
Timed Obstruction Logic: A Timed Approach to Dynamic Game
Reasoning

Jean Leneutre

Télécom Paris, Institut Polytechnique

de Paris

Palaiseau, France

jean.leneutre@telecom-paris.fr

Vadim Malvone

Télécom Paris, Institut Polytechnique

de Paris

Palaiseau, France

vadim.malvone@telecom-paris.fr

James Ortiz

Télécom Paris, Institut Polytechnique

de Paris

Palaiseau, France

james.ortizvega@telecom-paris.fr

ABSTRACT
Real-time cybersecurity and privacy applications require reliable

verification methods and system design tools to ensure their cor-

rectness. Recently, a growing literature has recognized Timed Game

Theory as a sound theoretical foundation for modeling strategic

interactions between attackers and defenders. This paper proposes

Timed Obstruction Logic (TOL), a formalism for verifying specific

timed games with real-time objectives unfolding in dynamic models.

These timed games involve players whose discrete and continuous

actions can impact the underlying timed game model. We show that

TOL can be used to describe important timed properties of real-time

cybersecurity games. Finally, we provide a verification procedure

for TOL and show that its complexity is PSPACE-complete, meaning

that it is not higher than that of classical timed temporal logics like

TCTL. Thus, we increase the expressiveness of properties without

incurring any additional complexity.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging; • Theory of computation→ Verification by model checking.

KEYWORDS
Dynamic Models; Temporal Logic; Model Checking

ACM Reference Format:
Jean Leneutre, Vadim Malvone, and James Ortiz. 2025. Timed Obstruction

Logic: A Timed Approach to Dynamic Game Reasoning. In Proc. of the
24th International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2025), Detroit, Michigan, USA, May 19 – 23, 2025, IFAAMAS,

10 pages.

1 INTRODUCTION
Multi-agent systems (MAS) are composed of interacting autonomous

agents [3, 22, 31, 36, 39, 42] and have been successfully applied in

cybersecurity and distributed systems. However, modeling security

and heterogeneous distributed systems is inherently error-prone.

Thus, computer scientists typically address the issue of verifying

that a system actually behaves as intended, especially for complex

systems. Some techniques have been developed to accomplish this

task: testing is the most common, but in many cases, a formal proof

of correctness is required. Formal verification techniques include

This work is licensed under a Creative Commons Attribution Inter-

national 4.0 License.

Proc. of the 24th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2025), Y. Vorobeychik, S. Das, A. Nowé (eds.), May 19 – 23, 2025, Detroit, Michigan,
USA.© 2025 International Foundation for Autonomous Agents andMultiagent Systems

(www.ifaamas.org).

theorem proving and model checking [21]. Model checking, in par-

ticular, has been successfully applied to formally verify security

and distributed systems, including hardware components and com-

munication and security protocols. Unlike traditional distributed

systems, formal verification techniques for Real-Time MAS (RT-

MAS) [15, 16] are still in their infancy due to the more sophisticated

nature of the agents, their autonomy, their real-time constraints, and

the richness of the formalisms used to specify properties [20, 35].

RT-MAS combines game theory techniques with real-time behavior

in a distributed environment [5, 15, 16]. Such real-time behavior

can be verified using real-time modal logic [6, 45]. The development

of methods and techniques with integrated features from both re-

search areas undoubtedly leads to an increase in complexity and the

need to adapt current techniques or, in some cases, to develop new

formalisms, techniques, and tools [40, 47, 48]. Developing these

formalisms correctly requires algorithms, procedures, and tools to

produce reliable end results [10, 51]. Agents in RT-MAS are con-

sidered to be players in games played over real-time models (such

as Timed Automata (TA) [2] and Timed Petri Nets [33]), and their

goals are specified by real-time logic formulas [6, 33, 40, 44, 47].

For example, the fact that a coalition of players has a strategy to

achieve a certain goal by acting cooperatively can be expressed

using the syntax of logics such as Timed Alternating-time Tempo-

ral Logic (TATL) [30, 37] and Strategic Timed Computation Tree

Logic (STCTL) [6]. However, STCTL with continuous semantics is

more expressive than TATL, as shown in [6]. Moreover, in [6], was

shown that the model checking problem for STCTLwith continuous

semantics and memoryless perfect information is of the same com-

plexity as for TCTL, while for STCTL with continuous semantics

and perfect recall it is undecidable. Model checking for TATL with

continuous semantics is undecidable [6]. In all previous logics, the

timed game model in which the players are playing is treated as a

static gamemodel, i.e., the actions of the players affect their position

within the model, but do not affect the structure of the model itself.

In this paper, we propose Timed Obstruction Logic (TOL), for rea-

soning about RT-MAS with real-time goals [6, 33, 40, 44, 47] played

in a dynamic model. Dynamic game models [17, 43, 51] have been

studied in a variety of contexts, including cybersecurity and plan-

ning. In our new logic (TOL), games are played over an extended TA

(Weighted TA (WTA) [4]) by two players (Adversary and Demon).

There is a cost (𝑊 (𝑒)) associated with each edge of the automaton.

This means that, given a location 𝑙 of the automaton and a natural

number 𝑛, the Demon deactivates an appropriate subset𝑇 of the set

of edges incident to 𝑙 such that the sum of the deactivation costs of

the edges contained in𝑇 is less than 𝑛. Then, the Adversary selects

a location 𝑙 ′ such that 𝑙 is adjacent to 𝑙 ′ and the edge from 𝑙 to 𝑙 ′

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

does not belong to the set of edges selected by the Demon in the

previous round. The edges deactivated in the previous round are

restored, and a new round starts at the last node selected by the

opponent. The Demon wins the timed game if the infinite sequence

of nodes subsequently selected by the opponent satisfies a certain

property 𝜑 expressed by a TOL formula. Furthermore, in addition

to the introduction of our new logic and its adaptation to the speci-

fication of properties in the context of real-time cybersecurity, we

provide a verification procedure for TOL and show that its complex-

ity is PSPACE-complete, i.e., not higher than that of classical timed

temporal logics such as TCTL. Thus, we increase the expressiveness

of properties without incurring a cost in terms of complexity.

Structure of the work. Theoretical background is presented in

Section 2. In Section 3, we present the syntax and the semantics of

our new logic, called Timed Obstruction Logic (TOL). In Section 4,

we show our model checking algorithm and prove that the model

checking problem for TOL is PSPACE-Complete. In Section 5, we

compare TOL with other timed and modal logics. In Section 6, we

present our case study in the cybersecurity context. In Section 7, we

compare our approach to related work. Finally, Section 8 concludes

and presents possible future directions.

2 BACKGROUND
Let N be the set of natural numbers, N≥0 the set including 0, R≥0
the set of non-negative reals, and Z the set of integers. For sets 𝑋

and 𝑌 , |𝑋 | denote the cardinality of 𝑋 . The set operations of inter-

section, union, complementation, set difference, Cartesian product

and empty set are 𝑋 ∩ 𝑌 , 𝑋 ∪ 𝑌 , 𝑋 , 𝑋 \ 𝑌 , 𝑋 × 𝑌 , and ∅ respec-
tively. Inclusion and strict inclusion are denoted 𝑋 ⊆ 𝑌 and 𝑋 ⊂
𝑌 . Let 𝜋 = 𝜋1, . . . , 𝜋𝑛 be a countable sequence, we denote by 𝜋𝑖 its

𝑖-th element, by 𝜋≤𝑖 the finite prefix 𝜋1, . . . , 𝜋𝑖 of 𝜋 and by 𝜋≥𝑖 the
(possibly infinite) suffix of 𝜋 starting at 𝜋𝑖 . If 𝜋 is a finite sequence,

𝑙𝑎𝑠𝑡 (𝜋) denotes the last element 𝜋𝑛 of 𝜋 .

2.1 Attack Graphs
An attack is an attempt by an attacker to gain unauthorized access

to resources or compromise system integrity. In this context, the

Attack Graph (AG) [17, 32] is a widely used model for representing

interactions between an attacker and a defender employing Moving

Target Defense (MTD) mechanisms [19]. MTD techniques, such as

Address Space Layout Randomization (ASLR) [41], dynamically re-

configure system components to modify the attack surface, thereby

reducing the attacker’s success probability. However, activating an

MTD countermeasure incurs performance costs, as system services

may become partially or completely unavailable during reconfigura-

tion. Therefore, optimizingMTD deployment is essential to balance

security risk reduction and system performance.

2.2 Weighted Transition Systems
Weighted Transition Systems (WTS) are an extension of Labeled

Transition Systems (LTS) [46]. They introduce operational seman-

tics in reactive systems. A AG can be defined as aWTS.

Definition 1 (Weighted Transition Systems (WTS)). Let
AP be a finite set of atomic propositions (atoms). A WTS is a tuple
M = (S, s0, Σ, E,W, 𝐾, F) where:

• 𝑆 is a finite set of states,
• 𝑠0 ∈ 𝑆 is an initial state,
• Σ is a finite set of actions,
• 𝐸 ⊆ 𝑆 × Σ × 𝑆 is a transition relation,
• 𝑊 : 𝐸 → N≥0 is a function that labels the elements of 𝐸,
• 𝐾 : 𝑆 → 2

AP is a labeling function for the states,
• 𝐹 ⊆ 𝑆 is a set of goal states.

The transitions of a WTS are noted in the following way: we write

s
𝑎−→
𝑤

s′ whenever 𝑎 ∈ Σ, (𝑠, 𝑎, 𝑠′) ∈ 𝐸 and𝑊 (𝑠, 𝑎, 𝑠′) = 𝑤 where 𝑤

∈ N≥0. We use non-negative real-valued variables called as clocks
to represent the continuous time domain. Clocks advance syn-

chronously at a uniform rate and are the basis of TA [2]. Here, we

work with an extension of TA known as Weighted TA (WTA) [4].

2.3 Weighted Timed Automata
We now explore the relation betweenWTS and Weighted Timed

Automata (WTA) [4]. A WTA is an extension of a TA [2] with

weight/cost information at both locations and edges, and it can be

used to address several interesting questions [4, 12].

Definition 2 (Clock constraints and invariants). Let X be
a finite set of variables ranging over R≥0, called clocks. The set Φ+ (𝑋)
of clock constraints over the set of clocks X is given by the following
grammar:

𝜙 := 𝑡𝑟𝑢𝑒 | x ∼ c | x − y ∼ c | 𝜙1 ∧ 𝜙2

where x, 𝑦 ∈ X, c ∈ N, and ∼ ∈ {<, >, ≤, ≥, =}.
The clock constraints of the form 𝑡𝑟𝑢𝑒 , x ∼ c are called non-diagonal
constraints and those of the form x − y ∼ 𝑐 are called diagonal

constraints. The set of non-diagonal constraints over X is denoted

by Φ(𝑋). In this paper, we use the non-diagonal constraints as in

[2] where the comparison between two clocks is not allowed [13]
1
.

Clock invariants Δ(X) are clock constraints in which ∼∈ {<, ≤}.
Definition 3 (Clock valuations). Given a finite set of clocks X,

a clock valuation function, 𝜈 : X→ R≥0 assigning to each clock 𝑥 ∈
X a non-negative value 𝜈 (𝑥). We denote R𝑋

≥0 the set of all valuations.
For a clock valuation 𝜈 ∈ R𝑋

≥0 and a time value d ∈ R≥0, 𝜈 + d is the
valuation satisfied by (𝜈 + 𝑑) (𝑥) = 𝜈 (𝑥) + 𝑑 for each 𝑥 ∈ X. Given
a clock subset 𝑌 ⊆ 𝑋 , we denote 𝜈 [𝑌 ← 0] the valuation defined
as follows: 𝜈 [𝑌 ← 0] (𝑥) = 0 if 𝑥 ∈ 𝑌 and 𝜈 [Y ← 0] (𝑥) = 𝜈 (𝑥)
otherwise.

