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ABSTRACT
In logics for strategic reasoning themain challenge is represented by

their verification in contexts of imperfect information and perfect

recall strategies. In this work, we show a technique to approximate

the verification of Alternating-time Temporal Logic (ATL
∗
) under

imperfect information and perfect recall, which is known to be

undecidable. Given a model𝑀 and a formula 𝜑 , we propose a veri-

fication procedure that generates sub-models of𝑀 in which each

sub-model𝑀 ′
satisfies a sub-formula 𝜑 ′

of 𝜑 and the verification of

𝜑 ′
in𝑀 ′

is decidable. Then, we use CTL
∗
model checking to provide

a verification result of 𝜑 on 𝑀 . We prove that our procedure is

sound and in the same complexity class of ATL
∗
model checking

under perfect information and perfect recall. Moreover, we present

a tool that uses our procedure and provide experimental results.
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1 INTRODUCTION
A well-known formalism for reasoning about strategic behaviours

in Multi-Agent Systems (MAS) is Alternating-time Temporal Logic

(ATL) [1]. An important quality of ATL is its model checking com-

plexity, which is PTIME-complete under perfect information. How-

ever, MAS in general have imperfect information and the model

checking for ATL specifications under imperfect information and

perfect recall is undecidable [12]. Given the relevance of the im-

perfect information setting, even partial solutions to the problem

can be useful. In this contribution the main idea is to modify the

topological structure of the models and use CTL verification. With

more detail, given a model𝑀 and a specification 𝜑 , our procedure

generates a set of sub-models of𝑀 in which there is perfect infor-

mation and each of these sub-models satisfies a sub-formula of 𝜑 .

Two classes of sub-models are defined: negative and positive. In

the verification of 𝜑 , the former class under-approximates𝑀 while

the latter over-approximates𝑀 . That is, if a sub-formula is (resp.,

is not) satisfied in a negative (resp., positive) sub-model, where
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there are more (resp., less) limitations than𝑀 , then the sub-formula

is (resp., is not) satisfied in 𝑀 . Finally, the procedure substitutes

the remaining not satisfied strategic operators with path operators

of CTL
∗
and through its model checking, it checks whether: (i)

the universal remaining part of 𝜑 is satisfied, (ii) the existential

remaining part of 𝜑 is not satisfied. In both cases, we provide a

preservation result to ATL
∗
. Since the original problem is undecid-

able, we can not guarantee that the truth or falsity of the property

can be always established. In other words, we cannot provide the

completeness of our solution. However, the procedure provides a

constructive method to evaluate an ATL
∗
formula under imperfect

information and perfect recall. We also show how such a proce-

dure is in the same complexity class of ATL
∗
model checking under

perfect information and perfect recall.

Structure of the work. In Section 2, we present the syntax of

ATL
∗
as well as its semantics.In Section 3, we present our running

example, a variant of the Curiosity rover scenario. Subsequently,

in Section 4, we show our verification procedure by presenting

how to capture sub-models with perfect information that satisfy a

sub-formula of the original formula and then how this procedure

can be used together with CTL
∗
model checking to have results.

We also provide evidence of the correctness and complexity of

our procedure. Furthermore, the latter is used to implement an

extension of MCMAS (Model Checker for Multi-Agent Systems)

that we discuss in Section 5. We conclude by recapping our results

and pointing to future works. Due to the limited space, an extended

version of this work can be found in [15].

Related work. Various approaches for the verification of speci-

fications in ATL under imperfect information have been recently

put forward. In one line, restrictions are made on how information

is shared amongst the agents, so as to retain decidability [11]. In

a related line, interactions amongst agents are limited to public

actions only [7, 8]. These approaches are markedly different from

ours as they seek to identify classes for which verification is decid-

able. Instead, we consider the whole class of models and define a

general verification procedure. In this sense, our approach is related

to [4, 6] where an abstraction method over the strategies is defined

and to [3, 5, 9, 17] where an approximation to the information is

presented. However, while in these works perfect recall or imper-

fect information are approximated, here we study the topological

structure of the models and use CTL
∗
verification to provide a result.

While the orthogonality between our approach and [4, 6] is clear

since they approximate over the memory while we approximate

over the information, it could be useful for the reader to add further

words about the relation with [3, 5, 9]. With more detail, in [3, 5, 9]

an abstract model abstracts the imperfect information by using a

state for each equivalence class, here we don’t have an abstraction
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on the states, that is each state remains as it is in the original model

or it is removed. Additionally, while in [3, 5, 9] there are may/must

transitions, here, for the sub-models, we have the same transitions

of the original model but the ones related to equivalent states that

are all connected with a special state. Thus, the two approaches

are orthogonal. Finally, [14, 16] presents a tool that tries to give

a result for ATL with imperfect information and perfect recall by

using Runtime Verification, a well-know verification technique that

is not exhaustive. So, the objectives of [14, 16] are orthogonal with

ours, while in our work we want to be exhaustive by using CTL
∗

model checking, they use the computational power of Runtime

Verification to give some assumptions over formulas of interest.

2 PRELIMINARIES
In this section we recall some preliminary notions. Given a set𝑈 ,𝑈

denotes its complement. We denote the length of a tuple 𝑣 as |𝑣 |, its
𝑗-th element as 𝑣 𝑗 , and its last element 𝑣 |𝑣 | as 𝑙𝑎𝑠𝑡 (𝑣). For 𝑗 ≤ |𝑣 |,
let 𝑣≥ 𝑗 be the suffix 𝑣 𝑗 , . . . , 𝑣 |𝑣 | of 𝑣 starting from 𝑣 𝑗 and 𝑣≤ 𝑗 the
prefix 𝑣1, . . . , 𝑣 𝑗 of 𝑣 .

2.1 Model
We start by showing a formal model for Multi-Agent Systems via

concurrent game structures with imperfect information [1, 18].

Definition 2.1. A concurrent game structure with imperfect infor-
mation (iCGS) is a tuple 𝑀=⟨𝐴𝑔,𝐴𝑃, 𝑆, 𝑠𝐼 , {𝐴𝑐𝑡𝑖 }𝑖∈𝐴𝑔, {∼𝑖 }𝑖∈𝐴𝑔, 𝑑,
𝛿,𝑉 ⟩ such that:

• 𝐴𝑔 = {1, . . . ,𝑚} is a nonempty finite set of agents.

• 𝐴𝑃 is a nonempty finite set of atomic propositions (atoms).

• 𝑆 ≠ ∅ is a finite set of states, with initial state 𝑠𝐼 ∈ 𝑆 .

• For every 𝑖 ∈ 𝐴𝑔, 𝐴𝑐𝑡𝑖 is a nonempty finite set of actions.
Let 𝐴𝑐𝑡 =

⋃
𝑖∈𝐴𝑔 𝐴𝑐𝑡𝑖 be the set of all actions, and 𝐴𝐶𝑇 =∏

𝑖∈𝐴𝑔 𝐴𝑐𝑡𝑖 the set of all joint actions.
• For every 𝑖 ∈ 𝐴𝑔, ∼𝑖 is a relation of indistinguishability
between states. That is, given states 𝑠, 𝑠 ′ ∈ 𝑆 , 𝑠 ∼𝑖 𝑠 ′ iff 𝑠 and

𝑠 ′ are indistinguishable for agent 𝑖 .
• The protocol function 𝑑 : 𝐴𝑔 × 𝑆 → (2𝐴𝑐𝑡 \ {∅}) defines the
availability of actions so that for every 𝑖 ∈ 𝐴𝑔, 𝑠 ∈ 𝑆 , (i)

𝑑 (𝑖, 𝑠) ⊆ 𝐴𝑐𝑡𝑖 and (ii) 𝑠 ∼𝑖 𝑠 ′ implies 𝑑 (𝑖, 𝑠) = 𝑑 (𝑖, 𝑠 ′).
• The transition function 𝛿 : 𝑆 ×𝐴𝐶𝑇 → 𝑆 assigns a successor

state 𝑠 ′ = 𝛿 (𝑠, ®𝑎) to each 𝑠 ∈ 𝑆 , for every joint action ®𝑎 ∈ 𝐴𝐶𝑇

such that 𝑎𝑖 ∈ 𝑑 (𝑖, 𝑠) for every 𝑖 ∈ 𝐴𝑔.

