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ABSTRACT
Multi-Agent Systems are composed of distributed intelligent compo-

nents, known as agents. In real-world scenarios, these agents often

lack sufficient resources or access to global system information

to achieve their objectives. In such cases, intelligent information

sharing can enable agents to collaborate effectively and reach their

goals. This work introduces the concept of Agreement Game as a
framework to address these challenges.
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1 INTRODUCTION
Multi-Agent Systems (MAS) are extensively used in domains such

as robotics, sensor networks, e-commerce, and smart grids [5, 7, 9].

These systems comprise autonomous agents that operate indepen-

dently, pursuing goals based on local knowledge and capabilities.

However, in many real-world scenarios, agents face constraints in

resources and information, limiting their ability to achieve objec-

tives effectively. While the distributed nature of MAS provides scal-

ability and fault tolerance, it also introduces significant challenges

in coordination and cooperation, particularly in environments char-

acterized by uncertainty, incomplete information, and dynamic

changes. Addressing these challenges requires robust mechanisms

for collaboration and intelligent information sharing. In this pa-

per, we present the Agreement Game (AG), a framework rooted

in the formal verification of MAS [1, 6, 8], with a particular focus

on settings involving imperfect information [4]. The AG models

agent interactions as a strategic process, enabling agents to share

information and collaborate effectively.

2 BACKGROUND
If 𝜌 = 𝑥1, 𝑥2, . . . is a (finite or infinite) sequence, we denote its length

as |𝜌 |, and its ( 𝑗-th) element 𝑥 𝑗 as 𝜌 𝑗 . For 𝑗 ≤ |𝜌 |, let 𝜌≥ 𝑗 be the

suffix 𝜌 𝑗 , 𝜌 𝑗+1 . . . of 𝜌 starting at 𝜌 𝑗 and 𝜌≤ 𝑗 the prefix 𝜌1, . . . , 𝜌 𝑗
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of 𝜌 . We denote by #(𝑋 ) the cardinality of a given set 𝑋 . If 𝑋 is a

set of sets 𝑋 = {𝑌1, 𝑌2, . . .}, we write
⋃
𝑋 for 𝑌1 ∪𝑌2 ∪ · · · . We use

a, b, c, . . . as variables for tuples of elements of a given set and a[𝑖]
to denote the (i-th) element of such a tuple.

Thanks to [3], we have a class of models that we can use as basis

to define agreements in the multi-agent setting.

Definition 2.1. A Resource Action Based CGS (RAB-CGS) is a

tuple𝑀 = ⟨𝐴𝑝,𝐴𝑔, 𝑆, 𝑠𝐼 , {𝑎𝑐𝑡𝑖 }𝑖∈𝐴𝑔, 𝑃, 𝑡, 𝐿, 𝑟, $⟩ such that:

• 𝐴𝑝 is a non-empty set of atomic propositions;

• 𝐴𝑔 = {1, . . . , 𝑛} is a finite set of agents;
• 𝑆 is a non-empty set of states and 𝑠𝐼 ∈ 𝑆 is the initial state;

• for any 𝑖 ∈ 𝐴𝑔, 𝑎𝑐𝑡𝑖 is a set of actions,𝐴𝐶𝑇 = Π𝑖∈𝐴𝑔𝑎𝑐𝑡𝑖 , and
𝑎𝑐𝑡 =

⋃
𝑖∈𝐴𝑔 𝑎𝑐𝑡𝑖 ;

• 𝑃 : 𝐴𝑔×𝑆 →(2𝑎𝑐𝑡\∅) is the protocol function that associates
to any agent 𝑖 and state 𝑠 a non-empty subset of 𝑎𝑐𝑡𝑖 repre-

senting the actions that are available for 𝑖 at 𝑠 . We impose

that the idle action ★ always belong to 𝑃 (𝑖, 𝑠) for any 𝑖;
• 𝑡 : 𝑆 × 𝐴𝐶𝑇 → 𝑆 is the transition function, that is given a

state 𝑠 and a tuple of actions a (where ∀𝑖 , a[𝑖] ∈ 𝑃 (𝑖, 𝑠)) such
function outputs a state 𝑠′;

• 𝐿 : 𝑆 → 2
𝐴𝑝

is the labelling function;

• 𝑟 ≥ 1 is a natural number (the number of resources types);

• $ : 𝑆 × 𝑎𝑐𝑡 ×𝐴𝐶𝑇 → N𝑟
is a function mapping a state 𝑠 , an

action 𝑎, and a tuple of actions a = ⟨𝑎1, . . . , 𝑎𝑛⟩ to a natural

number vector of length 𝑟 . We impose that 𝑎 is one of the 𝑎𝑖
composing a, and impose that $(𝑠,★, a) = 0.