Here, we only consider the weight/cost in the edges (transitions) in

ourWTA. Formally, aWTA is defined as follows [4].

Definition 4 (Weighted Timed Automata (WTA)). Let 𝑋 be a
finite set of clocks and AP a finite set of atoms. AWTA is a tupleA =
(𝐿, 𝑙0, 𝑋, Σ,𝑇 , 𝐼 ,𝑊 , 𝐾, 𝐹), where:
• 𝐿 is a finite set of locations,
• 𝑙0 ∈ 𝐿 is an initial location,
• 𝑋 is a finite set of clocks,
• Σ is a finite set of actions,
• 𝑇 ⊆ 𝐿 × Σ × Φ(𝑋) × 2𝑋 × 𝐿 is a finite set of transitions,
• 𝐼 : 𝐿 → Δ(𝑋) is a function that associates to each location a
clock invariant,

1
Here, we use this kind of clocks constraints to ensure the correctness of the construc-

tion of our symbolic representation of WTA

• 𝑊 : 𝑇 → N≥0 is a function that labels the elements of 𝑇 ,
• 𝐾 : 𝐿 → 2

AP is a labeling function for the locations,
• 𝐹 ⊆ 𝐿 is a set of goal locations.

We write l
𝑎,𝜙,𝑌
−−−−→

𝑤
l′ instead of (𝑙, 𝑎, 𝜙, 𝑌 , 𝑙 ′)𝑤 ∈ 𝑇 for an edge from 𝑙

to 𝑙 ′ with guard 𝜙 ∈ Φ(𝑋), reset set 𝑌 ⊆ 𝑋 and𝑤 ∈ N≥0. The value
𝑊 (𝑡) given to edge 𝑡 = (𝑙, 𝑎, 𝜙, 𝑌 , 𝑙 ′)𝑤 where 𝑡 ∈ 𝑇 represents the

cost of taking that edge. The value𝑊 (𝑡) given to edge 𝑡 represents

the deactivation cost. Since cost information cannot be employed as

constraints on edges, the undecidability of Hybrid Automata (HA)

[28] is avoided in the case of WTA [12] (i.e., decidability results

are preserved forWTA). InWTA, costs are explicitly defined in its

syntax, however, they do not influence the discrete behavior of the

system. Since there is no cost constraint, the semantics of aWTA is

similar to that of a TA. It is thus given as aWTS.

Definition 5 (Semantics of WTA). Let A = (𝐿, 𝑙0, 𝑋, Σ,𝑇 , 𝐼 ,
𝑊 , 𝐾, 𝐹) be aWTA. The semantics ofWTAA is given by aWTS(A)
= (S, s0, ΣΔ, 𝐸,𝑊 ′, 𝐾 ′, S𝐹) where:
• 𝑆 ⊆ 𝐿 × RX

≥0 is a set of states,
• 𝑠0 = (𝑙0, 𝜈0) with 𝜈0 (𝑥) = 0 for all 𝑥 ∈ X and 𝜈0 |= 𝐼 (𝑙0),
• ΣΔ = Σ ⊎ R≥0,
• 𝐸 ⊆ 𝑆 ×ΣΔ ×𝑆 is a transition relation defined by the following
two rules:
– Discrete transition: (𝑙, 𝜈) 𝑎−→

𝑤
(𝑙 ′, 𝜈′) for 𝑎 ∈ Σ and𝑤 ∈

N≥0 iff l
𝑎,𝜙,𝑌
−−−−→

𝑤
l′, 𝜈 |= 𝜙 , 𝜈 ′ = 𝜈 [𝑌 ← 0] and 𝜈 ′ |= I(𝑙 ′)

and,

– Delay transition: (𝑙, 𝜈) 𝑑−→ (𝑙, 𝜈 + 𝑑), for some 𝑑 ∈ R≥0
iff 𝜈 + 𝑑 |= I(𝑙).

• 𝑊 ′ =𝑊 ,
• 𝐾 ′ ((𝑙, 𝜈)) = 𝐾 (𝑙) ∪ {𝜙 ∈ Φ(𝑋) | 𝜈 |= 𝜙},
• 𝑆𝐹 ⊆ 𝐹 × RX

≥0 is a set of states,

2.4 Paths and n-strategy
A path 𝜌 in WTS(A) is an infinite sequence of consecutive delays

and discrete transitions. A finite path fragment of A is a run in

WTS(A) starting from the initial state 𝑠0 = (𝑙0, 𝜈0), with delay and

discrete transitions alternating along the path: 𝜌 = 𝑠0
𝑑0−−→ 𝑠′

1

a0−−→
𝑤0

𝑠1
𝑑1−−→ 𝑠′

2

a1−−→
𝑤1

𝑠2 . . . 𝑠𝑛−1
𝑑𝑛−1−−−−→ 𝑠′𝑛

𝑎𝑛−−→
𝑤𝑛

𝑠𝑛 . . . or more compactly

𝑠0
𝑑0,𝑎0−−−−→
𝑤0

𝑠1
𝑑1,a1−−−−→
𝑤1

𝑠2
𝑑2,𝑎2−−−−→
𝑤2

𝑠3 . . . 𝑠𝑛−1
𝑑𝑛−1,𝑎𝑛−1−−−−−−−−→

𝑤𝑛−1
𝑠𝑛 . . ., where

𝜈0 (𝑥) = 0 for every 𝑥 ∈ 𝑋 . A path of WTS(A) is initial if 𝑠0 =

(𝑙0, 𝜈0) ∈ 𝑆 , where 𝑙0 ∈ 𝐿, 𝜈0 assigns 0 to each clock, and maximal
if it ends in a goal location. We write 𝜌𝑖 to denote the 𝑖-th element

𝑠𝑖 = (𝑙𝑖 , 𝜈𝑖) of 𝜌 , 𝜌≤𝑖 to denote the prefix 𝑠0, . . . , 𝑠𝑖 of 𝜌 and 𝜌≥𝑖
to denote the suffix 𝑠𝑖 , 𝑠𝑖+1 . . . of 𝜌 . A history is any finite prefix

of some path. We use 𝐻 to denote the set of histories. Due to the

infinite nature of WTSs, i.e. their continuous transitions, given a

WTA A we will use here ind(𝑇 ′) to indicate the set of deactivated

edges 𝑇 ′ ⊂ 𝑇 in A induced in the WTS(A).

Definition 6. LetA be aWTA and 𝑛 be a natural number. Given
a modelWTS(A), a 𝑛-strategy is a function𝔖 : 𝐻 → 2

𝑇 such that,
given a history ℎ, returns a subset 𝑇 ′ such that: (i) 𝑇 ′ ⊂ 𝑇 (𝑙𝑎𝑠𝑡 (ℎ)),

(ii) ind(𝑇 ′) ⊂ 𝐸 (𝑙𝑎𝑠𝑡 (ℎ)), (iii) (∑𝑡 ∈𝑇 ′)W(𝑡)) ≤ 𝑛. A memoryless
𝑛-strategy is a 𝑛-strategy 𝔖 such that for all histories ℎ and ℎ′ if
𝑙𝑎𝑠𝑡 (ℎ) = 𝑙𝑎𝑠𝑡 (ℎ′) then𝔖(ℎ) = 𝔖(ℎ′).
A path 𝜌 is compatible with a 𝑛-strategy if for all 𝑖 ≥ 1, (𝜌𝑖 , 𝜎, 𝜌𝑖+1)
∉ 𝔖(𝜌≤𝑖), where 𝜎 ∈ Σ. Given a state 𝑠 = (𝑙, 𝜈) and a 𝑛-strategy

𝔖, 𝑂𝑢𝑡 (𝑠,𝔖) refers to the set of pathways starting from 𝑠 that

are consistent with𝔖.Definition 6 represents the case where the

demon’s strategy can deactivate edges.

2.5 Predecessor operator and Zone Graph
Since the number of states in aWTA is infinite, it is impossible to

build a finite state automaton. Thus, a symbolic semantics called

zone graphwas proposed for a finite representation of TA behaviors

[11]. The zone graph representation of TA is not only an important

implementation approach employed bymost contemporary TA tools

[11], but it also provides a theoretical foundation for demonstrating

the decidability of semantic properties for a given TA. In a zone

graph, clock zones represent sets of clock valuations symbolically.

A clock zone 𝑍 ∈ R𝑋
≥0 over a set of clocks 𝑋 is a set of valuations

that satisfy a conjunction of constraints. Formally, the clock zone

for the constraint 𝜙 is 𝑍 = {𝜈 | 𝜈 (𝑥) |= 𝜙, 𝑥 ∈ 𝑋 }. Geometrically, a

zone is a convex polyhedron. A symbolic state (or zone) is a pair

Z = (𝑙, 𝑍), where 𝑙 is a location and 𝑍 is a clock zone. A zone Z
= (𝑙, 𝑍) represents all the states 𝑧 = (𝑙 ′, 𝜈) ∈ Z if 𝑙 = 𝑙 ′ and 𝜈 ∈ 𝑍 ,
indicating that a state is contained in a zone. We can now define

the symbolic discrete and delay predecessor operations on zones

as follows:

Definition 7 (Discrete and Time Predecessor). LetZ be a
zone and 𝑒 be an edge of a WTS(A), then:

disc-pred(𝑒,Z) = {𝑧 | ∃𝑧′ ∈ Z, 𝑧 𝑒−→
𝑤
𝑧′}

time-pred(Z) = {𝑧 | ∃𝑧′ ∈ Z, 𝑧 𝑑−→
𝑤
𝑧′ 𝑎𝑛𝑑 𝑑 ∈ R≥0}

That is, disc-pred(𝑡,Z) is the set of all 𝑒-predecessors of states in
Z and time-pred(Z) is the set of all time-predecessors of states

in Z. According to these definitions, if Z is a zone then time-

pred(Z) and disc-pred(𝑒,Z) are also zones, meaning that zones

are preserved by the above predecessor operations and𝑤 ∈ N≥0.
Definition 8 (Predecessor). LetZ be a zone and 𝑒 be a edge of

aWTS(A), then :

pred(𝑒,Z) = disc-pred(𝑒, time-pred(Z))
That is, pred is the set of all states that can reach some state inZ
by performing a 𝑒 discrete transition and allowing some time (delay

transition) to pass.

Definition 9 (Zone Graph). Given aWTAA, a zone graph is a
transition system ZG(A) = (𝑄,𝑞0, (Σ ∪ {𝜖}),→ZG, 𝐾𝑍), where:
• 𝑄 consists of pairs 𝑞 = (𝑙, 𝑍) where 𝑙 ∈ 𝐿, and 𝑍 ∈ Φ+ (𝑋) is a
non-empty clock zone with 𝑍 ⊆ 𝐼 (𝑙),
• 𝑞0 = (𝑙0, 𝑍0) ∈ 𝑄 is the initial zone with 𝑍0 = ⟦

∧
𝑥∈X 𝑥 = 0⟧,

• Σ is the set of labels of A,
• →ZG ⊆ Q×(𝑇∪ {𝜖})×Q is a set of transitions, where each tran-
sition in ZG(A) is a labeled by a transition 𝑒 = (𝑙, 𝑎, 𝜙, 𝑌 , 𝑙 ′)𝑤
∈ 𝑇 , where 𝑇 is in A (and Σ = 𝑇) and 𝜖 is a symbolic delay
transition. For each 𝑒 ∈ (Σ ∪ {𝜖}), transitions are defined as:

– For every 𝑒 inA and zone 𝑞 in Q, there exists a discrete tran-
sition (𝑞, 𝑒, 𝑞′), where 𝑞 = (𝑙, 𝑍) 𝑒−→ZG 𝑞′ = (𝑙 ′, post(𝑒, (𝑙,
𝑍))) if post(𝑒, (𝑙, 𝑍)) ≠ ∅,

– For a clock zone 𝑍 , there exists a delay transition (𝑞, 𝜖, 𝑞′),
where 𝑞 = (𝑙, 𝑍) 𝜖−→ZG 𝑞′ = (𝑙, 𝑍 ′) and 𝑍 ′ = time-succ(𝑙,
𝑍) ∩ 𝐼 (𝑙) where 𝑍 ′ is a time successor of 𝑍 .