• 𝑉 : 𝑆 → 2
𝐴𝑃

is the labelling function.

By Def. 2.1 an iCGS describes the interactions of a group 𝐴𝑔

of agents, starting from the initial state 𝑠𝐼 ∈ 𝑆 , according to the

transition function 𝛿 . The latter is constrained by the availability

of actions to agents, as specified by the protocol function 𝑑 . Fur-

thermore, we assume that agents can have imperfect information

over the game; so in any state 𝑠 , agent 𝑖 considers epistemically

possible all states 𝑠 ′ that are 𝑖-indistinguishable from 𝑠 [13]. When

every ∼𝑖 is the identity relation, i.e., 𝑠 ∼𝑖 𝑠 ′ iff 𝑠 = 𝑠 ′, we obtain
a standard CGS with perfect information [1]. A history ℎ ∈ 𝑆+ is

a finite (non-empty) sequence of states. The indistinguishability

relations are extended to histories in a synchronous, point-wise

way, i.e., histories ℎ,ℎ′ ∈ 𝑆+ are indistinguishable for agent 𝑖 ∈ 𝐴𝑔,

or ℎ ∼𝑖 ℎ′, iff (i) |ℎ | = |ℎ′ | and (ii) for all 𝑗 ≤ |ℎ |, ℎ 𝑗 ∼𝑖 ℎ′𝑗 .

2.2 Syntax
We use ATL

∗
[1] to reason about the strategic abilities of agents.

Definition 2.2. State (𝜑) and path (𝜓 ) formulas in ATL
∗
are defined

as follows:

𝜑 ::= 𝑞 | ¬𝜑 | 𝜑 ∧ 𝜑 | ⟨⟨Γ⟩⟩𝜓
𝜓 ::= 𝜑 | ¬𝜓 | 𝜓 ∧𝜓 | 𝑋𝜓 | (𝜓𝑈𝜓 )

where 𝑞 ∈ 𝐴𝑃 and Γ ⊆ 𝐴𝑔.

Formulas in ATL
∗
are all and only the state formulas.

As usual, a formula ⟨⟨Γ⟩⟩Φ is read as “the agents in coalition

Γ have a strategy to achieve Φ”. The meaning of temporal opera-

tors next 𝑋 and until 𝑈 is standard [2]. Operators [[Γ]], release 𝑅,
eventually 𝐹 , and globally 𝐺 can be introduced as usual.

Formulas in the ATL fragment are obtained from Def. 2.2 by

restricting path formulas as follows:

𝜓 ::= 𝑋𝜑 | (𝜑𝑈𝜑) | (𝜑𝑅𝜑)
In the rest of the paper, we will also consider the syntax of ATL

∗
in

negation normal form (NNF):

𝜑 ::= 𝑞 | ¬𝑞 | 𝜑 ∧ 𝜑 | 𝜑 ∨ 𝜑 | ⟨⟨Γ⟩⟩𝜓 | [[Γ]]𝜓
𝜓 ::= 𝜑 | 𝜓 ∧𝜓 | 𝜓 ∨𝜓 | 𝑋𝜓 | (𝜓𝑈𝜓 ) | (𝜓𝑅𝜓 )

where 𝑞 ∈ 𝐴𝑃 and Γ ⊆ 𝐴𝑔.

2.3 Semantics
We assume that agents employ uniform strategies [18], i.e., they
perform the same action whenever they have the same information.

Definition 2.3. A uniform perfect recall strategy for agent 𝑖 ∈ 𝐴𝑔

is a function 𝜎𝑖 : 𝑆
+→𝐴𝑐𝑡𝑖 such that for all histories ℎ,ℎ′ ∈ 𝑆+, (i)

𝜎𝑖 (ℎ) ∈𝑑 (𝑖, 𝑙𝑎𝑠𝑡 (ℎ)) and (ii) ℎ∼𝑖 ℎ′ implies 𝜎𝑖 (ℎ)=𝜎𝑖 (ℎ′).

By Def. 2.3 any strategy for agent 𝑖 has to return actions that are

enabled for 𝑖 . Also, whenever two histories are indistinguishable

for 𝑖 , then the same action is returned. Notice that, for the case

of perfect information, condition (ii) is satisfied by any strategy 𝜎 .

Furthermore, we obtain memoryless (or imperfect recall) strategies

by considering the domain of 𝜎𝑖 in 𝑆 , i.e. 𝜎𝑖 : 𝑆 → 𝐴𝑐𝑡𝑖 . Given an

iCGS𝑀 , a path 𝜋 is an infinite sequence of states. We denote with

𝑆𝜔 the set of paths over 𝑆 . Given a joint strategy ΣΓ , comprising of

one strategy for each agent in coalition Γ, a path 𝜋 is ΣΓ-compatible
iff for every 𝑗 ≥ 1, 𝜋 𝑗+1 = 𝛿 (𝜋 𝑗 , ®𝑎) for some joint action ®𝑎 such that

for every 𝑖 ∈ Γ, 𝑎𝑖 = 𝜎𝑖 (𝜋≤ 𝑗 ), and for every 𝑖 ∈ Γ, 𝑎𝑖 ∈ 𝑑 (𝑖, 𝜋 𝑗 ). We

denote with 𝑜𝑢𝑡 (𝑠, ΣΓ) the set of all ΣΓ-compatible paths from 𝑠 .

Now, we have all the ingredients to give the semantics of ATL
∗
.

Definition 2.4. The satisfaction relation |= for an iCGS𝑀 , state

𝑠 ∈ 𝑆 , path 𝜋 ∈ 𝑆𝜔 , atom 𝑞 ∈ 𝐴𝑃 , and ATL
∗
formula 𝜙 is defined as

(clauses for Boolean connectives are immediate and thus omitted):

(𝑀, 𝑠) |= 𝑞 iff 𝑞 ∈ 𝑉 (𝑠)
(𝑀, 𝑠) |= ⟨⟨Γ⟩⟩𝜓 iff for some joint strategy ΣΓ ,

for all 𝜋 ∈𝑜𝑢𝑡 (𝑠, ΣΓ), (𝑀, 𝜋) |=𝜓
(𝑀, 𝜋) |= 𝜑 iff (𝑀, 𝜋1) |= 𝜑

(𝑀, 𝜋) |= 𝑋𝜓 iff (𝑀, 𝜋≥2) |= 𝜓

(𝑀, 𝜋) |= 𝜓𝑈𝜓 ′
iff for some 𝑘 ≥ 1, (𝑀, 𝜋≥𝑘 ) |=𝜓 ′

, and

for all 1≤ 𝑗 <𝑘, (𝑀, 𝜋≥ 𝑗 ) |=𝜓



We say that formula 𝜑 is true in an iCGS 𝑀 , or 𝑀 |= 𝜑 , iff

(𝑀, 𝑠𝐼 ) |= 𝜑 . Now, we state the model checking problem.

Definition 2.5. Given an iCGS 𝑀 and a formula 𝜑 , the model

checking problem concerns determining whether𝑀 |= 𝜑 .

Since the semantics provided in Def. 2.4 is the standard inter-

pretation of ATL
∗
[1], it is well known that model checking ATL, a

fortiori ATL∗, against iCGS with imperfect information and perfect

recall is undecidable [12]. In the rest of the paper we also consider

CTL
∗
, see [2] for details on this logic.

3 CASE STUDY
The Curiosity rover is one of the most complex systems success-

fully deployed in a planetary exploration mission to date. Its main

objectives include recording image data and collecting soil/rock

data. Differently from the original [20], in this example the rover

is equipped with decision making capabilities, which make it au-

tonomous. We simulate an inspection mission, where the Curiosity

patrols a topological map of the surface of Mars.

In Figure 1, we model an example of a mission for the rover.

