with cellular/Wi-Fi/Bluetooth/V2X ingress. Em-
pirical studies show that multi-stage intrusions commonly enter
via IVI or external communications, pivot through the gateway, and
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Figure 1: Automotive WPTA where nodes S, and S; represent
the attacker’s goals, and S, with S5 the sensitive part and S5 a
control point. Larger version in supplementary material.

attempt to reach safety domains [10, 11, 23, 48, 51, 54, 58]. We in-
stantiate this centralized-domainal vehicle architecture as a WPTA
in the Fig. 1 and use PTOTL to certify defender MTD techniques
claims under time, probability, and budget. Locations S0-S7 denote
the external point of the vehicle (Init), the infotainment (IVI) and
communication (COMMS) system, a Secure gateway (SGW) be-
tween the external and core functionality, the compute central unit
(CCU), the telematic contol unit (TCU), the ADAS and Motion who
represent the most critical part of an automotive CPS. All external
ingress traverses S3. Each WPTA edge is labelled by an action label
ay, a guard for the clock x, an optional reset of x, a base probability
p with sum to 1, and a deactivation cost w. The topology consists of
multiple ingress routes funnelling through the gateway, by timed
gateway to control transfers, and a single actuation jump to Motion
deactivatable within its guard window for fixed cost w our MTD
lever. The model in Fig. 1 shows the validated guards, probabilities,
resets, and sabotage costs that drive verification.

We use the semantics of Sections 3—-4 and assume: a unique
attacker location per discrete step observable by the defender, a per-
step budget that disables any subset of currently enabled outgoing
edges at that location, sub-stochastic masking with no renormalisa-
tion, and a single dense-time clock x.

We evaluate a critical property that bounds the probability for
an attacker to reach Motion and thus control the vehicle. Let at_S7
label S7 and j be a freeze clock. We denote the property by:

Gmotion = j. (}7%) (true U (j < T Aat_S7) ).

Jmotion = J- <#4S0‘76> (true U (j<9Aat_S7) )

i.e., there exists a budget B obstruction strategy for the defender
that keeps the probability of reaching Motion within time T at most
a. Operationally, this bounds the risk of actuator takeover within
the mission horizon while respecting a per-step MTD cost limit. It
also captures the practical intent of MTD playbooks: to buy time for
detection/rollback or to contain lateral movement before Motion is
reachable, without assuming perfect patchability [10, 47].

An example of concrete witness strategy deactivates a25 when-
ever its guard holds, to protect the motion. Its per-step cost is
5, so any B > 5 suffices. Under sub-stochastic masking, we have
P(S4 — S7) = 0 whenever x < 3. Because every feasible route to
S7 factors through a25, the masked predecessor of S7 is empty, the
UNTIL fixpoint never adds S7, and gmetion holds from SO for any
T and any a >0. This last-hop certificate is minimal: if B <5, a25
cannot be disabled and positive mass toward Motion remains. If



actuation cannot be masked, upstream obstruction reduces risk.
Disabling both gateway families {a14, a18} (cost 8) blocks S3— S4
throughout their active windows and suffices whenever all j <T
paths to S7 must pass S4. Disabling only one family (cost 4) removes
either the compliant or the exploit traversal, dropping up to 0.270
or 0.200 base probability per enabled step; hardening ingress by
masking al1 (cost 5) suppresses a dominant OTA/back-end relay.
These effects are computed exactly by the masked predecessor op-
erator, and feasibility is monotone in B: if gmotion holds at budget
B, it holds for any B’ > B. We can also thinks about another com-
plex real attack scenario were we can assume that if we force the
attacker to go from S; (SGW) to S, (TCU), this will save enough
time to detect the attacker or suspicious behavior the attacker hav-
ing to force the passage to go to S5 (CCU). Overall, the instance
shows how PTOTL expresses and certifies time- and risk-bounded
MTD claims on a stochastic real-time substrate, with constructive
witnesses and quantitative budgets that align with engineering
constraints [11, 26, 39, 47].

6 COMPARISON WITH EXISTING LOGIC

We position PTOTL against two reference formalisms for proba-
bilistic real-time reasoning: PTCTL [38] and PTATL [37].

6.1 PTOTL vs PTCTL
We compare PTOTL with PTCTL [38], whose syntax is:

Ou=al|l|=0]10V0O|z0]|P*0,Ub],

where a € AP is an atomic proposition, { a DBM zone constraint, z
a formula clock, and A € [0, 1] a probability threshold.