• 𝐾𝑧 (𝑙, 𝑍) = 𝐾 (𝑙) ∪ {𝜙 ∈ Φ+ (𝑋) | 𝜈 |= 𝜙}

Every zone has a transitive 𝜖 delay transition to itself. An 𝜖

delay transition must be strict to maintain clock zones and is not

reflexive between zones. Since an 𝜖 transition is reflexive, the time

successor relation is also reflexive. The operations time-succ(𝑙, 𝑍)
and post(𝑒, (𝑙, 𝑍) present the set of time successors of any state in

(𝑙, 𝑍) and the successor of (𝑙, 𝑍) by the transition 𝑒 , respectively

(remember thatZ = (𝑙, 𝑍)).

3 TIMED OBSTRUCTION LOGIC
In this section, we define the syntax and semantics of our Timed

Obstruction Logic (TOL). Our definitions are based on [17, 18].

Definition 10. Let A be a WTA, AP a set of atomic propositions
(or atoms), a set 𝑋 of clocks of A and 𝐽 a non-empty set of clocks of
the formula, where 𝑋 ∩ 𝐽 = ∅. Formulas of Timed Obstruction Logic
(TOL) are defined by the following grammar:

𝜑 ::= ⊤ | 𝑝 | ¬𝜑 | 𝜑1 ∧ 𝜑2 | 𝜙 | ⟨ 𝑛⟩(𝜑1 U 𝜑2) | ⟨ 𝑛⟩(𝜑1 R 𝜑2) | 𝑗 .𝜑

where 𝑝 ∈ AP is an atomic formula, 𝑗 ∈ 𝐽 , 𝑛 ∈ N≥0 represents the
grade of the strategic operator, and 𝜙 ∈ Φ(𝑋 ∪ 𝐽).

It is possible to compare a formula clock and an automata clock,

for example, by using the clock constraint 𝜙 , which applies to both

formula clocks and clocks of the TA. The boolean connectives ⊥,
∨ and,→ can be defined as usual. Clock 𝑗 in 𝑗 .𝜑 is called a freeze

identifier and bounds the formula clock 𝑗 in 𝜑 . The interpretation is

that 𝑗 .𝜑 is valid in a state 𝑠 if 𝜑 holds in 𝑠 where clock 𝑗 starts with

value 0 in 𝑠 . This freeze identifier can be used in conjunction with

temporal constructs to indicate common timeliness requirements

such as punctuality, bounded response, and so on. As OL, we define

⟨ 𝑛⟩F𝜑 := ⟨ 𝑛⟩(⊤U𝜑), ⟨ 𝑛⟩G𝜑 := ⟨ 𝑛⟩(⊥R𝜑) and ⟨ 𝑛⟩(𝜑W𝜓) :=
⟨ 𝑛⟩(𝜓 R (𝜑 ∨ 𝜓)). The size |𝜑 | of a formula 𝜑 is the number of

its connectives. With the help of the freeze identifier operator of

TOL, a time constraint can be added concisely. For instance, the

formula 𝑗 .⟨ 𝑛⟩((𝜑1 ∧ 𝑗 ≤ 7) U𝜑2) intuitively means that there is

a demonic strategy such that all paths that are compatible with

the strategy, the property 𝜑1 holds continuously until within 7

time units 𝜑2 becomes valid. From the above formula, it is clear

that timing constraints are allowed. In this case, we will call the

formulas with timing constraints, such as timed temporal formulas.

The intuitive meaning of a formula ⟨ ⟩𝜑 with 𝜑 timed temporal

formula is: there is a demonic strategy such that all paths of the

WTS that are compatible with the strategy satisfy 𝜑 . Unlike OL, our

logical TOL does not use the next operator. This is because the time

domain is continuous and there is no unique next time. The next

operator could be added to our logic. However, it would only be

used in temporal semantics and our logic is more oriented towards

real-time semantics. Formulas of TOLwill be interpreted overWTS.

We can now precisely define the semantics of TOL formulas.

Definition 11 (TOL Semantics). Let A be a WTA, a set 𝑋 of
clocks of A and 𝐽 a non-empty set of clocks of the formula, 𝑝 ∈ AP,
𝜙 ∈ Φ(𝑋 ∪ 𝐽) andM = WTS(A). An extended state over 𝑆 is a triple
(𝑙, 𝜈, 𝜇), where 𝑠 = (𝑙, 𝜈) ∈ 𝑆 is a WTS state and 𝜇 a valuation for the
formula clocks in 𝐽 . The satisfaction relation between aWTSM, TOL
formulas 𝜑 and𝜓 and an extended state 𝑠𝜇 = (𝑙, 𝜈, 𝜇)2 of the formula,
is given inductively as follows:
• M, 𝑠 |= ⊤ for all state 𝑠 ,
• M, 𝑠 |= 𝑝 iff 𝑝 ∈ 𝐾 (𝑠),
• M, 𝑠 |= ¬𝜑 iff notM, 𝑠 |= 𝜑 (notationM, 𝑠 ̸ |= 𝜑),
• M, 𝑠 |= 𝜑1 ∧ 𝜑2 iffM, 𝑠 |= 𝜑1 andM, 𝑠 |= 𝜑2,
• M, 𝑠 |= 𝜙 iff 𝜈 |= 𝜙 ,
• M, 𝑠 |= ⟨ 𝑛⟩(𝜑 U𝜓) iff there is a 𝑛-strategy𝔖 such that for
all 𝜌 ∈ 𝑂𝑢𝑡 (𝑠,𝔖) there is a 𝑗 ∈ N such thatM, 𝜌 𝑗 |= 𝜓 and
for all 0 ≤ 𝑘 < 𝑗 ,M, 𝜌𝑘 |= 𝜑 ,
• M, 𝑠 |= ⟨ 𝑛⟩(𝜑 R𝜓) iff there is a 𝑛-strategy𝔖 such that for all,
𝜌 ∈ 𝑂𝑢𝑡 (𝑠,𝔖) we have that eitherM, 𝜌𝑖 |= 𝜓 for all 𝑖 ∈ N or
there is a 𝑘 ∈ N such thatM, 𝜌𝑘 |= 𝜑 andM, 𝜌𝑖 |= 𝜓 for all
0 ≤ 𝑖 ≤ 𝑘 ,
• M, 𝑠 |= 𝑗 .𝜑 iffM, (𝑙, 𝜈 [𝑗 ← 0]) |= 𝜑 .

Two formulas 𝜑 and𝜓 are semantically equivalent (denoted by

𝜑 ≡ 𝜓) iff for any modelM and extended state 𝑠 ofM,M, 𝑠 |= 𝜑
iffM, 𝑠 |= 𝜓 .

The relationship betweenWTA andWTS is defined as follows.

Definition 12. Let A be a WTA and 𝜑 ∈ TOL, then A |= 𝜑 iff
WTS(A) |= 𝜑 .

Let 𝜑 be a formula, the set of extended states satisfying 𝜑 is

independent of the valuation 𝜇 for the formula clocks. Thus, for any

state 𝑠 = (𝑙, 𝜈) in aWTS and valuations 𝜇, 𝜇′ for the formula clocks,

we can get that M, (𝑙, 𝜈, 𝜇) |= 𝜑 iff M, (𝑙, 𝜈, 𝜇′) |= 𝜑 . Therefore,
when 𝜑 is closed, it makes sense to talk about a state 𝑠 that satisfies

𝜑 .

Let𝜑 be any formula, (𝑋∪ 𝐽) a set of clocks (formula and automa-

ton) andA be aWTA, then Sat(𝜑) denotes the set of extended states
ofM = WTS(A) verifying, 𝜑 , i.e., Sat(𝜑) = {𝑠 ∈ 𝑆 | M, 𝑠 |= 𝜑}.
Next, we can establish the model checking problem.

Definition 13. GivenM, an extended state 𝑠 , and 𝜑 , the model
checking concerns determining whetherM, 𝑠 |= 𝜑 .

4 MODEL CHECKING
Here, we present our model checking algorithm for TOL. Further-

more, we show that the model checking problem for TOL is decid-

able in PSPACE-complete. The general structure of the algorithm

shown here is similar to OL model checking algorithm [18]. TOL

model checking algorithm is based on the computation of the set

Sat(𝜑) of all states satisfying a TOL formula𝜑 , followed by checking

whether the initial state is included in this set. AWTA A satisfies

TOL state formula𝜑 if and only if𝜑 holds in the initial state of WTA:

A |= 𝜑 iff 𝑙0 ∈ 𝐿 such that (𝑙0, 𝜈0, 𝜇0) ∈ Sat(𝜑), where 𝜈0 (𝑥) = 0 for

all 𝑥 ∈ 𝑋 and 𝜇0 (𝑥) = 0 for all 𝑗 ∈ 𝐽 . A TOL formula ⟨ 𝑛⟩((𝜑 U𝜓)
holds in a state 𝑠 iff ⟨ 𝑛⟩U(Sat(𝜓1), Sat(𝜓2)) with U being an TOL

operator. As mentioned in subsection 2.5, build aWTS(A) for some

2
To facilitate reading, from this point onward we will use only the symbol 𝑠 for an

extended state.

WTA A is therefore not practicable. Instead, the basic idea is to

construct a zone graph [11], which is built from theWTA A and

the TOL formula 𝜑 (i.e., ZG(A, 𝜑)). Since ZG(A, 𝜑) depends on 𝜑 ,

the definition of 𝐾𝑧 (in Definition 9) is modified as follows: 𝐾𝑧 (𝑙, 𝑍)
= 𝐾 (𝑙) ∪ {𝜙 ∈ Φ+ (𝑋) | 𝜈 |= 𝜙} ∪ {𝜙 ∈ Φ+𝜑 (𝐽) | 𝜈 |= 𝜙} (here Φ+𝜑 (𝐽)
denotes the set of clock constraints of 𝜑). In short, Algorithm 1

begins with aWTA A and a formula 𝜑 used to construct the zone

graph ZG(A, 𝜑) and returns the set of symbolic states ofA satisfy-

ing 𝜑 . The Algorithm 1 works as follows: it first constructs the zone

graph ZG(A, 𝜑), then it recursively computes, for all subformulas

𝜓 , the sets of symbolic states Sat(𝜓) for which𝜓 is satisfied. The

computation of Sat(𝜓) for𝜓 being true, a proposition 𝑝 , or a clock

constraint 𝜙 is explicit. The negation and conjunction computa-

tions are straightforward. The computation of the TOL formula

⟨ 𝑛⟩(𝜓1 U𝜓2) and ⟨ 𝑛⟩(𝜓1 R𝜓2) are defined under the computation

of predecessor sets. However, the notion of predecessors is differ-

ent for the quantifiers in TCTL [29][2]. The computation of the

TOL formula ⟨ 𝑛⟩(𝜓1 U𝜓2) can be reduced to the computation of

an OL formula. The computation of ⟨ 𝑛⟩(𝜓1 U 𝜓2) is a fixed-point
iteration that starts at Sat(𝜓2) and iteratively adds all predecessor

symbolic states that are in Sat(𝜓1). We need to define a new prede-

cessor operator to compute all predecessors with the obstruction

operator. We will now use our zone graph to compute predecessors.