The rover starts in state 𝑠𝐼 , and it has to perform a setup action,

consisting of checking the three main rover’s components: arm

(𝑐𝑎), mast (𝑐𝑚), or the wheels (𝑐𝑤 ). To save time and energy, the

mechanic (the entity capable of performing the setup checks and

making any corrections) performs only one setup operation per

mission. Since the exact setup operation is not known by the rover,

from its point of view, states 𝑠1, 𝑠2, 𝑠3 are equivalent, i.e. it cannot
distinguish between the three setup operations. However, the rover

has to validate the setup operation. That is, if in the initial state

the mechanic selects the operation to check the arm, i.e. 𝑐𝑎, then
from the next state, i.e. 𝑠1, the rover needs to perform the 𝑐𝑎 action

to be able to move from 𝑠1. The same reasoning can be applied

for the other two setup actions. After the selection, the mechanic

can choose to check and eventually correct the component (action

𝑜𝑘) or to decline the operation (action 𝑛𝑜𝑘). In the former case

the rover can continue the mission while in the latter the mission

terminates with an error. In case the mechanic collaborates, the

rover can start the mission. We consider with state 𝑠4 the fact that

the rover is in the base camp. So, its aim is to move from its position,

to make a picture of a sample rock of Mars and then to return to

the initial position. More in detail, from the state 𝑠4, it can decide

to move left (𝐿) moving to state 𝑠6, or right (𝑅) moving to state 𝑠7.

In these two states the rover can make a photo of a sample rock

(action𝑚𝑝). After this step, the rover has to conclude the mission

by returning to the base camp. To accomplish the latter, it needs

to do the complement moving action to go back to the previously

visited state (𝑅 from 𝑠6 and 𝐿 from 𝑠7).

So, given the model𝑀 we can define several specifications. For

example, the specification that describes the rover mission is 𝜑1 =

⟨⟨𝑟𝑜𝑣𝑒𝑟 ⟩⟩𝐹 ((𝑜𝑐∧𝑟𝑚)∧𝐹 ((𝑝𝑙∨𝑝𝑟 )∧𝐹 (𝑜𝑐∧𝑟𝑚))). In words the latter
formula means that there exists a strategy for the rover that sooner

or later it can be ready to start the mission, can make a picture of a

sample rock, and can return to the base camp. In the latter formula,

we assume that the mechanic can decide not to cooperate. In this

case, it is impossible for the rover to achieve the end of the mission

even using perfect recall strategies. If we assume the cooperation of

the mechanic (i.e. the mechanic checks a component and eventually

𝑠𝑝
𝑠𝐼

𝑐𝑝
𝑠3

𝑐𝑝
𝑠1

𝑐𝑝
𝑠2

𝑜𝑐,𝑟𝑚
𝑠4

∅
𝑒2

𝑟𝑝,𝑖𝑝
𝑠6

𝑟𝑝,𝑖𝑝
𝑠7

𝑝𝑙
𝑠5

𝑝𝑟
𝑠8

∅
𝑒1

(𝐿, 𝑖 ) (𝑅, 𝑖 )

(𝑖, 𝑖 )

(𝑐ℎ𝑘,𝑐𝑎)

(𝑐ℎ𝑘,𝑐𝑚)

(𝑐ℎ𝑘,𝑐𝑤)

(𝑖,★)

(𝑐𝑎,𝑜𝑘 )

(★, 𝑛𝑜𝑘 )

(𝑐𝑚 |𝑐𝑤,𝑜𝑘 )

(𝑐𝑚,𝑜𝑘 )

(★, 𝑛𝑜𝑘 )
(𝑐𝑎 |𝑐𝑤,𝑜𝑘 ) (𝑐𝑤,𝑜𝑘 )

(★, 𝑛𝑜𝑘 )

(𝑐𝑎 |𝑐𝑚,𝑜𝑘 )

(𝐿, 𝑖 )
(𝑚𝑝, 𝑖 )

(𝑅, 𝑖 )
(★,★)

(★,★)

(𝑅, 𝑖 )
(𝑚𝑝, 𝑖 )

(𝐿, 𝑖 )

(𝑖, 𝑖 ) (𝑖, 𝑖 )

Figure 1: The rover’s mission where 𝑖 stands for idle, ★ for
any action, and the rover’s equivalence relation is denoted
with dotted lines. The atoms have the following acronyms:
𝑠𝑝 as starting position, 𝑐𝑝 as check phase, 𝑜𝑐 as ok check
phase, 𝑟𝑚 as ready to mission, 𝑟𝑝 as ready to make a picture,
𝑖𝑝 as in position, 𝑝𝑙 as picture left, and 𝑝𝑟 as picture right.

corrects it via action 𝑜𝑘), we can rewrite the specification as 𝜑2 =

⟨⟨𝑟𝑜𝑣𝑒𝑟,𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐⟩⟩𝐹 ((𝑜𝑐∧𝑟𝑚)∧⟨⟨𝑟𝑜𝑣𝑒𝑟 ⟩⟩𝐹 ((𝑝𝑙∨𝑝𝑟 )∧𝐹 (𝑜𝑐∧𝑟𝑚))).
In this case, by using memoryless strategies the formula 𝜑2 still

remains false since the rover can select only one action on states

𝑠1, 𝑠2, and 𝑠3 and in states 𝑠6 and 𝑠7, so it is impossible for it to

validate any setup action given by the mechanic and to first make

the picture and then go to the end of the mission. While, by using

memoryfull strategies, the rover has a strategy to make the formula

true by considering the cooperation of the mechanic. In fact, a

simple strategy 𝜎 can be generated by: 𝜎 (𝑠𝐼 ) = 𝑐ℎ𝑘 , 𝜎 (𝑠𝐼 𝑠 𝑗 ) = 𝑐𝑎,

𝜎 (𝑠𝐼 𝑠 𝑗𝑠𝑘 ) = 𝑐𝑚, 𝜎 (𝑠𝐼 𝑠 𝑗𝑠𝑘𝑠𝑟 ) = 𝑐𝑤 , 𝜎 (𝑠𝐼 𝑠 𝑗𝑠4) = 𝐿, 𝜎 (𝑠𝐼 𝑠 𝑗𝑠4𝑠6) =𝑚𝑝 ,

𝜎 (𝑠𝐼 𝑠 𝑗𝑠4𝑠6𝑠5) = 𝑖 , and 𝜎 (𝑠𝐼 𝑠 𝑗𝑠4𝑠6𝑠5𝑠6) = 𝑅, where 𝑗, 𝑘, 𝑟 ∈ {1, 2, 3}.
With the above observations, we can conclude that, to verify the

specification 𝜑2 in the model𝑀 , we need ATL
∗
model checking in

the context of imperfect information and perfect recall, a problem

in general undecidable. Other interesting specifications can involve

specific rover’s status. For example, we could be interested to verify

if there exists a strategy for the rover in coalition with the mechanic

such that it can be ready to make a picture but it is not in position to

do that and, from that point, if it has the ability tomake a picture and

return in the startingmission, i.e.wewant to verify the formula𝜑3 =

⟨⟨𝑟𝑜𝑣𝑒𝑟,𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐⟩⟩𝐹 (𝑟𝑝∧¬𝑖𝑝∧⟨⟨𝑟𝑜𝑣𝑒𝑟 ⟩⟩𝐹 ((𝑝𝑙∨𝑝𝑟 )∧𝐹 (𝑜𝑐∧𝑟𝑚))).
It is easy to see that 𝜑3 is false in the model𝑀 because there is not

a state in which 𝑟𝑝 ∧ ¬𝑖𝑝 . Also, to check 𝜑3 in the model 𝑀 , we

need ATL
∗
model checking in the context of imperfect information

and perfect recall, a problem in general undecidable.

In the next section we will present a sound but not complete

procedure to handle this class of problems and use our case study

to help the reader during each step.

4 OUR PROCEDURE
Our procedure aims at giving a partial answer to a well-known

undecidable problem. It first starts processing the input formula 𝜑



and the model𝑀 to explicitly denote all atoms, positively. In fact,

in general, given the labeling function𝑉 and a state 𝑠 , it is assumed

that the atoms not present in 𝑉 (𝑠) are false. In our procedure, this

is not enough due to the verification on sub-models in which the

preservation results hold for the negation normal form of ATL
∗
.

For this reason, we need to make explicit what is true and what is

false by duplicating each atom 𝑞 in 𝜑 with a new atom 𝑛𝑞 in such a

way that, if 𝑞 is true in 𝑠 , then 𝑞 ∈ 𝑉 (𝑠), otherwise 𝑞 is false in 𝑠 and

consequently 𝑛𝑞 ∈ 𝑉 (𝑠). This approach makes truth and falsity of

atoms explicit in each state. With these new versions of𝑀 and 𝜑 ,

our procedure verifies all the sub-formulas of 𝜑 against a set of sub-

models of the model𝑀 with perfect information. Such sub-models

are extracted in order to break all indistinguishability relations (i.e.,
for each sub-model each state is only indistinguishable from itself).