A path 𝜌 is an infinite alternated sequence 𝑠1, a1, 𝑠2, . . . of states
and tuples in 𝐴𝐶𝑇 such that for all 𝑖 ≥ 1, 𝑡 (𝑠𝑖 , a𝑖 ) = 𝑠𝑖+1. If 𝜌 is a

path, we denote by 𝜌𝑆 the sub-sequence of 𝜌 only containing states.

If ℎ ∈ 𝑆+ is a finite sequence of states, we say that ℎ is a history
iff there is a path 𝜌 such that ℎ = 𝜌𝑆≤𝑖 for some 𝑖 ∈ N. We use 𝐻 to

denote the set of all histories. A (memoryful) strategy for an agent

𝑗 is a function 𝜎 𝑗 : 𝐻 → 𝑎𝑐𝑡 𝑗 , that maps a history to an action

𝑎 𝑗 ∈ 𝑎𝑐𝑡 𝑗 . Let 𝐶 be a subset of 𝐴𝑔, 𝑠 a state, and c be a tuple of

actions one for each agent in 𝐶 . We denote by 𝑃𝑜𝑠𝑡 (𝑠, c) the set of
states {𝑠′ ∈ 𝑆 | 𝑡 (𝑠, a) = 𝑠′ ∧ c is a sub-sequence of a}. We denote

with 𝑃𝐶 (𝑠) the set of tuples of actions that are available at 𝑠 for the
coalition 𝐶 . A path 𝜌 = 𝑠1, a1, 𝑠2 . . . is compatible with a strategy

𝜎 𝑗 if for every 𝑖 ≥ 1 it holds that 𝜎 𝑗 (𝜌𝑆≤𝑖 ) = a𝑖 [ 𝑗]. A joint strategy

𝜎𝐶 for 𝐶 is a tuple of strategies: one for each agent in 𝐶 . A path 𝜌

is compatible with a joint strategy 𝜎𝐶 if it is compatible with any

strategy 𝜎𝑖 composing the joint strategy. We denote with 𝑜𝑢𝑡 (𝑠, 𝜎𝐶 )
the set of all 𝜎𝐶 -compatible paths whose first element is 𝑠 .

In what follows, a bound b will be any element of N𝑟
. Let 𝑠 be a

state, a = ⟨𝑎1, . . . , 𝑎#(𝐴𝑔) ⟩ ∈ 𝐴𝐶𝑇 be a tuple of actions, such that for

all 𝑖 , a[𝑖] ∈ 𝑃 (𝑖, 𝑠) and c a sub-sequence of a. The cost of c in 𝑠 with
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respect to a is given by: 𝑐𝑜𝑠𝑡 (𝑠, c, a) = ∑ |c |
𝑖=1

$(𝑠, c[𝑖], a). Let 𝜎𝐶 be a

strategy for the coalition𝐶 , 𝜌 = 𝑠1, a1, 𝑠2, . . . be a path in 𝑜𝑢𝑡 (𝑠, 𝜎𝐶 ),
and b ∈ N𝑟

. We say that 𝜌 is b-consistent when for each natural

number 𝑛 ≥ 1, we have that:

∑𝑛
𝑘=1

𝑐𝑜𝑠𝑡 (𝑠𝑘 , 𝜎𝐶 (𝜌𝑆≤𝑘 ), a𝑘 ) ≤ b.
A strategy 𝜎𝐶 for a coalition 𝐶 is b-consistent whenever, for

every state 𝑠 , given any 𝜌 ∈ 𝑜𝑢𝑡 (𝑠, 𝜎𝐶 ), 𝜌 is b-consistent.