The predecessor computation is done by the operator ▼(𝑛,Z) for
a symbolic stateZ (zones) and a number 𝑛, computes the set of all

predecessor symbolic states (likewise, for the operator R).

Definition 14. Given a symbolic stateZ and 𝑒 an edge, we define
Pred(Z) = ⋃

𝑒∈𝐸 pred(𝑒,Z).

It is well known that the union of zones could create non-convex

zones. However, the problem related to the union of zones has been

addressed in different kinds of literature [27, 49, 50], yielding excel-

lent results and algorithms for generating convex zones. We could

use the algorithm presented in [49] to obtain convex zones again.

Now, the obstruction predecessor of a zoneZ, denoted ▼(𝑛,Z), is
defined as the set of symbolic states that characterizes all predeces-

sors of the symbolic stateZ, where each state 𝑧 satisfies▶ (𝑧, 𝑛,Z),
that is, it can transition to a state not in the setZ where the sum

of all successors of 𝑧 is less than or equal to 𝑛.

Definition 15. Let 𝑛 ∈ N andZ a symbolic state, we write:

▶ (𝑧, 𝑛,Z) = (
∑︁

𝑧′ ∈ Z ∧ 𝜎 ∈ ΣΔ

W(𝑧, 𝜎, 𝑧′)) ≤ 𝑛

▼(𝑛,Z) = {𝑧 ∈ Pred(Z) | ▶ (𝑧, 𝑛,Z)}

Proposition 1. Let 𝑧 a state, 𝑛 a natural number, andZ a sym-
bolic state (or zone), then 𝑧 ∈ ▼(𝑛,Z) iff 𝑧 ∈ Z.

Proof. (Sketch) A proof of this proposition may be obtained

from TA [2]. □

For the U and R operators, auxiliary methods are defined. These

methods are listed in Algorithm 2 and Algorithm 3. Algorithm 2

shows the backward search for computing the method ⟨ 𝑛⟩U (Sat
(𝜓1), Sat(𝜓2)) in line 15 of Algorithm 1. Algorithm 3 shows the

backward search for computing the method ⟨ 𝑛⟩R(Sat(𝜓), Sat(𝜓2))
in line 17 of Algorithm 1. Termination of the Algorithm 1 intuitively

follows, as the number of states in the zone graph is finite. The fol-

lowing proposition establishes the termination and the correctness

of our model checking algorithm.

Algorithm 1 TOL model checking

Input: A modelM = ZG(A, 𝜑) where A is aWTA and 𝜑 is a TOL

formula

Output: Sat(𝜑) ← {𝑞 ∈ 𝑄 | M, 𝑞 |= 𝜑}
1: for all i ≤ |𝜑 | do
2: for all𝜓 ∈ 𝑆𝑢𝑏 (𝜑) 𝑤𝑖𝑡ℎ |𝜓 | = 𝑖 do
3: switch (𝜓) do
4: case𝜓 = ⊤
5: Sat(𝜓) ← 𝑄

6: case𝜓 = 𝑝

7: Sat(𝜓) ← {𝑞 ∈ 𝑄 | 𝑝 ∈ 𝐾𝑧 (𝑞)}
8: case𝜓 = ¬𝜓1
9: Sat(𝜓) ← 𝑄 \ Sat(𝜓)
10: case𝜓 = 𝜙

11: Sat(𝜓) ← 𝜙

12: case𝜓 = 𝜓1 ∧𝜓2
13: Sat(𝜓) ← Sat(𝜓1) ∩ Sat(𝜓2)
14: case𝜓 = ⟨ 𝑛⟩(𝜓1 U𝜓2)
15: Sat(𝜓) ← 𝑛U(Sat(𝜓1), Sat(𝜓2))
16: case𝜓 = ⟨ 𝑛⟩(𝜓1 R𝜓2)
17: Sat(𝜓) ← 𝑛R(Sat(𝜓1), Sat(𝜓2))
18: case𝜓 = 𝑗 .𝜓1
19: Sat(𝜓) ← Sat(𝜓1)

Algorithm 2 Backward search for computing 𝑛U

Input: A TOL formula ⟨ 𝑛⟩(𝜓1 U𝜓2)
Output: Sat(⟨ 𝑛⟩(𝜓1 U𝜓2)) ← {𝑞 ∈ 𝑄 | M, 𝑞 |= ⟨ 𝑛⟩(𝜓1 U𝜓2)}
1: 𝑋 ← ∅
2: 𝑌 ← 𝜓2
3: while 𝑌 ≠ 𝑋 do
4: 𝑋 ← 𝑌

5: 𝑌 ← 𝜓2 ∪ (𝜓1 ∩ ▼(𝑛,𝑋))
6: return 𝑌

Algorithm 3 Backward search for computing 𝑛R

Input: A formula ⟨ 𝑛⟩(𝜓1 R𝜓2)
Output: Sat(⟨ 𝑛⟩(𝜓1 R𝜓2)) ← {𝑞 ∈ 𝑄 | M, 𝑞 |= ⟨ 𝑛⟩(𝜓1 R𝜓2)}
1: 𝑋 ← ⊤
2: 𝑌 ← 𝜓2
3: while 𝑌 ≠ 𝑋 do
4: 𝑋 ← 𝑌

5: 𝑌 ← 𝜓2 ∩ (𝜓1 ∪ ▼(𝑛,𝑋))
6: return 𝑌

Proposition 2 (Termination). Let A be a WTA and 𝜑 be a
formula. Algorithm 1 always terminates on input ZG(A, 𝜑).

Proof. (Sketch) Algorithm 1 computes the zone graph in a finite

time. Since finite sets bound the number of iterations, the compu-

tation of the subformulas Sub(𝜓) and the updating of the labeling

function 𝐾𝑧 are also bounded. Thus, Algorithm 1 terminates. □

Let us now prove the correctness of the model checking algo-

rithm. The following lemma is first defined.

Lemma 1. Let 𝜑 be a formula, and A be a WTA. The extended
state 𝑠 = (𝑙, 𝜈, 𝜇) of the corresponding WTS(A) satisfies 𝜑 iff, the
symbolic state 𝑞 = (𝑙, 𝑍) of the corresponding zone graph ZG(A, 𝜑)
satisfies the formula 𝜑 .

Proposition 3. Let A be aWTA, 𝜑 be aTOL formula andM =
WTS(A) be aWTS. Then, 𝑝 ∈ 𝐾𝑧 (𝑞) iff,M, 𝑠 |= 𝜑 where 𝑞 = (𝑙, 𝑍) ∈
𝑄 and 𝑠 = (𝑙, 𝜈, 𝜇) ∈ 𝑆 .

Proof. (Sketch) We show by induction over the structure of 𝜑

that, for every 𝜓 ∈ Sub(𝜑) and 𝑞 = (𝑙, 𝑍) ∈ 𝑄 , 𝑝 ∈ 𝐾𝑧 (𝑞) holds iff,
M, 𝑠 |=𝜓 .
(Soundness) For every 𝜓 ∈ Sub(𝜑) and 𝑞 = (𝑙, 𝑍) ∈ 𝑄 , 𝑝 ∈ 𝐾𝑧 (𝑞)
impliesM, 𝑠 |= 𝜓 . We prove this by induction over the structure

of 𝜓 as follows. The base cases, 𝜓 = ⊤ and 𝜓 = 𝑝 (𝑝 ∈ AP), are
obvious. For the induction step, the cases of boolean combinations,

𝜓 = ¬𝜓 and 𝜓 = 𝜓1 ∧ 𝜓2, of maximal state formulas is trivial.

The induction step for the remaining obstruction operators is as

follows: If𝜓 = 𝑛U(Sat(𝜓1), Sat(𝜓2)). Let 𝑌 be the set of symbolic

states of 𝑄 that is returned by algorithm 2 at line 6. We need to

show that 𝑌 = Sat(𝜓2) provided that 𝑋 = Sat(𝜓1). We first show

that Sat(𝜓) ⊆ 𝑌 . Suppose that 𝑞 ∈ Sat(𝜓). By the definition of

satisfaction, this means that there is a strategy𝔖 such that given

any 𝜌 = 𝑞1, 𝑞2, . . . in 𝑂𝑢𝑡 (𝑞,𝔖). Note that since the cardinality of a

zone graphM = ZG(A, 𝜑) is finite (i.e., finite zones) and we can

suppose that𝔖 is memoryless, we can focus on the finite prefix

𝑞1, . . . 𝑞𝑚 of 𝜌 in which all the 𝑞𝑖 are distinct. Let 𝐴𝑖 (for 𝑖 < |M|)
be the value of the variable 𝐴 before the first 𝑖-th iteration of the

algorithm. We show that if 𝐶 ⊆ 𝐴𝑖 then 𝐶 ⊆ 𝐴𝑖+1. Firstly, note
that 𝐴𝑖 ⊆ Sat(𝜓1) for all 𝑖 . In algorithm 2 at line 5, we have that

𝐴𝑖+1 = ▼(𝑛,𝐴𝑖) ∩ Sat(𝜓1), i.e., 𝐴𝑖+1 is computed by taking all the

element of Sat(𝜓) that have at most 𝑛 successors that are not in 𝐴𝑖 .

Hence, 𝑝 ∈ 𝐾𝑧 (𝑞) impliesM, 𝑠 |= 𝜓 . If 𝜓 = 𝑛R(Sat(𝜓1), Sat(𝜓2))
then the proof is similar to the above.

(Completeness) We prove that ifM, 𝑠 |= 𝜑 then 𝑠 ∈ Sat(𝜑). So, we
can prove whether for every𝜓 ∈ Sub(𝜑) and 𝑠 ∈ 𝑆 , impliesM, 𝑠 ̸ |=
𝜓 as follows. We prove this over the structure of𝜓 . The base cases,

𝜓 = ⊤ and𝜓 = 𝑝 (𝑝 ∈ AP), are obvious. For the induction step, the

cases of boolean combinations,𝜓 = ¬𝜓 , then𝜓 was model checked

and it was found to be true. Thus,M, 𝑠 ̸ |=𝜓 . For𝜓 = 𝜓1∧𝜓2, then𝜓1
and𝜓2 were model checked and at least one of themwas found to be

false. Therefore,M, 𝑠 ̸ |=𝜓 . The proof for𝜓 = 𝑛U(Sat(𝜓1), Sat(𝜓2))
thenM, 𝑠 ̸ |= 𝜓 is similar to the above case (similar for R). □

The following theorem establishes the complexity of our model

checking algorithm 1.

Theorem 1. The model checking problem of TOL on WTA is
PSPACE-complete.

Proof. PSPACE-hardness: (Sketch) The proof follows from the

PSPA CE-hardness of the model checking of the logic TCTL over

TA [2], since WTA [4] are an extension of TA and TOL is the corre-

sponding extension of TCTL and OL [18]: If we take the 0-fragment

of TOL to be the set of TOL formulas in which the grade of any

strategic operator is 0 (i.e., TOL
0
) then TOL

0
= TCTL and WTA =

TA.