Two classes of sub-models are defined: negative and positive. In

the verification of 𝜑 , the former class under-approximates𝑀 while

the latter over-approximates𝑀 . In more detail, negative (resp., pos-

itive) sub-models limit (resp., expand) the number of sub-formulas

of 𝜑 that can be satisfied. Indeed, if a sub-formula is satisfied in a

negative sub-model, where there are more limitations than𝑀 , then

the sub-formula is also satisfied in𝑀 . While, if a sub-formula is not

satisfied in a positive sub-model, where there are less limitations

than𝑀 , then the sub-formula is also not satisfied in𝑀 . Then, the

procedure splits 𝜑 into its sub-formulas, and verifies them over the

sub-models of 𝑀 with perfect information previously extracted.

Every time a sub-formula is satisfied in a state 𝑠 , the procedure

keeps track of it by creating a new atom, by adding the new atom

on 𝑠 , and by updating 𝜑 with the new created atom. Finally, the

procedure substitutes the remaining not satisfied strategic opera-

tors with path operators of CTL
∗
and through its model checking

(whose soundness is proved via Lemma 4.12 and Theorem 4.13) it

checks whether𝑀 always reaches the atoms verified in the nega-

tive sub-model (universally), or whether 𝑀 reaches at least once

the atoms verified in the positive sub-model (existentially). These

last two aspects are linked to Lemma 4.11, where we prove how

the verification result over sub-models can be propagated to the

original model.

Algorithm 1 𝑃𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 (𝑀 , 𝜑)

1: 𝜑 = 𝑁𝑁𝐹 (𝜑) ;
2: 𝑛𝑒𝑔-𝑎𝑡𝑜𝑚𝑠 = extract negated atoms from 𝜑 ;

3: for ¬𝑞 ∈ 𝑛𝑒𝑔-𝑎𝑡𝑜𝑚𝑠 do
4: generate atom 𝑛𝑞;

5: 𝐴𝑃 = 𝐴𝑃 ∪ 𝑛𝑞;

6: replace ¬𝑞 in 𝜑 with 𝑛𝑞;

7: for 𝑠 ∈ 𝑆 do
8: if 𝑞 ∉ 𝑉 (𝑠) then
9: 𝑉 (𝑠) = 𝑉 (𝑠) ∪ 𝑛𝑞;

4.1 Phase 0: preprocessing
Given an iCGS𝑀 and an ATL

∗
formula 𝜑 , Algorithm 1 rewrites 𝜑 in

its equivalent Negation Normal Form (NNF), replaces the negated

atoms by additional atoms, and updates the model 𝑀 accordingly.

With more detail, first, the NNF of𝜑 is generated and all the negated

atoms are extracted (lines 1-2). Then, for each negated atom ¬𝑞, the
algorithm generates a new atomic proposition 𝑛𝑞 (line 4), add 𝑛𝑞 to

the set of atomic propositions 𝐴𝑃 (line 5), updates the formula (line

6), and updates the labeling function of𝑀 . For the latter, for each

state 𝑠 of𝑀 , the algorithm checks if 𝑞 is false in 𝑠 ; if this is the case,

it adds 𝑛𝑞 to the set of atomic propositions true on 𝑠 (lines 7-9).

Now, we give the complexity of the described procedure.

Theorem 4.1. Algorithm 1 terminates in polynomial time w.r.t.
the size of 𝜑 and𝑀 .

4.2 Phase 1: find sub-models
We present how to find the sub-models with perfect information

inside the original model. First, we give the intuition behind such

sub-models, and why we need them. Given a model𝑀 , each neg-

ative (resp., positive) sub-model denotes an under-approximation

(resp., over-approximation) of 𝑀 . Thus, negative (resp., positive)

sub-models can be used to prove the satisfaction (resp., violation)

of properties. So, if we (resp., don’t) find a strategy to satisfy a

property in the negative (resp., positive) sub-model, then the same

strategy can be used (resp., there is definitely no strategy) in the

original model. The formal definitions of these sub-models follow.

Definition 4.2 (Negative sub-models). Given an iCGS 𝑀 = ⟨𝐴𝑔,
𝐴𝑃, 𝑆, 𝑠𝐼 , {𝐴𝑐𝑡𝑖 }𝑖∈𝐴𝑔, {∼𝑖 }𝑖∈𝐴𝑔, 𝑑, 𝛿,𝑉 ⟩, we denote with 𝑀𝑛 = ⟨𝐴𝑔,
𝐴𝑃, 𝑆𝑛, 𝑠𝑛

𝐼
, {𝐴𝑐𝑡𝑖 }𝑖∈𝐴𝑔, {∼𝑛𝑖 }𝑖∈𝐴𝑔, 𝑑

𝑛, 𝛿𝑛,𝑉𝑛⟩ a negative sub-model

of𝑀 such that:

• the set of states is defined as 𝑆𝑛 = 𝑆★ ∪ {𝑠⊥}, where 𝑆★ ⊆ 𝑆 ,

and 𝑠𝑛
𝐼
∈ 𝑆★ is the initial state.

• ∼𝑛
𝑖
is defined as the corresponding ∼𝑖 restricted to 𝑆★.

• The protocol function is defined as 𝑑𝑛 : 𝐴𝑔 × 𝑆𝑛 → (2𝐴𝑐𝑡 \
{∅}), where𝑑𝑛 (𝑖, 𝑠) = 𝑑 (𝑖, 𝑠), for every 𝑠 ∈ 𝑆★ and𝑑𝑛 (𝑖, 𝑠⊥) =
𝐴𝑐𝑡𝑖 , for all 𝑖 ∈ 𝐴𝑔.

• The transition function is defined as 𝛿𝑛 : 𝑆𝑛 × 𝐴𝐶𝑇 →
𝑆𝑛 , where given a transition 𝛿 (𝑠, ®𝑎) = 𝑠 ′, if 𝑠, 𝑠 ′ ∈ 𝑆★ then

𝛿𝑛 (𝑠, ®𝑎) = 𝛿 (𝑠, ®𝑎) = 𝑠 ′ else if 𝑠 ′ ∈ 𝑆 \ 𝑆★ and 𝑠 ∈ 𝑆𝑛 then

𝛿𝑛 (𝑠, ®𝑎) = 𝑠⊥.
• for all 𝑠 ∈ 𝑆★, 𝑉𝑛 (𝑠) = 𝑉 (𝑠) and 𝑉𝑛 (𝑠⊥) = ∅.

Definition 4.3 (Positive sub-models). Given an iCGS 𝑀 = ⟨𝐴𝑔,
𝐴𝑃, 𝑆, 𝑠𝐼 , {𝐴𝑐𝑡𝑖 }𝑖∈𝐴𝑔, {∼𝑖 }𝑖∈𝐴𝑔, 𝑑, 𝛿,𝑉 ⟩, we denote with 𝑀𝑝 = ⟨𝐴𝑔,
𝐴𝑃, 𝑆𝑝 , 𝑠

𝑝

𝐼
, {𝐴𝑐𝑡𝑖 }𝑖∈𝐴𝑔, {∼

𝑝

𝑖
}𝑖∈𝐴𝑔, 𝑑𝑝 , 𝛿𝑝 ,𝑉 𝑝 ⟩ a positive sub-model

of𝑀 such that:

• the set of states is defined as 𝑆𝑝 = 𝑆★ ∪ {𝑠⊤}, where 𝑆★ ⊆ 𝑆 ,

and 𝑠
𝑝

𝐼
∈ 𝑆★ is the initial state.

• ∼𝑝
𝑖
is defined as the corresponding ∼𝑖 restricted to 𝑆★.

• The protocol function is defined as 𝑑𝑝 : 𝐴𝑔 × 𝑆𝑝 → (2𝐴𝑐𝑡 \
{∅}), where𝑑𝑝 (𝑖, 𝑠) = 𝑑 (𝑖, 𝑠), for every 𝑠 ∈ 𝑆★ and𝑑𝑝 (𝑖, 𝑠⊤) =
𝐴𝑐𝑡𝑖 , for all 𝑖 ∈ 𝐴𝑔.