Let PTOTL® denote the 0-fragment of PTOTL, i.., the set of
formulas where the sabotage budget n is fixed to 0. Let At({) denote
the set of atomic DBM constraints composing ¢ (each of the form
x ~corx—y ~ c)and y the next operator where y u=
Qudisc @ | . We define a mapping (-)* from PTCTL formulas to
PTOTLO as follows:

()* = a
(O = Ayea) X
(=0)* = =(0°

61V 6 = =(=(6:)° A=(62)°)
(20 = (0
(PH601U6,])° = (51 ((01)° U (62)°).

Disjunction is expressed via De Morgan’s law, since V isn’t a prim-
itive operator of PTOTL. We shows that every PTCTL formula
translates to PTOTL. Conversely, PTOTL? without the next opera-
tor, matches PTCTL in expressiveness.

THEOREM 6.1. For every WPTA M, symbolic state s, and PTCTL
formula 6, we have:

M,s Eprer 0 iff M,s Fpromoy, (0)°

Discussion. This result shows that PTCTL is fully embeddable
into the 0-fragment of PTOTL. However, PTOTL is strictly more ex-
pressive: (i) positive budgets n>0 capture cost-bounded obstruction
absent from PTCTL; and (ii) even for n=0, the probabilistic next has
no counterpart in PTCTL.

6.2 PTOTL vs PTATL

We contrast PTOTL with PTATL [37], which extends ATL with
dense-time bounds and probabilistic thresholds for coalitions [14,
16, 25]. These logics differ in their primitives: PTATL quantifies
coalition power in concurrent timed games, while PTOTL specifies
cost-bounded transition disabling in timing via freeze with only 2
agents. We focus on single-layer PTATL formulas with no nested
coalition modalities, and we don’t claim completeness. We recall
PTATL syntax and give a term-by-term comparison with PTOTL.

p:=ploplone| LAY (o Ur @) | {LA)™ (¢ R; ¢),

where p € AP is an atomic proposition, A C A is a coalition,
€ {<,<,>,>},z€[0,1],and I C Ry is a time interval.

To relate these logics (coalition—sabotage), we define (-)* map-
ping PTATL to a PTOTL fragment by replacing coalition power
with per-step, cost-bounded sabotage. Choose B : 27' — N giving
each coalition A a budget B(A), and encode time bounds with a
freeze clock j:

®' =p
(=)' = ()"
(1 A p2)" = ()" A (p2)
(€A™ (91 Ujapy 02))' = J. ¥52)) ((00) U ((p2)" A a< j <))
(€AY (91 Utapy 92)) = ¢52) (o) U ((92)" Aa< <))

(€AY (o1 Ry g2 = J. 520> (1) R ((02)" A J € 1))

Here, j € I denotes the guard, and j. aligns the dense-time win-
dow for U/R. We use a single sabotage envelope per formula; nested
coalitions are over-approximated bottom-up. Under assumptions
(A1) joint actions compiled to transitions, (A2) coalition power
over-approximated by per-step disabling up to B(A), and (A3) time
bounds encoded by j, one-way soundness holds:

M |=prat ¢ = M pro ¢

Completeness does not hold in general; coalition quantification and
imperfect information in PTATL have no primitive in PTOTL.

THEOREM 6.2 (INCOMPARABILITY). Lpror and LprarL are incom-
parable but complementary: there exist formulas expressible in PTOTL
but not in PTATL, and vice versa.

Discussion. For MTD style defenses, where operators disable
transitions under per-step budgets within timed windows, PTOTL
gives concise residual-risk bounds and constructive witnesses.

7 CONCLUSION AND FUTURE WORK

We introduced PTOTL, a logic over WPTA that unifies dense time,
probabilistic thresholds, and cost-bounded transition disabling un-
der sub-stochastic semantics. We provided syntax/semantics and a
symbolic zone-based model checker via masked predecessors and
fixpoints. Complexity matches classical bounds PSPACE-complete,
we show that PTOTL extend PTCTL and is complementary with



PTATL. An automotive case study shows concisely captures MTD
claims—time-bounded, budgeted reduction of compromise proba-
bility with quantitative guarantees and constructive witnesses.

Future work includes considering cumulative global budgets and
introducing optimizations; multiple interacting sabotage envelopes
to approximate coalitional behaviour; imperfect information and
bounded recall, using sound approximations or hybrid methods
[13, 17, 28, 30, 31]; quantitative and parametric synthesis; and a ref-
erence implementation integrated into VITAMIN [32] for empirical
evaluation on realistic security scenarios.
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