PSPACE-membership: (Sketch) To prove PSPACE-membership,

we use the idea suggested in [2]. Let A be a WTA, 𝜑 ∈ TOL, 𝐷 the

number of clocks of the automaton A, 𝐶𝑥 the maximal constant

associated with of clocksA and𝜑 ,𝑚 the nesting depth of the largest

fixed-point quantifier in 𝜑 . We consider the zone graph ZG(A, 𝜑)
[11] associated with A and the formula 𝜑 with clocks 𝑋 . The zone

graph depends on the maximum constants with which the clocks

in A and 𝜑 are compared. Using the zone graph ZG(A, 𝜑), model

checking of TOL formulas can be done in polynomial time in the

number of 𝐷 , 𝐶 , and 𝑚. This can be shown as in [2]. According

to [1], A |= 𝜑 iff A′ |= 𝜑 , where A′ = 𝑢𝑛𝑡𝑖𝑚𝑒𝑑 (A) is the untimed

automaton associated with A and 𝜑 (the zone graph ZG(A, 𝜑)
[11]). The size of A′ is polynomial in the length of the timing

constraints of the givenWTA automaton and in the length of the

formula 𝜑 (assuming binary encoding of the constants), that is,

|A′ | = 𝑂 (|𝜑 | · (|𝐿 | + |𝑇 |) · 𝐷! · ∏
𝑥∈𝑋 𝐶𝑥). The zone graph

A′ can be constructed in linear time, which is also bounded by

𝑂 (𝜑 · (|𝐿 | + |𝑇 |) · 𝐷! ·∏𝑥∈𝑋 𝐶𝑥) [2]. On the zone graph, untimed

model checking can be done in time 𝑂 ((|𝜑 | · |A′ |). Obviously, we
get an algorithm of time complexity 𝑂 (|𝜑 | · (|𝐿 | + |𝑇 |)). □

5 TOL VS. OTHER LOGICS
In this section, we establish relative relation between TOL with the

Timed Computation Tree Logic (TCTL) [29], Timed 𝜇-Calculus (T𝜇)

[29] and Timed Alternating-Time Temporal Logic (TATL) [30].

5.1 TOL and TCTL
Here, we show that TOL extends TCTL[29] with a reduction to a

fragment of our logic. We define the 0-fragment of TOL to be the

set of TOL formulas in which the grade of any strategic operator is

0. We denote by TOL
0
such a fragment. Let (−)• be the mapping

from TOL
0
to TCTL formulas that translate each strategic operator

⟨ 0⟩ with the universal path operator A of TCTL, i.e., the function

recursively defined as follows. Let 𝜑 be a TOL formula. Then TCTL

fragment formula (𝜑)• is defined as follows, where 𝑝 ∈ AP

(⊤)• = ⊤
(𝑝)• = 𝑝

(¬𝜑)• = ¬(𝜑)•
(𝜑1 ∧ 𝜑2)• = (𝜑1)• ∧ (𝜑2)•
(𝜙)• = 𝜙

(A(𝜑1 U𝜑2))•= ⟨ 0⟩((𝜑1)• U (𝜑2)•)
(A(𝜑1 R𝜑2))•= ⟨ 0⟩((𝜑1)• R (𝜑2)•)
(𝑗 .𝜑)• = 𝑗 .(𝜑)•

The translation from TOL to TCTL can be reversed. Our TOL logic

makes two important contributions to TCTL. We extend TCTL with

the same model checking complexity. Thus, we gain expressiveness

without sacrificing tractability.

Theorem 2. Let A be a WTA. For every modelM = WTS(A),
state 𝑠 , and formula 𝜑 ∈ TOL0, we have thatM, 𝑠 |= 𝜑 if and only if
M, 𝑠 |=𝑇𝐶𝑇𝐿 (𝜑)•, where |=𝑇𝐶𝑇𝐿 is the TCTL satisfaction relation.

Proof. The result follows by observing that, for any state 𝑠 , the

set of paths compatible with a 0-strategy𝔖 starting at 𝑠 is equal to

the set of paths starting at 𝑠 and that given any two 0-strategies𝔖1

and𝔖2 we have that 𝑂𝑢𝑡 (𝑠,𝔖1) = 𝑂𝑢𝑡 (𝑠,𝔖2). □

5.2 TOL and 𝑇𝜇
T𝜇 is an extension of the modal 𝜇-calculus [34] with clocks. Let AP

be a non-empty at most countable set of atomic propositions, and

V a non-empty at most countable set of formula variables. The

formal definition of the formulas is as follows.

𝜑 ::= ⊤ | 𝑝 | 𝑌 | 𝜙 | ¬𝜑 | 𝜑1 ∧ 𝜑2 | 𝜑1 ▷ 𝜑2 | 𝑗 .𝜑 | 𝜇 𝑌 .𝜑
where 𝑝 ∈ AP, 𝑌 ∈ V , 𝜙 ∈ Φ(𝑋) and 𝑗 ∈ 𝑋𝜑 , where 𝑋 is the set of

clocks of the automaton and 𝑋𝜑 is a set of clocks of the formula. In

𝜇 𝑌 .𝜑 it is required that the variable𝑌 occurs in the scope of an even

number of negations in 𝜑 . The greatest fix-point operator can be

defined by 𝜈 𝑌 .𝜑 = The ▷ operator can be considered a (timed) next

operator, where a state satisfies 𝜑1 ▷ 𝜑2 if one of its time successors

has an action transition whose destination state satisfies 𝜑2, and

every intermediate time successor (including this one) fulfills 𝜑1
or 𝜑2. Here, we show that TOL can be encoded into T𝜇 with a

reduction to a fragment of our logic. Specifically, we show how to

translate each TOL formula 𝜑 to a T𝜇 formula (𝜑)𝑇 𝜇 and that given

a WTA A such thatM = WTS(A). Now, let (−)𝑇 𝜇 be the function

from TOL formulas to 𝑇𝜇 formulas, defined as follows:

(⊤)𝑇 𝜇 = ⊤
(𝑝)𝑇 𝜇 = 𝑝

(𝜙)𝑇 𝜇 = 𝜙

(¬𝜑)𝑇 𝜇 = ¬(𝜑)𝑇 𝜇
(𝜑1 ∧ 𝜑2)𝑇 𝜇 = (𝜑1)𝑇 𝜇 ∧ (𝜑2)𝑇 𝜇
(𝑗 .𝜑)𝑇 𝜇 = 𝑗 .(𝜑)𝑇 𝜇
(⟨ 0⟩(𝜑1 U𝜑2))𝑇 𝜇 = 𝜇 𝑌 .((𝜑2)𝑇 𝜇 ∨ ((𝜑1)𝑇 𝜇 ▷ 𝑌))
(⟨ 0⟩(𝜑1 R𝜑2)))𝑇 𝜇= 𝜈 𝑌 ((𝜑2)𝑇 𝜇 ∧ ((𝜑1)𝑇 𝜇 ▷ 𝑌))

Note that (𝜑)𝑇 𝜇 is a closed 𝑇𝜇 formula for every formula 𝜑 . Let us

call unary a TOL modelM such that𝑊 (𝑡) = 1 for all 𝑡 ∈ 𝑇 .

Theorem 3. IfM is a unary WTS then for every TOL formula 𝜑
and state 𝑠 we have thatM, 𝑠 |= 𝜑 iffM, 𝑠 |= (𝜑)𝑇 𝜇 .

5.3 TOL and TATL
Here, we compare our TOL with TATL [30]. We show that given a

TOL formula 𝜑 and aWTAA (M =WTS(A)) that satisfies it, there

is a Timed Concurrent Game Structure (TCGS)[14] that satisfies a

TATL translation of 𝜑 . First, define a rooted TOL as a pair ⟨M, 𝑠⟩
whereM is a WTS(A) and 𝑠 is one of its states. Given a natural

number 𝑛, let 𝑆≤𝑛 be the subset of 𝑆 × 2𝐸 defined by (𝑠, 𝐸) ∈ 𝑆≤𝑛
iff either 𝐸 = ∅ or each 𝑒 ∈ 𝐸 has 𝑠 as source and (∑𝑒∈𝐸𝑊 (𝑒)) ≤ 𝑛.
If ⟨M, 𝑠⟩ is a rooted TOL model and 𝑛 is a natural number, then

G𝑛
M = ⟨𝑄,𝑞𝑖 ,AP,Ag, 𝑋, 𝐼 , 𝑎𝑐𝑡𝐷 , 𝑎𝑐𝑡𝑇 , 𝑃, 𝛿,V⟩ is the TCGS, where:
(𝑎) 𝑄 = 𝑄𝐷 ∪𝑄𝑇 is a set of states, where 𝑄𝐷 = 𝑆 and 𝑄𝑇 = 𝑆≤𝑛 .
Moreover, 𝑞𝐼 = 𝑠 is the initial state. The set 𝑄𝐷 is the set of states

where is the Demon’s turn to move, while 𝑄𝑇 is the set of states

in which is the Traveler’s turn to move. (𝑏) AP is a set of atomic

formulas labeling states of M. (𝑐) is a set of clocks. (𝑑) is the
invariant of each state.(𝑒) Ag = {𝐷,𝑇 } where 𝐷 is the Demon and

𝑇 is the Traveler. (𝑓) The set of actions 𝑎𝑐𝑡𝐷 of the Demon is equal

to the set of subset of 𝑅 appearing in 𝑆≤𝑛 plus the idle action ★.

More precisely 𝑎𝑐𝑡𝐷 = {𝐸 ∈ 2𝑅 : ∃𝑞 ∈ 𝑆≤𝑛 ∧𝑞 = ⟨𝑠, 𝐸⟩} ∪ {★}. (𝑔)
The set of actions 𝑎𝑐𝑡𝑇 of the Traveler is 𝑅 ∪ {★}. We denote by

𝑎𝑐𝑡 = 𝑎𝑐𝑡𝐷 ∪𝑎𝑐𝑡𝑇 . (ℎ) The protocol function 𝑃 : 𝑄 ×Ag→ 2
𝑎𝑐𝑡 \ ∅

is defined as follows. For every 𝑞 ∈ 𝑄𝐷 , we have that 𝑃 (𝑞, 𝑖) is
equal to 𝑌𝑞 = {𝐸 ∈ 2𝑅 : ⟨𝑞, 𝐸⟩ ∈ 𝑆≤𝑛} if 𝑖 = 𝐷 , and {★} otherwise.
For every 𝑞 ∈ 𝑄𝑇 , we have that if 𝑞 = ⟨𝑠, 𝐸⟩ then 𝑃 (𝑞, 𝑖) is equal to
{𝑒 ∈ 𝑅 : 𝑒 ∉ 𝐸∧𝑠′ ∈ 𝑆} if 𝑖 = 𝑇 and it is equal to {★} otherwise. (𝑖)
The transition function 𝛿 : 𝑄 × (𝑎𝑐𝑡𝐷 ⊎R≥0) × (𝑎𝑐𝑡𝑇 ⊎R≥0) → 𝑄 is

defined as follows: 𝛿 (𝑞, 𝐸,★) = ⟨𝑞, 𝐸⟩ iff𝑞 ∈ 𝑄𝐷 and 𝛿 (𝑞, ⟨𝑠, 𝑠′⟩,★) =
𝑠′ iff 𝑞 = ⟨𝑠, 𝐸⟩ ∈ 𝑄𝑇 and ⟨𝑠, 𝑠′⟩ ∉ 𝐸. (𝑗) The labeling function

𝑉 : 𝑆 → 2
AP

is defined by 𝑉 (𝑞) = 𝐾 (𝑞) for any 𝑞 ∈ 𝑄𝐷 and

𝑉 (𝑞) = ∅ for any 𝑞 ∈ 𝑄𝑇 .
Note that given aM and a natural number 𝑛, the TCGS G𝑛