• The transition function is defined as 𝛿𝑝 : 𝑆𝑝 × 𝐴𝐶𝑇 →
𝑆𝑝 , where given a transition 𝛿 (𝑠, ®𝑎) = 𝑠 ′, if 𝑠, 𝑠 ′ ∈ 𝑆★ then

𝛿𝑝 (𝑠, ®𝑎) = 𝛿 (𝑠, ®𝑎) = 𝑠 ′ else if 𝑠 ′ ∈ 𝑆 \ 𝑆★ and 𝑠 ∈ 𝑆𝑝 then

𝛿𝑝 (𝑠, ®𝑎) = 𝑠⊤.
• for all 𝑠 ∈ 𝑆★, 𝑉 𝑝 (𝑠) = 𝑉 (𝑠) and 𝑉 𝑝 (𝑠⊤) = 𝐴𝑃 .

Informally, 𝑠⊤ and 𝑠⊥ are sink states that replace the sub-states

removed from the original model (i.e., 𝑆 \𝑆★). The above definitions
are more general (they can have imperfect information), however in

our procedure only sub-models with perfect information are used.

The procedure to generate the set of negative and positive sub-

models of𝑀 with perfect information for the agents involved in the



Algorithm 2 𝐹𝑖𝑛𝑑𝑆𝑢𝑏-𝑚𝑜𝑑𝑒𝑙𝑠 (𝑀 , 𝜑)

1: extract ∼ from𝑀 ;

2: extract 𝑆 from𝑀 ;

3: 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 = ∅;
4: 𝑠𝑢𝑏𝑠𝑡𝑎𝑡𝑒𝑠 = {𝑆 };
5: while 𝑠𝑢𝑏𝑠𝑡𝑎𝑡𝑒𝑠 ≠ ∅ do
6: extract 𝑆′ from 𝑠𝑢𝑏𝑠𝑡𝑎𝑡𝑒𝑠 ;

7: if there exists 𝑠 ∼𝑖 𝑠
′
with 𝑠, 𝑠′ ∈ 𝑆′, 𝑠 ≠ 𝑠′ and 𝑖 ∈ 𝐴𝑔 (𝜑) then

8: 𝑆1 = 𝑆′ \ {𝑠 };
9: 𝑠𝑢𝑏𝑠𝑡𝑎𝑡𝑒𝑠 = 𝑆1 ∪ 𝑠𝑢𝑏𝑠𝑡𝑎𝑡𝑒𝑠 ;

10: 𝑆2 = 𝑆′ \ {𝑠′ };
11: 𝑠𝑢𝑏𝑠𝑡𝑎𝑡𝑒𝑠 = 𝑆2 ∪ 𝑠𝑢𝑏𝑠𝑡𝑎𝑡𝑒𝑠 ;

12: else
13: 𝑀𝑛 = 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑀,𝑆′) ;
14: 𝑀𝑝 = 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑀,𝑆′) ;
15: 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 = ⟨𝑀𝑛, 𝑀𝑝 ⟩ ∪ 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ;

16: return 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ;
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Figure 2: A negative sub-model generated by Algorithm 2
from model𝑀 depicted in Figure 1.

coalitions of𝜑 is presented in Algorithm 2. Informally, the algorithm

takes an iCGS 𝑀 and an ATL
∗
formula 𝜑 . It works with two sets:

𝑠𝑢𝑏𝑠𝑡𝑎𝑡𝑒𝑠 contains the sets of states of𝑀 that have to be evaluated

and 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 contains couples of sub-models of𝑀 with perfect

information. Each couple represents the positive and negative sub-

models for a given subset of states of 𝑀 . In the first part of the

algorithm (lines 1-4) the set of states and the indistinguishability

relation are extracted from the model 𝑀 and the sets 𝑠𝑢𝑏𝑠𝑡𝑎𝑡𝑒𝑠

and 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 are initialized to 𝑆 and ∅, respectively. The main

loop (lines 5-15) works until the set 𝑠𝑢𝑏𝑠𝑡𝑎𝑡𝑒𝑠 is empty. In each

iteration an element 𝑆 ′ is extracted from 𝑠𝑢𝑏𝑠𝑡𝑎𝑡𝑒𝑠 and if there is an

equivalence relation over the states in 𝑆 ′ for some agent 𝑖 ∈ 𝐴𝑔(𝜑)1
then two new subsets of states are generated to remove this relation

(lines 8-11), otherwise 𝑆 ′ is a set of states with perfect information

for the agents in 𝐴𝑔(𝜑). So, from 𝑆 ′ two models are generated, a

negative sub-model as described in Definition 4.2 and a positive

sub-model as described in Definition 4.3, and the couple is added to

the set 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 . The latter is returned at the end of Algorithm 2.

Example 4.4. In Figure 2, we show a candidate negative sub-

model 𝑀𝑛
extracted from the rover mission (see Figure 1) using

Algorithm 2. Note that, we can generate the positive sub-model

counterpart by replacing the state 𝑠⊥ with 𝑠⊤ and following the

labeling rule of Definition 4.3.

1𝐴𝑔 (𝜑) is the set of agents involved in the coalitions of 𝜑 .

Algorithm 3 𝐶ℎ𝑒𝑐𝑘𝑆𝑢𝑏-𝑓 𝑜𝑟𝑚𝑢𝑙𝑎𝑠 (⟨𝑀𝑛, 𝑀𝑝 ⟩, 𝜑)
1: 𝑟𝑒𝑠𝑢𝑙𝑡 = ∅;
2: subformulas = 𝑆𝑢𝑏𝐹𝑜𝑟𝑚𝑢𝑙𝑎𝑠 (𝜑) ;
3: while subformulas ≠ ∅ do
4: extract𝜓 from subformulas;
5: for 𝑠 ∈ 𝑆𝑛 ∩ 𝑆𝑝 do
6: if 𝑀𝑛, 𝑠 |=𝐼𝑅 𝜓 then
7: 𝑀𝑛 =𝑈𝑝𝑑𝑎𝑡𝑒𝑀𝑜𝑑𝑒𝑙 (𝑀𝑛, 𝑠, 𝑎𝑡𝑜𝑚𝜓 ) ;
8: 𝑟𝑒𝑠𝑢𝑙𝑡 = ⟨𝑠,𝜓,𝑛𝑎𝑡𝑜𝑚𝜓 ⟩ ∪ 𝑟𝑒𝑠𝑢𝑙𝑡 ;

9: if 𝑀𝑝 , 𝑠 |=𝐼𝑅 𝜓 then
10: 𝑀𝑝 =𝑈𝑝𝑑𝑎𝑡𝑒𝑀𝑜𝑑𝑒𝑙 (𝑀𝑝 , 𝑠, 𝑎𝑡𝑜𝑚𝜓 ) ;
11: 𝑟𝑒𝑠𝑢𝑙𝑡 = ⟨𝑠,𝜓, 𝑝𝑎𝑡𝑜𝑚𝜓 ⟩ ∪ 𝑟𝑒𝑠𝑢𝑙𝑡 ;

12: 𝑀𝑝 =𝑈𝑝𝑑𝑎𝑡𝑒𝑀𝑜𝑑𝑒𝑙 (𝑀𝑝 , 𝑠⊤, 𝑎𝑡𝑜𝑚𝜓 ) ;
13: return 𝑟𝑒𝑠𝑢𝑙𝑡 ;

𝑎𝑡𝑜𝑚𝜓
1
∧(𝑎𝑡𝑜𝑚𝜓

3
∨𝑎𝑡𝑜𝑚𝜓

4
)

𝜓1=⟨⟨Γ1⟩⟩𝑋𝑎𝑡𝑜𝑚𝜓
2

𝑎𝑡𝑜𝑚𝜓
3
∨𝑎𝑡𝑜𝑚𝜓

4

𝜓2=[[Γ2]]𝑞𝑈𝑟 𝜓3=⟨⟨Γ3⟩⟩𝑋𝑞 𝜓4=[[Γ4]]𝑞𝑅𝑟

Figure 3: The tree for the formula 𝜑 = ⟨⟨Γ1⟩⟩𝑋 [[Γ2]]𝑞𝑈𝑟 ∧
(⟨⟨Γ3⟩⟩𝑋𝑞 ∨ [[Γ4]]𝑞𝑅𝑟 ).