3 AGREEMENT GAMES
We introduce a simple model of information exchange. Suppose that

there are𝑛 agents 1, 2, . . . 𝑛, and that each agent can privately observe
a set of atomic propositions 𝐾1, 𝐾2, . . . , 𝐾𝑛 , respectively. Agents can

share with each other, via a communication channel, propositions
from such sets and eventually find an agreement. For instance, if
agent 1 possesses the proposition 𝑝 , she can offer it to agent 2 and

an exchange will take place if 2 offers her another proposition 𝑞

that 1 does not possess. The model keeps track of the exchanges

that have occurred: a state of the model will be identified with a set

of mutually disjoint agreements, where each agreement is a two-

element set containing a proposition to which one agent has private

access and another proposition to which another agent has private

access. Consider an agent 𝑖 and the set of atomic propositions 𝐾𝑖
to which the agent has access. In order to distinguish to which of

the agents in 𝐴𝑔 \ {𝑖} the agent 𝑖 offers a certain proposition 𝑝 , we

index the propositions in 𝐾𝑖 with elements of 𝐴𝑔 \ {𝑖}, obtaining a

set Σ𝑖 . The intuitive meaning of a proposition 𝑝 𝑗 ∈ Σ𝑖 is “the agent
𝑖 offers to the agent 𝑗 the proposition 𝑝 ∈ 𝐾𝑖 ”.

Definition 3.1. Let𝐴𝑔 = {1, . . . , 𝑛} be a finite set of agents and 𝐾𝑖
be a non-empty finite set of atomic propositions for any 𝑖 ∈ 𝐴𝑔. We

impose that for all 𝑖, 𝑗 ∈ 𝐴𝑔, 𝐾𝑖 ∩ 𝐾𝑗 = ∅ whenever 𝑖 ≠ 𝑗 . For any

𝑖 ∈ 𝐴𝑔 we define: Σ𝑖 =
⋃

𝑗∈ (𝐴𝑔\{𝑖 }) {𝑝 𝑗 | 𝑝 ∈ 𝐾𝑖 } and we denote

with Σ the set

⋃
𝑖∈𝐴𝑔 Σ𝑖 . We say that a two-elements set {𝑥,𝑦} ⊆ Σ

is a Σ-agreement iff for some 𝑗 and 𝑖 in 𝐴𝑔 we have that 𝑥 ∈ Σ 𝑗 ,

𝑥 is of the form 𝑝𝑖 , 𝑦 ∈ Σ𝑖 , 𝑦 is of the form 𝑞 𝑗 and 𝑗 ≠ 𝑖 . A set 𝑋

of Σ-agreements is Σ-balanced iff 𝑋 = ∅ or it holds that 𝑌 ∩ 𝑍 = ∅
for all distinct 𝑌, 𝑍 ∈ 𝑋 . We denote by AΣ the set of Σ-agreements

and by BΣ the set of balanced sets of Σ-agreements. If 𝑋 is a set of

Σ-agreements, 𝑍 ⊆ Σ, and for all {𝑥,𝑦} ∈ 𝑋 , 𝑥 ∈ 𝑍 , and 𝑦 ∈ 𝑍 , we
say that 𝑋 is a set of Σ-agreements over 𝑍 .

The following two technical propositions will be used to ensure

that the transition function of our AGs is well-defined.

Proposition 3.2. If𝑋 and𝑌 are two Σ-balanced sets and either (i)
𝑋 ⊆ 𝑌 or (ii) 𝑌 ⊆ 𝑋 or (iii) for every𝑈 ∈ 𝑋 and𝑊 ∈ 𝑌 ,𝑈 ∩𝑊 = ∅;
then 𝑋 ∪ 𝑌 is a Σ-balanced set.

Proof. The case (i) (resp., (ii)) is immediate because 𝑋 ∪ 𝑌 is

equal to 𝑌 (resp., 𝑋 ) and such a set is Σ-balanced by hypothesis. By

definition, a Σ-balanced set is a (eventually empty) set of mutually

disjoint Σ-agreements. Thus, if the hypothesis of (iii) is true, then

given any 𝑃 and𝑄 in𝑋 ∪𝑌 , 𝑃 and𝑄 are Σ-agreements. Moreover if

𝑃 ≠ 𝑄 , then they either both belong to𝑋 (resp.,𝑌 ), or one belongs to

𝑋 and the other to𝑌 . In any case 𝑃∩𝑄 = ∅ andwe can conclude. □

In our AGs, a state of the game is identified with a set of mu-

tually disjoint agreement, representing the information exchange

occurred so far. Agents move from one state to another by offering

to each other propositions: they can move to a state where new

pairs of information exchange took place, i.e., the actions of an

agent 𝑖 will be modeled as propositions belonging to the set Σ𝑖 . To
assure that by making actions the agents always moves from a set

of mutually disjoints agreements to another, we need the following.