M
can have a number of states that is exponential in the number

of states ofM. Consider the function from TOL formulas to TATL

formulas, inductively defined by:

(⊤)A = ⊤
(𝑝)A = 𝑝

(𝜙)A = 𝜙

(¬𝜑)A = ¬(𝜑)A
(𝜑1 ∧ 𝜑2)A = (𝜑1)A ∧ (𝜑2)A
(𝑗 .𝜑)A = 𝑗 .(𝜑)A
(⟨ 𝑛⟩(𝜑1 U𝜑2))A = ⟨⟨𝐷⟩⟩ (𝜑)A U (𝜓)A
(⟨ 𝑛⟩(𝜑1 R𝜑2)))A= ⟨⟨𝐷⟩⟩ (𝜑)A R (𝜓)A

Given a TCGS G𝑛
M as the one defined above, and a path 𝜌 of the

TCGS, we write 𝜌𝐷 for the subsequence of 𝜌 containing only states

that are in 𝑄𝐷 . If Δ is a TATL strategy and 𝑞 ∈ 𝑄𝐷 is a state,

then 𝑂𝑢𝑡𝐷 (𝑞,Δ) denotes the set of sequences {𝜌 ∈ 𝑄𝜔
𝐷

: 𝜌 =

𝜋𝐷 for some 𝜋 ∈ 𝑂𝑢𝑡 (𝑞,Δ)}.
Theorem 4. Let 𝜑 be any TOL formula that contains at most a

strategic operator ⟨ 𝑛⟩, we have thatM, 𝑠 |= 𝜑 iff G𝑛
M , 𝑠 |=𝐷 (𝜑)

A.

6 CASE STUDY
Based on the concepts of AG presented in Subsection 2.1, we would

like to check whether there are MTD response strategies to satisfy

some security objectives. To achieve this, we assume that: (1) The
defender always knows the AG state reached by the attacker (called

attacker current state). (2) At every moment, there is a unique at-

tacker current state in the AG. (3) When detecting the attacker

current state, the defender can activate a (or a subset of) MTD(s)

temporarily removing an (a subset of) outgoing edge(s). The de-

fender cannot remove edges that are not outgoing from the attacker

current state. (4) The sum of the costs associated to the subset of

deactivated is less than a given threshold. (5) When the attacker

launches an attack from its current state, if the corresponding edge

has not been removed by the defender, then the attack always suc-

ceeds (i.e. the attacker reaches the next state). (6)When the attacker

launches an attack from its current state, if the corresponding edge

has been removed by the defender, then the attack always fails

(i.e. the attacker stays in its current state). Consider the model in

Fig. 1. We can assume that when reaching state 𝑠1, 𝑠3, or 𝑠5 the

attacker has root privilege on a given critical server 𝑠 . In addition,

if the attacker completes attack steps 𝑎6 or 𝑎7 (that is, it reaches

state 𝑠5), then the defender will obtain information on the identity

of the attacker. Let 𝑎 be an atomic proposition that expresses the

fact that the identity of the attacker is known. Let 𝑟𝑠 be an atomic

proposition expressing the fact that the attacker has root privilege

on the server 𝑠 . We can express, via TOL formulas, the following

security objectives:

• The attacker will never be able to obtain root privileges on
server s unless the defender can obtain information about his
identity within 3 time units: that is, either we want the at-
tacker to never reach a state satisfying 𝑟𝑠 or if the attacker
reaches such a state, the defender wants to be able to iden-

tify it within 3 time units (𝑎). By using 𝑡1 as a variable,

the following TOL formula captures the objective: 𝜑1 :=

𝑗 .⟨ 𝑡1 ⟩G (𝑟𝑠 ∨ (𝑟𝑠 → ⟨ 𝑡1 ⟩F(j ≤ 3 ∧ 𝑎))).
• While the defender has not obtained information about the
attacker identity within 5 time units, the attacker has not root
privilege on the server 𝑠: that is, we want 𝑟𝑠 to be false until
we have identified the attacker (𝑎) within 5 time units, if

such an identification ever happens. Thus, by using 𝑡2 as a

variable for a given threshold, we can write our objective by

using the until connective: 𝜑2 := 𝑗 .⟨ 𝑡2 ⟩(¬𝑟𝑠 ∧ 𝑗 ≤ 5 U𝑎).
Suppose that 𝑡1 and 𝑡2 are respectively 3 and 4. LetM =WTS(A),

we have thatM, 𝑠0 |= 𝜑1∧𝜑2. To satisfy𝜑1 consider the 3-memoryless

strategy𝔖1 that associates {⟨𝑠1, 𝑠2⟩} to 𝑠1, {⟨𝑠3, 𝑠4⟩} to 𝑠3, and ∅ to
any other state ofM. Remark that for any path 𝜋 ∈ 𝑂𝑢𝑡 (𝑠0,𝔖1)
and any 𝑖 ∈ N we have thatM, 𝜋𝑖 |= 𝑟𝑠 iff 𝜋𝑖 ∈ {𝑠1, 𝑠3, 𝑠5}. Thus,
we must establish thatM satisfies ⟨ 3⟩F(𝑗 ≤ 3 ∧ 𝑎) on 𝑠1 (resp.
𝑠3 and 𝑠5). To do so, we remark that 𝑂𝑢𝑡 (𝑠1,𝔖1) (resp. 𝑂𝑢𝑡 (𝑠3,𝔖1)
and 𝑂𝑢𝑡 (𝑠5,𝔖1)) only contains the path 𝑠1, 𝑠3, 𝑠

𝜔
5
(resp. 𝑠3, 𝑠

𝜔
5
and

𝑠𝜔
5
) and thatM, 𝑠5 |= 𝑎. Thus, we have obtained that there is a strat-

egy (i.e.𝔖1) such that for all 𝜋 ∈ 𝑂𝑢𝑡 (𝑠0,𝔖1) and all 𝑖 ∈ N either

M, 𝜋𝑖 |= ¬𝑟𝑠 or ifM, 𝜋𝑖 |= 𝑟𝑠 then there is a strategy (𝔖1 itself)

such thatM, 𝜌 𝑗 |= 𝑎 for some 𝑗 ≥ 1 and for all 𝜌 ∈ 𝑂𝑢𝑡 (𝜋𝑖 ,𝔖1), as
we wanted. Remark that if 𝑡1 < 3 then it is impossible to satisfy

𝜑1 inM at 𝑠0. For the specification 𝜑2 = 𝑗 .⟨ 4⟩(¬𝑟𝑠 ∧ 𝑗 ≤ 5U𝑎),
consider the 4-memoryless strategy 𝔖2 that associates {⟨𝑠0, 𝑠1⟩}
to 𝑠0, {⟨𝑠2, 𝑠1⟩, ⟨𝑠2, 𝑠3⟩} to 𝑠2, {⟨𝑠4, 𝑠3⟩} to 𝑠4 and ∅ to 𝑠5. The only
path in 𝑂𝑢𝑡 (𝑠0,𝔖★) is 𝑠0, 𝑠2, 𝑠4, 𝑠𝜔

5
and since 𝑠5 satisfies 𝑎 and all

the other 𝑠𝑖 do not satisfy 𝑟𝑠 we obtain the wanted result.

S0

S3

S5

S4

S1

S2
a2, x≤ 2, x:= 0

2

3

3

a1, y> 1, y:= 0

a1, x> 1 2
a2, x< 5,

x:= 0

a3, y< 1, y:= 0

a4, y> 1, y:= 0
4

a1, x < 1

1

a4, x > 2,
4 a5, y < 5,

y:= 0 3

a7, x > 5,
x:= 0

a6, y > 5,
y:= 0

6

5

a8

1

Figure 1: AWTA from [18] where states 𝑠1, 𝑠3 and 𝑠5 represent
the attacker’s goals and blue states satisfy 𝑟𝑠 , red state satisfies
both 𝑎 and 𝑟𝑠 , and white states satisfy neither 𝑟𝑠 nor 𝑎.

7 RELATEDWORK
Several studies have explored the strategic capabilities of agents in

dynamic game models.

Untimed Games and Strategic Logics [7, 38, 52] some research

related to sabotage games have been introduced by van Benthem

with the aim of studying the computational complexity of a special

class of graph reachability problems in which an agent has the

ability to delete edges. To reason about sabotage games, van Ben-

them introduced Sabotage Modal Logic (SML). The model checking

problem for the sabotage modal logic is PSPACE-complete [38].

Our version of the games is not comparable to the sabotage games,

because we provide the possibility to temporarily select subsets of

edges, while in the sabotage games the saboteur can only delete

one edge at a time. In this respect, our work is related to [17],

where the authors use an extended version of sabotage modal logic,

called Subset Sabotage Modal Logic (SSML), which allows for the

deactivation of certain subsets of edges of a directed graph. The

authors show that the model checking problems for such logics are

decidable. Also, we recall that SSML is an extension of SML, but

does not include temporal operators and quantitative information

about the cost of edges, as we do. A Dynamic Escape Games (DEG)

[51] is a variant of weighted two-player turn-based reachability

games. In a DEG, an agent has the ability to inhibit edges. In [18]

have been introduced an untimed Obstruction Logic (OL) which

allows reasoning about two-player games played on a labeled and

weighted directed graph. ATL [3] and SCTL [6] are extensions of

CTL with the notion of strategic modality. These kinds of logics

are used to express properties of agents as their possible actions.

However, none of these logics includes quantitative information

about cost edges, real time and time operators like our TOL. Timed
Games and Strategic Logics [6, 24, 30, 33, 48] several research
works have focused on extending games and logics to the real-time

domain. The most established model in this respect is the Timed

Game Automata (TGA)[12, 24]. A TGA is a TA whose set of tran-

sitions is divided among the different players. At each step, each

player chooses one of her possible transitions, as well as some time

she wants to wait before firing her chosen transition. The logics ATL

and CTL has also been extended to TATL [30, 33] and STCTL [6], in

which formula clocks are used to express the time requirements. It

is exponentially decidable whether a TATL formula satisfies a TGA

[30]. However, in [6] was shown that STCTL is more expressive

than TATL and the model checking problem for STCTL with memo-

ryless perfect information is of the same complexity as for TCTL.

Model checking for TATLwith continuous semantics is undecidable

[6]. However, all these logics do not use dynamic models.

8 CONCLUSIONS
In this paper, we introduced TOL, a logic for reasoning about two-

player games with real-time goals, where one player can locally and

temporarily modify the timed game structure. We proved that its

model-checking problem is PSPACE-complete and demonstrated its

applicability to cybersecurity properties. For future work, we aim

to explore several extensions. One direction is to consider timed

games with multiple players, forming coalitions of travelers, similar

to how TATL relates to TCTL. Another is integrating probability

events to TOL. Lastly, we seek to introduce imperfect information,

though this is generally undecidable [23]. To address this, we could

approximate perfect information [8], use bounded memory [9], or

apply hybrid techniques [25, 26]. These avenues would enhance

the applicability of TOL to real-world problems.

REFERENCES
[1] Rajeev Alur. 1991. Techniques for automatic verification of real-time systems. Ph.D.

Dissertation. Stanford University, USA. https://searchworks.stanford.edu/view/

2112175

[2] Rajeev Alur and David L. Dill. 1994. A Theory of Timed Automata. Theor. Comput.
Sci. 126, 2 (1994), 183–235. https://doi.org/10.1016/0304-3975(94)90010-8

[3] Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. 2002. Alternating-time

temporal logic. J. ACM 49, 5 (2002), 672–713. https://doi.org/10.1145/585265.