Finally, we give the complexity of the procedure.

Theorem 4.5. Algorithm 2 terminates in exponential time w.r.t
the size of𝑀 .

4.3 Phase 2: check sub-formulas
Given a candidate, we present here how to check the sub-formulas

on it. The procedure is presented in Algorithm 3. Informally, the

algorithm takes a candidate and an ATL
∗
formula 𝜑 . It works with

the set 𝑟𝑒𝑠𝑢𝑙𝑡 that contains tuples ⟨𝑠,𝜓, 𝑣𝑎𝑡𝑜𝑚𝜓 ⟩, where 𝑠 is a state
in a sub-model,𝜓 is a sub-formula of 𝜑 , and 𝑣𝑎𝑡𝑜𝑚𝜓 is the atomic

proposition generated from𝜓 , where 𝑣 ∈ {𝑝, 𝑛} is the type of the
sub-model (i.e., positive or negative). In more detail, the set 𝑟𝑒𝑠𝑢𝑙𝑡

contains tuples ⟨𝑠,𝜓, 𝑣𝑎𝑡𝑜𝑚𝜓 ⟩, where 𝑠 satisfies𝜓 and 𝑣𝑎𝑡𝑜𝑚𝜓 rep-

resents the atom that will take the place of𝜓 in the original formula

𝜑 (𝑣 is used to remember if 𝜓 is satisfied in a negative (𝑣 = 𝑛) or

positive sub-model (𝑣 = 𝑝)). In line 1 the set 𝑟𝑒𝑠𝑢𝑙𝑡 is initialized

to ∅. In line 2 the set subformulas is initialized via the subroutine

𝑆𝑢𝑏𝐹𝑜𝑟𝑚𝑢𝑙𝑎𝑠 (). By 𝑆𝑢𝑏𝐹𝑜𝑟𝑚𝑢𝑙𝑎𝑠 (𝜑) we take all the sub-formulas

of 𝜑 with only one strategic operator. With more detail, we can

see our formula 𝜑 as a tree, where the root is 𝜑 , the other nodes

are the sub-formulas of 𝜑 , and the leaves of the tree are the sub-

formulas of 𝜑 having only one strategic operator. Given this tree,

the algorithm generates for each node 𝜓 an atomic proposition

𝑎𝑡𝑜𝑚𝜓 and updates the tree by replacing every occurrence of𝜓 in

its ancestors with 𝑎𝑡𝑜𝑚𝜓 . Then, the nodes of the tree are stored in

the set subformulas by using a depth first search. For instance, let us
consider the formula 𝜑 = ⟨⟨Γ1⟩⟩𝑋 [[Γ2]]𝑞𝑈𝑟 ∧ (⟨⟨Γ3⟩⟩𝑋𝑞 ∨ [[Γ4]]𝑞𝑅𝑟 );
when we apply 𝑆𝑢𝑏𝐹𝑜𝑟𝑚𝑢𝑙𝑎𝑠 (𝜑) the tree in Figure 3 is generated

and we obtain the ordered set subformulas = [𝜓2,𝜓1,𝜓3,𝜓4]. The
extraction of the set of sub-formulas from 𝜑 is necessary to ver-

ify whether there are sub-models satisfying/unsatisfying at least

a part of 𝜑 (not exclusively the whole 𝜑). If that is the case, such



sub-models can later on be used to verify 𝜑 over the entire model

𝑀 through CTL
∗
model checking. The main loop (lines 3-12) works

until all the sub-formulas of 𝜑 are treated. By starting from the first

formula of the set, the loop in lines 5-11 proceeds for each state,

and checks the current sub-formula against the currently selected

sub-models𝑀𝑛
and𝑀𝑝

. Note that, in lines 6 and 9, we have 𝐼𝑅 as

verification mode
2
. Thus, the models are checked under the assump-

tions of perfect information and perfect recall. If the sub-formula

is satisfied over the model 𝑀𝑛
(line 6), then by calling function

𝑈𝑝𝑑𝑎𝑡𝑒𝑀𝑜𝑑𝑒𝑙 (𝑀𝑛, 𝑠, 𝑎𝑡𝑜𝑚𝜓 ), the procedure updates the model𝑀𝑛

by updating the set of atomic propositions as 𝐴𝑃 = 𝐴𝑃 ∪ {𝑎𝑡𝑜𝑚𝜓 }
and the labelling function of 𝑠 as 𝑉 (𝑠) = 𝑉 (𝑠) ∪ {𝑎𝑡𝑜𝑚𝜓 } (line 7).
Furthermore, in line 8, the set 𝑟𝑒𝑠𝑢𝑙𝑡 is updated by adding a new

tuple. The reasoning applied to the model𝑀𝑛
is also applied to𝑀𝑝

(lines 9-11). At the end of the procedure, the state 𝑠⊤ is updated

(line 12) since, by Definition 4.3, it needs to contain all the possible

atoms that are in𝑀 .

Example 4.6. Given the negative sub-model𝑀𝑛
as in Figure 2 and

its positive counterpart𝑀𝑝
as input of Algorithm 3 we can analyze

formulas𝜑1 = ⟨⟨𝑟𝑜𝑣𝑒𝑟 ⟩⟩𝐹 ((𝑜𝑐∧𝑟𝑚)∧𝐹 ((𝑝𝑙∨𝑝𝑟 )∧𝐹 (𝑜𝑐∧𝑟𝑚))),𝜑2 =
⟨⟨𝑟𝑜𝑣𝑒𝑟,𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐⟩⟩𝐹 ((𝑜𝑐∧𝑟𝑚)∧⟨⟨𝑟𝑜𝑣𝑒𝑟 ⟩⟩𝐹 ((𝑝𝑙∨𝑝𝑟 )∧𝐹 (𝑜𝑐∧𝑟𝑚))),
and 𝜑 ′

3
= ⟨⟨𝑟𝑜𝑣𝑒𝑟,𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐⟩⟩𝐹 (𝑟𝑝 ∧ 𝑛𝑖𝑝 ∧ ⟨⟨𝑟𝑜𝑣𝑒𝑟 ⟩⟩𝐹 ((𝑝𝑙 ∨ 𝑝𝑟 ) ∧

𝐹 (𝑜𝑐 ∧ 𝑟𝑚)))3. We start with 𝜑1 where the set of sub-formulas

is initialized to {𝜑1} since there is only one strategic operator in

𝜑1. By line 4, the algorithm extracts 𝜑1 and by the loop in lines

5-11 it verifies that the formula is true in the negative and posi-

tive sub-models in states 𝑠4, 𝑠5, 𝑠6, 𝑠7, and 𝑠8. By line 7 (resp., 10)

it updates the model 𝑀𝑛
(resp., 𝑀𝑝

) by adding 𝑎𝑡𝑜𝑚𝜓1
in 𝐴𝑃 and

by updating the labeling function as 𝑉 ′(𝑠𝑖 ) = 𝑉 (𝑠𝑖 ) ∪ {𝑎𝑡𝑜𝑚𝜓1
},

for all 𝑖 ∈ {4, 5, 6, 7, 8}. Since there is only one strategic oper-

ator, the procedure is concluded. For 𝜑2, the set subformulas is
initialized to the set {𝜓1 = ⟨⟨𝑟𝑜𝑣𝑒𝑟 ⟩⟩𝐹 ((𝑝𝑙 ∨ 𝑝𝑟 ) ∧ 𝐹 (𝑜𝑐 ∧ 𝑟𝑚)),
𝜓2 = ⟨⟨𝑟𝑜𝑣𝑒𝑟,𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐⟩⟩𝐹 ((𝑜𝑐 ∧ 𝑟𝑚) ∧ 𝑎𝑡𝑜𝑚𝜓1

)}. By line 4, the al-

gorithm extracts𝜓1 and by the loop in lines 5-11 it verifies that the

formula is true in the negative and positive sub-models in states

𝑠4, 𝑠5, 𝑠6, 𝑠7, and 𝑠8. By line 7 (resp., 10) it updates the model 𝑀𝑛

(resp., 𝑀𝑝
) by adding 𝑎𝑡𝑜𝑚𝜓1

in 𝐴𝑃 and by updating the labeling

function as 𝑉 ′(𝑠𝑖 ) = 𝑉 (𝑠𝑖 ) ∪ {𝑎𝑡𝑜𝑚𝜓1
}, for all 𝑖 ∈ {4, 5, 6, 7, 8}.