Proposition 3.3. Let 𝑋 ∈ BΣ and 𝑌 ⊆ Σ. Suppose that 𝑌 =

{𝑦1, . . . , 𝑦𝑛} and for each 𝑖 ≤ 𝑛, (i) 𝑦𝑖 ∈ Σ𝑖 and, (ii) there is no
Σ-agreement 𝑍 ∈ 𝑋 such that 𝑦𝑖 ∈ 𝑍 ; then there is a maximal
(with respect to inclusion) Σ-balanced set𝑊 whose members are Σ-
agreements over 𝑌 such that𝑊 ∪ 𝑋 ∈ BΣ.

Proof. By Definition 3.1, and by (i) given any 𝑥 ∈ 𝑌 there

is at most one 𝑦 ∈ 𝑌 such that {𝑥,𝑦} is Σ-agreement. In fact, if

𝑥 = 𝑞𝑖 ∈ Σ 𝑗 we can have that {𝑥,𝑦} is a Σ-agreement if and only if

𝑦 is of the form 𝑞 𝑗 and belongs to Σ𝑖 . Thus, let𝑊 be the set of all

Σ-agreements over 𝑌 . If𝑊 is empty, then we are done. Otherwise,

𝑊 is a Σ-balanced set, since it contains only mutually disjoints

Σ-agreements. Moreover, by hypothesis (ii), given any 𝑃 and 𝑍 ,

such that 𝑃 ∈𝑊 and 𝑍 ∈ 𝑋 , 𝑃 ∩ 𝑍 = ∅. Thus, by Proposition 3.2,

we can conclude that𝑊 ∪ 𝑋 is Σ-balanced. □

Given a set of proposition 𝑃 ⊆ Σ, we denote by 𝑃 |𝑖 = {𝑞 | 𝑞 ∈ Σ𝑖 }.
We now have all the ingredients to define Agreement Games.

Definition 3.4. Given a RAB-CGS𝑀 = ⟨𝐴𝑝,𝐴𝑔, 𝑆, 𝑠𝐼 , {𝑎𝑐𝑡𝑖 }𝑖∈𝐴𝐺 ,
𝑃, 𝑡, 𝐿, 𝑟, $⟩, we say that𝑀 is an Agreement Game whenever:

(1) 𝐴𝑝 =Σ; 𝐴𝑔= {1, . . . , 𝑛}; 𝑆 =BΣ and 𝑠𝐼 ∈𝑆 ; 𝑎𝑐𝑡𝑖 =Σ𝑖∪{★};
(2) 𝑃 (𝑖, 𝑠) = (Σ𝑖 \ (

⋃
𝑠) |𝑖 ) ∪ {★}, given a state 𝑠 , an action 𝑎𝑖 is

either an atomic proposition in Σ𝑖 that does not appear in
one of the agreements composing 𝑠 , or it is the idle action ★;

(3) if a = ⟨𝑎1, . . . , 𝑎𝑛⟩ and for all 𝑖 ≤ 𝑛, a[𝑖] ∈ 𝑎𝑐𝑡𝑖 , then the

transition function is defined by: 𝑡 (𝑠, a) = (𝑠 ∪ 𝑋 ) where 𝑋
is the maximal (w.r.t. inclusion) balanced set over the set of

a[𝑖] that are propositions such that 𝑠 ∪𝑋 is balanced. Such a

set always exists by the fact that the empty-set is Σ-balanced
and by Proposition 3.3. Note that, if a only contains idle

actions, then the definition implies 𝑡 (𝑠, a) = 𝑠;
(4) 𝐿(𝑠) is the identity function on

⋃
𝑠;

(5) given a state 𝑠 , an action 𝑎, and a tuple of actions a, such that

𝑎 = a[ 𝑗] for some 𝑗 , we have that $(𝑠, 𝑎, a) > 0 iff there is a

𝑘 ≠ 𝑗 such that {𝑎, a[𝑘]} is a Σ-agreement.

Condition 5 states that the cost of an action for agent 𝑖 in state 𝑠

depends on other agents’ actions. Intuitively, costs arise only if a

communication channel opens, requiring joint action.

Remark that, thanks to our framework, we can ensure sharing

agreements between agents, which can be established during a

preprocessing phase before the MAS starts its execution.

4 CONCLUSIONS AND FUTUREWORKS
In this paper, we introduced the Agreement Game (AG) framework

to enable advanced information sharing among distributed agents

with imperfect knowledge of the MAS. We formalised AG using

concurrent game principles and defined how agents can reach agree-

ments within such structures. Future work will explore applying

AG to address information-sharing challenges in MAS. A key ap-

plication is Runtime Verification [2] in distributed systems, where

monitors with limited resources can use AG to collaborate and

verify formal properties at runtime.
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