585270

[4] Rajeev Alur, Salvatore La Torre, and George J. Pappas. 2001. Optimal Paths in

Weighted Timed Automata. In Hybrid Systems: Computation and Control, 4th
International Workshop, HSCC 2001, Rome, Italy, March 28-30, 2001, Proceedings
(Lecture Notes in Computer Science, Vol. 2034), Maria Domenica Di Benedetto and

Alberto L. Sangiovanni-Vincentelli (Eds.). Springer, Berlin, Heidelberg, 49–62.

https://doi.org/10.1007/3-540-45351-2_8

[5] Francesco Alzetta, Paolo Giorgini, Amro Najjar, Michael Ignaz Schumacher, and

Davide Calvaresi. 2020. In-Time Explainability in Multi-Agent Systems: Chal-

lenges, Opportunities, and Roadmap. In Explainable, Transparent Autonomous
Agents and Multi-Agent Systems - Second International Workshop, EXTRAAMAS
2020, Auckland, New Zealand, May 9-13, 2020, Vol. 12175. Springer, Berlin, Heidel-
berg, 39–53. https://doi.org/10.1007/978-3-030-51924-7_3

[6] Jaime Arias, Wojciech Jamroga, Wojciech Penczek, Laure Petrucci, and Teofil

Sidoruk. 2023. Strategic (Timed) Computation Tree Logic. In Proceedings of the
2023 International Conference on Autonomous Agents and Multiagent Systems,
AAMAS 2023, London, United Kingdom, 29 May 2023 - 2 June 2023, Noa Agmon,

Bo An, Alessandro Ricci, and William Yeoh (Eds.). ACM, Richland, SC, 382–390.

https://doi.org/10.5555/3545946.3598661

[7] Guillaume Aucher, Johan van Benthem, and Davide Grossi. 2018. Modal logics

of sabotage revisited. J. Log. Comput. 28, 2 (2018), 269–303. https://doi.org/10.

1093/LOGCOM/EXX034

[8] Francesco Belardinelli, Angelo Ferrando, and Vadim Malvone. 2023. An

abstraction-refinement framework for verifying strategic properties in multi-

agent systems with imperfect information. Artif. Intell. 316 (2023), 103847.

https://doi.org/10.1016/J.ARTINT.2022.103847

[9] F. Belardinelli, A. Lomuscio, V. Malvone, and E. Yu. 2022. Approximating Perfect

Recall when Model Checking Strategic Abilities: Theory and Applications. J.
Artif. Intell. Res, 73 (2022), 36.

[10] F. Belardinelli, V. Malvone, and A. Slimani. 2020. A Tool for Verifying Strategic
Properties in MAS with Imperfect Information. Springer. https://github.com/

VadimMalvone/

[11] Johan Bengtsson andWang Yi. 2003. Timed Automata: Semantics, Algorithms and

Tools. In Lectures on Concurrency and Petri Nets, Advances in Petri Nets (Lecture
Notes in Computer Science, Vol. 3098), Jörg Desel, Wolfgang Reisig, and Grzegorz

Rozenberg (Eds.). Springer, Berlin, Heidelberg, 87–124. https://doi.org/10.1007/

978-3-540-27755-2_3

[12] Patricia Bouyer, Uli Fahrenberg, Kim G. Larsen, and Nicolas Markey. 2011. Quan-

titative analysis of real-time systems using priced timed automata. Commun.
ACM 54, 9 (2011), 78–87. https://doi.org/10.1145/1995376.1995396

[13] Patricia Bouyer, François Laroussinie, and Pierre-Alain Reynier. 2005. Diagonal

Constraints in Timed Automata: Forward Analysis of Timed Systems. In Formal
Modeling and Analysis of Timed Systems, Third International Conference, FOR-
MATS 2005, Uppsala, Sweden, September 26-28, 2005, Proceedings (Lecture Notes in
Computer Science, Vol. 3829), Paul Pettersson and Wang Yi (Eds.). Springer, Berlin,

Heidelberg, 112–126. https://doi.org/10.1007/11603009_10

[14] Thomas Brihaye, François Laroussinie, Nicolas Markey, and Ghassan Oreiby.

2007. Timed Concurrent Game Structures. In CONCUR 2007 - Concurrency
Theory, 18th International Conference, CONCUR 2007, Lisbon, Portugal, September
3-8, 2007, Proceedings (Lecture Notes in Computer Science, Vol. 4703), Luís Caires
and Vasco Thudichum Vasconcelos (Eds.). Springer, Berlin, Heidelberg, 445–459.

https://doi.org/10.1007/978-3-540-74407-8_30

[15] Davide Calvaresi, Yashin Dicente Cid, Mauro Marinoni, Aldo Franco Dragoni,

Amro Najjar, and Michael Schumacher. 2021. Real-time multi-agent systems:

rationality, formal model, and empirical results. Auton. Agents Multi Agent Syst.
35, 1 (2021), 12. https://doi.org/10.1007/S10458-020-09492-5

[16] Davide Calvaresi, Mauro Marinoni, Arnon Sturm, Michael Schumacher, and

Giorgio C. Buttazzo. 2017. The challenge of real-time multi-agent systems for

enabling IoT and CPS. In Proceedings of the International Conference on Web
Intelligence, Leipzig, Germany, August 23-26, 2017. ACM, New York, NY, USA,

356–364. https://doi.org/10.1145/3106426.3106518

[17] Davide Catta, Jean Leneutre, and Vadim Malvone. 2023. Attack Graphs & Subset

Sabotage Games. Intelligenza Artificiale 17, 1 (2023), 77–88. https://doi.org/10.

3233/IA-221080

[18] Davide Catta, Jean Leneutre, and Vadim Malvone. 2023. Obstruction Logic: A

Strategic Temporal Logic to Reason About Dynamic Game Models. In ECAI 2023
- 26th European Conference on Artificial Intelligence, September 30 - October 4, 2023,
Kraków, Poland (Frontiers in Artificial Intelligence and Applications, Vol. 372). IOS
Press, Berlin, Heidelberg, 365–372. https://doi.org/10.3233/FAIA230292

[19] Jin-Hee Cho, Dilli P Sharma, Hooman Alavizadeh, Seunghyun Yoon, Noam Ben-

Asher, Terrence J Moore, Dong Seong Kim, Hyuk Lim, and Frederica F Nelson.

2020. Toward proactive, adaptive defense: A survey on moving target defense.

IEEE Communications Surveys & Tutorials 22, 1 (2020), 709–745.
[20] Edmund M. Clarke and E. Allen Emerson. 2008. Design and Synthesis of Synchro-

nization Skeletons Using Branching Time Temporal Logic. In 25 Years of Model
Checking - History, Achievements, Perspectives (Lecture Notes in Computer Science,
Vol. 5000), Orna Grumberg and Helmut Veith (Eds.). Springer, Berlin, Heidelberg,

196–215. https://doi.org/10.1007/978-3-540-69850-0_12

[21] Edmund M. Clarke, Orna Grumberg, Daniel Kroening, Doron A. Peled, and

Helmut Veith. 2018. Model checking, 2nd Edition. MIT Press, Berlin, Heidelberg.

https://mitpress.mit.edu/books/model-checking-second-edition

[22] Stephen Corley, Diego Magro, Fabio Malabocchia, Jens Meinköhn, Luisella Sisto,

Sahin Albayrak, and Alexander Grosse. 1998. The Application of Intelligent and

Mobile Agents to the Management of Software Problems in Telecommunications.

In Intelligent Agents for Telecommunication Applications, Second International
Workshop, IATA ’98, Paris, France, July 1998, Proceedings (Lecture Notes in Computer
Science, Vol. 1437). Springer, Berlin, Heidelberg, 118–128. https://doi.org/10.1007/

BFB0053948

[23] Catalin Dima and Ferucio Laurentiu Tiplea. 2011. Model-checking ATL un-

der Imperfect Information and Perfect Recall Semantics is Undecidable. CoRR
abs/1102.4225 (2011), 435–444. arXiv:1102.4225 http://arxiv.org/abs/1102.4225

[24] Marco Faella, Salvatore La Torre, and Aniello Murano. 2014. Automata-theoretic

decision of timed games. Theor. Comput. Sci. 515 (2014), 46–63. https://doi.org/

10.1016/J.TCS.2013.08.021

[25] Angelo Ferrando and Vadim Malvone. 2022. Towards the Combination of Model

Checking and Runtime Verification on Multi-agent Systems. In Advances in
Practical Applications of Agents, Multi-Agent Systems, and Complex Systems Simu-
lation. (Lecture Notes in Computer Science, Vol. 13616). Springer, Berlin, Heidelberg,
140–152. https://doi.org/10.1007/978-3-031-18192-4_12

[26] Angelo Ferrando and Vadim Malvone. 2023. Towards the Verification of Strategic

Properties in Multi-Agent Systems with Imperfect Information. In Proceedings of
the 2023 International Conference on Autonomous Agents and Multiagent Systems,
AAMAS 2023, London, United Kingdom, 29 May 2023 - 2 June 2023. ACM, Berlin,

Heidelberg, 793–801. https://doi.org/10.5555/3545946.3598713

[27] R. Govind, Frédéric Herbreteau, B. Srivathsan, and Igor Walukiewicz. 2019. Revis-

iting Local Time Semantics for Networks of Timed Automata. In 30th International
Conference on Concurrency Theory, CONCUR 2019, August 27-30, 2019, Amster-
dam, the Netherlands (LIPIcs, Vol. 140). Schloss Dagstuhl - Leibniz-Zentrum für

Informatik, Berlin, Heidelberg, 16:1–16:15.

[28] Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. 1997. HYTECH:

A Model Checker for Hybrid Systems. In Computer Aided Verification, 9th In-
ternational Conference, CAV ’97, Haifa, Israel, June 22-25, 1997, Proceedings (Lec-
ture Notes in Computer Science, Vol. 1254). Springer, Berlin, Heidelberg, 460–463.
https://doi.org/10.1007/3-540-63166-6_48

[29] Thomas A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio Yovine. 1994.

Symbolic Model Checking for Real-Time Systems. Inf. Comput. 111, 2 (1994),

193–244. https://doi.org/10.1006/INCO.1994.1045

[30] Thomas A. Henzinger and Vinayak S. Prabhu. 2006. Timed Alternating-Time

Temporal Logic. In Formal Modeling and Analysis of Timed Systems, 4th Interna-
tional Conference, FORMATS 2006, Paris, France, September 25-27, 2006, Proceedings
(Lecture Notes in Computer Science, Vol. 4202), Eugene Asarin and Patricia Bouyer

(Eds.). Springer, Berlin, Heidelberg, 1–17. https://doi.org/10.1007/11867340_1

[31] Wojciech Jamroga and Aniello Murano. 2015. Module Checking of Strategic

Ability. In Proceedings of the 2015 International Conference on Autonomous Agents
and Multiagent Systems, AAMAS 2015, Istanbul, Turkey, May 4-8, 2015, Gerhard
Weiss, Pinar Yolum, Rafael H. Bordini, and Edith Elkind (Eds.). ACM, Berlin,

Heidelberg, 227–235. http://dl.acm.org/citation.cfm?id=2772911

[32] Kerem Kaynar. 2016. A taxonomy for attack graph generation and usage in

network security. J. Inf. Secur. Appl. 29 (2016), 27–56. https://doi.org/10.1016/J.