For the second iteration of the main loop (lines 3-11) the formula

𝜓2 is analyzed. In this case, 𝜓2 is true in the negative and pos-

itive sub-models in states 𝑠𝐼 , 𝑠2, 𝑠4, 𝑠5, 𝑠6, 𝑠7, and 𝑠8. Again, the

models 𝑀𝑛
and 𝑀𝑝

are updated by adding 𝑎𝑡𝑜𝑚𝜓2
in 𝐴𝑃 and by

updating the labeling function as 𝑉 ′(𝑠𝑖 ) = 𝑉 (𝑠𝑖 ) ∪ {𝑎𝑡𝑜𝑚𝜓2
}, for

all 𝑖 ∈ {𝐼 , 2, 4, 5, 6, 7, 8}. For 𝜑 ′
3
, the set of sub-formulas is initial-

ized to the set {𝜓1 = ⟨⟨𝑟𝑜𝑣𝑒𝑟 ⟩⟩𝐹 ((𝑝𝑙 ∨ 𝑝𝑟 ) ∧ 𝐹 (𝑜𝑐 ∧ 𝑟𝑚)), 𝜓2 =

⟨⟨𝑟𝑜𝑣𝑒𝑟,𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐⟩⟩𝐹 (𝑟𝑝 ∧ 𝑛𝑖𝑝 ∧ 𝑎𝑡𝑜𝑚𝜓1
)}. Since𝜓1 is the same as

before for 𝜑2 we have the same behavior of the algorithm. For the

second iteration,𝜓2 is false in all the states in 𝑆𝑝 ∩𝑆𝑛 . So, no update
is done in the set 𝑟𝑒𝑠𝑢𝑙𝑡 .

To conclude this part, we provide the complexity result.

Theorem 4.7. Algorithm 3 terminates in double exponential time
w.r.t. the size of 𝜑 .

2
As usual, 𝐼 denotes perfect information and 𝑅 denotes perfect recall.

3𝜑′
3
is the updated version of𝜑3 given in Section 3, where𝑛𝑖𝑝 replaces¬𝑖𝑝 as described

in the algorithm of Section 4.1.

Algorithm 4 𝑉𝑒𝑟𝑖 𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛 (𝑀 , 𝜑 , 𝑟𝑒𝑠𝑢𝑙𝑡 )

1: 𝑘 = ?;

2: for 𝑠 ∈ 𝑆 do
3: take set 𝑎𝑡𝑜𝑚𝑠 from 𝑟𝑒𝑠𝑢𝑙𝑡 (𝑠) ;
4: 𝑈𝑝𝑑𝑎𝑡𝑒𝑀𝑜𝑑𝑒𝑙 (𝑀 , 𝑠 , 𝑎𝑡𝑜𝑚𝑠);

5: 𝜑𝑛 = 𝜑 , 𝜑𝑝 = 𝜑 ;

6: while 𝑟𝑒𝑠𝑢𝑙𝑡 is not empty do
7: extract ⟨𝑠,𝜓, 𝑣𝑎𝑡𝑜𝑚𝜓 ⟩ from 𝑟𝑒𝑠𝑢𝑙𝑡 ;

8: if 𝑣 = 𝑛 then
9: 𝜑𝑛 =𝑈𝑝𝑑𝑎𝑡𝑒𝐹𝑜𝑟𝑚𝑢𝑙𝑎(𝜓𝑛 ,𝜓 , 𝑛𝑎𝑡𝑜𝑚𝜓 );

10: else
11: 𝜑𝑝 =𝑈𝑝𝑑𝑎𝑡𝑒𝐹𝑜𝑟𝑚𝑢𝑙𝑎(𝜓𝑝 ,𝜓 , 𝑝𝑎𝑡𝑜𝑚𝜓 );

12: 𝜑𝐴 = 𝐹𝑟𝑜𝑚𝐴𝑇𝐿𝑡𝑜𝐶𝑇𝐿(𝜑𝑛 , 𝑛);

13: 𝜑𝐸 = 𝐹𝑟𝑜𝑚𝐴𝑇𝐿𝑡𝑜𝐶𝑇𝐿(𝜑𝑝 , 𝑝);

14: if 𝑀 |= 𝜑𝐴 then
15: 𝑘 = ⊤;
16: if 𝑀 ̸ |= 𝜑𝐸 then
17: 𝑘 = ⊥;
18: return 𝑘 ;

4.4 Phase 3: CTL∗ verification
In the previous sections, we showed how to extract sub-models

of a model 𝑀 satisfying/unsatisfying at least one sub-formula 𝜑 ′

of 𝜑 . Here, we present in Algorithm 4 how to apply CTL
∗
model

checking to try to conclude the satisfaction/violation of 𝜑 in 𝑀

by using such sub-models. The algorithm takes as input an iCGS

𝑀 , an ATL
∗
formula 𝜑 , and a set 𝑟𝑒𝑠𝑢𝑙𝑡 . The algorithm starts by

updating the model𝑀 with the atoms generated from Algorithm

3 and stored in 𝑟𝑒𝑠𝑢𝑙𝑡 (lines 2-4). In lines 5-11, the procedure gen-

erates formulas 𝜑𝑝 and 𝜑𝑛 in accordance with the tuples in 𝑟𝑒𝑠𝑢𝑙𝑡 .

In this part of the procedure, the algorithm uses the subroutine

𝑈𝑝𝑑𝑎𝑡𝑒𝐹𝑜𝑟𝑚𝑢𝑙𝑎(𝜑,𝜓, 𝑎𝑡𝑜𝑚𝜓 ). The latter modifies the formula 𝜑

by replacing each occurrence of𝜓 with 𝑎𝑡𝑜𝑚𝜓 , where 𝑎𝑡𝑜𝑚𝜓 is a

unique atom identifier for formula 𝜓 . As an example, let us con-

sider 𝜑 = ⟨⟨Γ⟩⟩𝑋 ⟨⟨Γ⟩⟩𝑟𝑈𝑞, with 𝜓 = ⟨⟨Γ⟩⟩𝑟𝑈𝑞. When we apply

𝑈𝑝𝑑𝑎𝑡𝑒𝐹𝑜𝑟𝑚𝑢𝑙𝑎(𝜑,𝜓, 𝑎𝑡𝑜𝑚𝜓 ), we obtain an updated version of 𝜑 ,

where all occurrences of 𝜓 have been replaced by 𝑎𝑡𝑜𝑚𝜓 , i.e. 𝜑
becomes ⟨⟨Γ⟩⟩𝑋𝑎𝑡𝑜𝑚𝜓 . The formulas 𝜑𝑛 and 𝜑𝑝 represent the ATL

∗

formula which remains to verify in𝑀 . To achieve this, we transform

𝜑𝑛 and 𝜑𝑝 into their CTL
∗
counterparts 𝜑𝐴 and 𝜑𝐸 , respectively

(lines 12-13). Given a formula 𝜑 in ATL
∗
, we denote with 𝜑𝐴 (resp.,

𝜑𝐸 ) the universal formula (resp., existential) of 𝜑 , i.e. we substitute
each occurrence of a strategic operator in 𝜑 with the universal

(resp., existential) operator of CTL
∗
. Given 𝜑𝐴 and 𝜑𝐸 we can per-

form standard CTL
∗
model checking. First, by verifying if 𝜑𝐴 is

satisfied by𝑀 (line 14). If this is the case we can derive that𝑀 |= 𝜑

and set 𝑘 = ⊤. Otherwise, the algorithm continues verifying if 𝜑𝐸
is not satisfied by𝑀 (line 16). If this is the case we can derive that

𝑀 ̸ |=𝜑 and set 𝑘 =⊥. If neither of the two previous conditions are

satisfied then the inconclusive result is returned.