JISA.2016.02.001

[33] Michal Knapik, Étienne André, Laure Petrucci, Wojciech Jamroga, and Wojciech

Penczek. 2019. Timed ATL: Forget Memory, Just Count. J. Artif. Intell. Res. 66
(2019), 197–223. https://doi.org/10.1613/JAIR.1.11612

[34] Orna Kupferman, Ulrike Sattler, and Moshe Y. Vardi. 2002. The Complexity of

the Graded 𝜇-Calculus. In Automated Deduction - CADE-18, 18th International
Conference on Automated Deduction, Copenhagen, Denmark, July 27-30, 2002,
Proceedings (Lecture Notes in Computer Science, Vol. 2392), Andrei Voronkov (Ed.).

Springer, Berlin, Heidelberg, 423–437. https://doi.org/10.1007/3-540-45620-1_34

[35] Orna Kupferman, Moshe Y. Vardi, and PierreWolper. 2000. An automata-theoretic

approach to branching-time model checking. J. ACM 47, 2 (2000), 312–360.

https://doi.org/10.1145/333979.333987

[36] Orna Kupferman, Moshe Y. Vardi, and Pierre Wolper. 2001. Module Checking.

Inf. Comput. 164, 2 (2001), 322–344. https://doi.org/10.1006/INCO.2000.2893

[37] François Laroussinie, NicolasMarkey, andGhassanOreiby. 2006. Model-Checking

Timed ATL for Durational Concurrent Game Structures. In Proceedings of the
4th International Conferences on Formal Modelling and Analysis of Timed Systems
(FORMATS’06) (Lecture Notes in Computer Science, Vol. 4202), Eugene Asarin

https://searchworks.stanford.edu/view/2112175
https://searchworks.stanford.edu/view/2112175
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1145/585265.585270
https://doi.org/10.1145/585265.585270
https://doi.org/10.1007/3-540-45351-2_8
https://doi.org/10.1007/978-3-030-51924-7_3
https://doi.org/10.5555/3545946.3598661
https://doi.org/10.1093/LOGCOM/EXX034
https://doi.org/10.1093/LOGCOM/EXX034
https://doi.org/10.1016/J.ARTINT.2022.103847
https://github.com/VadimMalvone/
https://github.com/VadimMalvone/
https://doi.org/10.1007/978-3-540-27755-2_3
https://doi.org/10.1007/978-3-540-27755-2_3
https://doi.org/10.1145/1995376.1995396
https://doi.org/10.1007/11603009_10
https://doi.org/10.1007/978-3-540-74407-8_30
https://doi.org/10.1007/S10458-020-09492-5
https://doi.org/10.1145/3106426.3106518
https://doi.org/10.3233/IA-221080
https://doi.org/10.3233/IA-221080
https://doi.org/10.3233/FAIA230292
https://doi.org/10.1007/978-3-540-69850-0_12
https://mitpress.mit.edu/books/model-checking-second-edition
https://doi.org/10.1007/BFB0053948
https://doi.org/10.1007/BFB0053948
https://arxiv.org/abs/1102.4225
http://arxiv.org/abs/1102.4225
https://doi.org/10.1016/J.TCS.2013.08.021
https://doi.org/10.1016/J.TCS.2013.08.021
https://doi.org/10.1007/978-3-031-18192-4_12
https://doi.org/10.5555/3545946.3598713
https://doi.org/10.1007/3-540-63166-6_48
https://doi.org/10.1006/INCO.1994.1045
https://doi.org/10.1007/11867340_1
http://dl.acm.org/citation.cfm?id=2772911
https://doi.org/10.1016/J.JISA.2016.02.001
https://doi.org/10.1016/J.JISA.2016.02.001
https://doi.org/10.1613/JAIR.1.11612
https://doi.org/10.1007/3-540-45620-1_34
https://doi.org/10.1145/333979.333987
https://doi.org/10.1006/INCO.2000.2893

and Patricia Bouyer (Eds.). Springer-Verlag, Berlin, Heidelberg, 245–259. https:

//doi.org/10.1007/11867340_18

[38] Christof Löding and Philipp Rohde. 2003. Model Checking and Satisfiability

for Sabotage Modal Logic. In FST TCS 2003: Foundations of Software Technology
and Theoretical Computer Science, 23rd Conference, Mumbai, India, December 15-
17, 2003, Proceedings (Lecture Notes in Computer Science, Vol. 2914), Paritosh K.

Pandya and Jaikumar Radhakrishnan (Eds.). Springer, Berlin, Heidelberg, 302–313.

https://doi.org/10.1007/978-3-540-24597-1_26

[39] Alessio Lomuscio, Hongyang Qu, and Franco Raimondi. 2009. MCMAS: A

Model Checker for the Verification of Multi-Agent Systems. In Computer Aided
Verification, 21st International Conference, CAV 2009, Grenoble, France, June
26 - July 2, 2009. Proceedings (Lecture Notes in Computer Science, Vol. 5643),
Ahmed Bouajjani and Oded Maler (Eds.). Springer, Berlin, Heidelberg, 682–688.

https://doi.org/10.1007/978-3-642-02658-4_55

[40] Alessio Lomuscio, Bozena Wozna, and Andrzej Zbrzezny. 2006. Bounded Model

Checking Real-Time Multi-agent Systems with Clock Differences: Theory and

Implementation. In Model Checking and Artificial Intelligence, 4th Workshop,
MoChArt IV, Riva del Garda, Italy, August 29, 2006, Revised Selected and Invited
Papers (Lecture Notes in Computer Science, Vol. 4428), Stefan Edelkamp and Alessio

Lomuscio (Eds.). Springer, Berlin, Heidelberg, 95–112. https://doi.org/10.1007/

978-3-540-74128-2_7

[41] Hector Marco-Gisbert and Ismael Ripoll Ripoll. 2019. Address Space Layout

Randomization Next Generation. Applied Sciences 9, 14 (2019), 39–53. https:

//www.mdpi.com/2076-3417/9/14/2928

[42] Fabio Mogavero, Aniello Murano, Giuseppe Perelli, and Moshe Y. Vardi. 2014.

Reasoning About Strategies: On the Model-Checking Problem. ACM Trans.
Comput. Log. 15, 4 (2014), 34:1–34:47. https://doi.org/10.1145/2631917

[43] Aniello Murano, Giuseppe Perelli, and Sasha Rubin. 2015. Multi-agent Path Plan-

ning in Known Dynamic Environments. In PRIMA 2015: Principles and Practice
of Multi-Agent Systems - 18th International Conference, Bertinoro, Italy, October
26-30, 2015, Proceedings (Lecture Notes in Computer Science, Vol. 9387), Qingliang
Chen, Paolo Torroni, Serena Villata, Jane Yung-jen Hsu, and Andrea Omicini

(Eds.). Springer, Berlin, Heidelberg, 218–231. https://doi.org/10.1007/978-3-319-

25524-8_14

[44] Hoang Nga Nguyen and Abdur Rakib. 2023. Formal Modelling and Verification

of Probabilistic Resource Bounded Agents. J. Log. Lang. Inf. 32, 5 (2023), 829–859.

https://doi.org/10.1007/S10849-023-09405-1

[45] James Jerson Ortiz, Moussa Amrani, and Pierre-Yves Schobbens. 2019. ML𝜈 : A

Distributed Real-Time Modal Logic. In NASA Formal Methods - 11th International
Symposium, NFM 2019, Houston, TX, USA, May 7-9, 2019, Proceedings (Lecture Notes
in Computer Science, Vol. 11460), Julia M. Badger and Kristin Yvonne Rozier (Eds.).

Springer, Berlin, Heidelberg, 19–35. https://doi.org/10.1007/978-3-030-20652-9_2

[46] Gordon D. Plotkin. 2004. A structural approach to operational semantics. J. Log.
Algebraic Methods Program. 60-61 (2004), 17–139.

[47] A. Qasim, I. Fakhir, and S. Kazmi. 2015. Formal Specification and Verification

of Real-Time Multi-Agent Systems using Timed-Arc Petri Nets. Electrical and
Computer Engineering 12 (2015), 96–111.

[48] A. Qasim, S. Kanwal, A. Khalid, R. Kazmi S. Asad, and J. Hassan. 2019. Timed-Arc

Petri-Nets based Agent Communication for Real-Time Multi-Agent Systems.

Journal of Advanced Computer Science and Applications, 14 (2019), 139–153.
[49] Govind Rajanbabu. 2021. Partial order reduction for timed systems. (Réduction

d’ordre partiel pour les systèmes temporisés). Ph.D. Dissertation. Chennai Mathe-

matical Institute, Tamil Nadu, India. https://tel.archives-ouvertes.fr/tel-03346012

[50] Ramzi Ben Salah, Marius Bozga, and Oded Maler. 2006. On Interleaving in Timed

Automata. In CONCUR 2006 - Concurrency Theory, 17th International Conference,
CONCUR 2006, Bonn, Germany, August 27-30, 2006, Proceedings (Lecture Notes in
Computer Science, Vol. 4137), Christel Baier and Holger Hermanns (Eds.). Springer,

Berlin, Heidelberg, 465–476. https://doi.org/10.1007/11817949_31

[51] Antonio Di Stasio, Paolo Domenico Lambiase, Vadim Malvone, and Aniello

Murano. 2018. Dynamic Escape Game. In Proceedings of the 17th International
Conference on Autonomous Agents and MultiAgent Systems, AAMAS 2018, Stock-
holm, Sweden, July 10-15, 2018, Elisabeth André, Sven Koenig, Mehdi Dastani, and

Gita Sukthankar (Eds.). International Foundation for Autonomous Agents and

Multiagent Systems Richland, SC, USA / ACM, Berlin, Heidelberg, 1806–1808.

http://dl.acm.org/citation.cfm?id=3237984

[52] Johan van Benthem. 2005. An Essay on Sabotage and Obstruction. InMechanizing
Mathematical Reasoning, Essays in Honor of Jörg H. Siekmann on the Occasion of
His 60th Birthday (Lecture Notes in Computer Science, Vol. 2605), Dieter Hutter
and Werner Stephan (Eds.). Springer, Berlin, Heidelberg, 268–276. https://doi.

org/10.1007/978-3-540-32254-2_16

https://doi.org/10.1007/11867340_18
https://doi.org/10.1007/11867340_18
https://doi.org/10.1007/978-3-540-24597-1_26
https://doi.org/10.1007/978-3-642-02658-4_55
https://doi.org/10.1007/978-3-540-74128-2_7
https://doi.org/10.1007/978-3-540-74128-2_7
https://www.mdpi.com/2076-3417/9/14/2928
https://www.mdpi.com/2076-3417/9/14/2928
https://doi.org/10.1145/2631917
https://doi.org/10.1007/978-3-319-25524-8_14
https://doi.org/10.1007/978-3-319-25524-8_14
https://doi.org/10.1007/S10849-023-09405-1
https://doi.org/10.1007/978-3-030-20652-9_2
https://tel.archives-ouvertes.fr/tel-03346012
https://doi.org/10.1007/11817949_31
http://dl.acm.org/citation.cfm?id=3237984
https://doi.org/10.1007/978-3-540-32254-2_16
https://doi.org/10.1007/978-3-540-32254-2_16

	Abstract
	1 Introduction
	2 Background
	2.1 Attack Graphs
	2.2 Weighted Transition Systems
	2.3 Weighted Timed Automata
	2.4 Paths and n-strategy
	2.5 Predecessor operator and Zone Graph

	3 Timed Obstruction Logic
	4 Model Checking
	5 TOL vs. other Logics
	5.1 TOL and TCTL
	5.2 TOL and Tmu
	5.3 TOL and TATL

	6 Case study
	7 Related Work
	8 Conclusions
	References