Example 4.8. As for the previous example, we continue to an-

alyze formulas 𝜑1, 𝜑2, and 𝜑 ′
3
. For 𝜑1 the set 𝑟𝑒𝑠𝑢𝑙𝑡 is composed

by the tuples: ⟨𝑠4,𝜓1, 𝑣𝑎𝑡𝑜𝑚𝜓1
⟩, ⟨𝑠5,𝜓1, 𝑣𝑎𝑡𝑜𝑚𝜓1

⟩, ⟨𝑠6,𝜓1, 𝑣𝑎𝑡𝑜𝑚𝜓1
⟩,

⟨𝑠7,𝜓1, 𝑣𝑎𝑡𝑜𝑚𝜓1
⟩, and ⟨𝑠8,𝜓1, 𝑣𝑎𝑡𝑜𝑚𝜓1

⟩where 𝑣 ∈ {𝑛, 𝑝}. In lines 2-

4, the model 𝑀 depicted in Figure 1 is updated with the atoms

𝑛𝑎𝑡𝑜𝑚𝜓1
and 𝑝𝑎𝑡𝑜𝑚𝜓1

in states 𝑠4, 𝑠5, 𝑠6, 𝑠7, and 𝑠8. Then, in lines 6-

11, 𝜑𝑛 and 𝜑𝑝 are generated as 𝑛𝑎𝑡𝑜𝑚𝜓1
and 𝑝𝑎𝑡𝑜𝑚𝜓1

, respectively.

Since there are no strategic operators in the latter formulas then

𝜑𝐴 =𝜑𝑛 and 𝜑𝐸 =𝜑𝑝 . The condition in line 14 is not satisfied but it



is in line 16. So, the output of the procedure is ⊥, i.e. the formula is

false in the model𝑀 . For𝜑2 the set 𝑟𝑒𝑠𝑢𝑙𝑡 is composed by the tuples:

⟨𝑠4,𝜓1, 𝑣𝑎𝑡𝑜𝑚𝜓1
⟩,⟨𝑠5,𝜓1, 𝑣𝑎𝑡𝑜𝑚𝜓1

⟩,⟨𝑠6,𝜓1, 𝑣𝑎𝑡𝑜𝑚𝜓1
⟩,⟨𝑠7,𝜓1, 𝑣𝑎𝑡𝑜𝑚𝜓1

⟩,
⟨𝑠8,𝜓1, 𝑣𝑎𝑡𝑜𝑚𝜓1

⟩,⟨𝑠𝐼 ,𝜓2, 𝑣𝑎𝑡𝑜𝑚𝜓2
⟩,⟨𝑠2,𝜓2, 𝑣𝑎𝑡𝑜𝑚𝜓2

⟩,⟨𝑠4,𝜓2, 𝑣𝑎𝑡𝑜𝑚𝜓2
⟩,

⟨𝑠5,𝜓2, 𝑣𝑎𝑡𝑜𝑚𝜓2
⟩,⟨𝑠6,𝜓2, 𝑣𝑎𝑡𝑜𝑚𝜓2

⟩,⟨𝑠7,𝜓2, 𝑣𝑎𝑡𝑜𝑚𝜓2
⟩,⟨𝑠8,𝜓2, 𝑣𝑎𝑡𝑜𝑚𝜓2

⟩,
where 𝑣 ∈ {𝑛, 𝑝}. In lines 2-4,𝑀 is updated with the atoms 𝑛𝑎𝑡𝑜𝑚𝜓1

and 𝑝𝑎𝑡𝑜𝑚𝜓1
in states 𝑠4, 𝑠5, 𝑠6, 𝑠7, and 𝑠8; and atoms 𝑛𝑎𝑡𝑜𝑚𝜓2

and

𝑝𝑎𝑡𝑜𝑚𝜓2
in states 𝑠𝐼 , 𝑠2, 𝑠4, 𝑠5, 𝑠6, 𝑠7, and 𝑠8. Then, in lines 6-11

𝜑𝑛 and 𝜑𝑝 are generated as 𝑛𝑎𝑡𝑜𝑚𝜓2
and 𝑝𝑎𝑡𝑜𝑚𝜓2

, respectively.

As before, 𝜑𝐴 = 𝜑𝑛 and 𝜑𝐸 = 𝜑𝑝 . The condition in line 16 is

not satisfied but it is in line 14. So, the output of the procedure

is ⊤, i.e. the formula is true in the model 𝑀 . For 𝜑 ′
3
the set re-

sult is composed by the tuples: ⟨𝑠4,𝜓1, 𝑣𝑎𝑡𝑜𝑚𝜓1
⟩, ⟨𝑠5,𝜓1, 𝑣𝑎𝑡𝑜𝑚𝜓1

⟩,
⟨𝑠6,𝜓1, 𝑣𝑎𝑡𝑜𝑚𝜓1

⟩, ⟨𝑠7,𝜓1, 𝑣𝑎𝑡𝑜𝑚𝜓1
⟩, and ⟨𝑠8,𝜓1, 𝑣𝑎𝑡𝑜𝑚𝜓1

⟩ where 𝑣 ∈
{𝑛, 𝑝}. In lines 2-4, 𝑀 is updated with the atoms 𝑛𝑎𝑡𝑜𝑚𝜓1

and

𝑝𝑎𝑡𝑜𝑚𝜓1
in states 𝑠4, 𝑠5, 𝑠6, 𝑠7, and 𝑠8. Then, in lines 6-11 𝜑𝑛 and

𝜑𝑝 are generated as ⟨⟨𝑟𝑜𝑣𝑒𝑟,𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐⟩⟩𝐹 (𝑟𝑝 ∧ 𝑛𝑖𝑝 ∧ 𝑛𝑎𝑡𝑜𝑚𝜓1
) and

⟨⟨𝑟𝑜𝑣𝑒𝑟,𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐⟩⟩𝐹 (𝑟𝑝 ∧𝑛𝑖𝑝 ∧𝑝𝑎𝑡𝑜𝑚𝜓1
), respectively. Since there

are strategic operators in the latter formulas then the algorithm

produces formulas 𝜑𝐴 = 𝐴𝐹 (𝑟𝑝∧𝑛𝑖𝑝∧𝑛𝑎𝑡𝑜𝑚𝜓1
) and 𝜑𝐸 = 𝐸𝐹 (𝑟𝑝∧

𝑛𝑖𝑝 ∧ 𝑝𝑎𝑡𝑜𝑚𝜓1
). The condition in line 14 is not satisfied but it is in

line 16. So, the output of the procedure is ⊥, i.e. the formula is false

in the model𝑀 .

Note that, in these examples, with our algorithm we can find

solution to some ATL model checking problems that are in the

class of undecidable problems (naturally, not for all ATL model

checking problems in such class, otherwise it would be decidable).

Furthermore, we preserve the truth values, i.e. they are the same as

described in Section 3.

To conclude this part, we provide the complexity result.

Theorem 4.9. Algorithm 4 terminates in exponential time w.r.t.
the size of 𝜑 and polynomial time w.r.t. to the size of𝑀 .

4.5 The overall model checking procedure
GivenAlgorithms 1, 2, 3, and 4, we can provide the overall procedure

as described in Algorithm 5.

Algorithm 5𝑀𝑜𝑑𝑒𝑙𝐶ℎ𝑒𝑐𝑘𝑖𝑛𝑔𝑃𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 (𝑀 , 𝜑)

1: 𝑃𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 (𝑀,𝜑) ;
2: 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 = 𝐹𝑖𝑛𝑑𝑆𝑢𝑏-𝑚𝑜𝑑𝑒𝑙𝑠 (𝑀,𝜑) ;
3: if |𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 | = 1 then
4: return𝑀 |=𝐼𝑅 𝜑

5: while 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 is not empty do
6: extract ⟨𝑀𝑛, 𝑀𝑝 ⟩ from 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ;

7: 𝑟𝑒𝑠𝑢𝑙𝑡 =𝐶ℎ𝑒𝑐𝑘𝑆𝑢𝑏-𝑓𝑜𝑟𝑚𝑢𝑙𝑎𝑠 ( ⟨𝑀𝑛, 𝑀𝑝 ⟩, 𝜑) ;
8: 𝑘 =𝑉𝑒𝑟𝑖 𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛 (𝑀,𝜑, 𝑟𝑒𝑠𝑢𝑙𝑡 ) ;
9: if 𝑘 ≠ ? then
10: return 𝑘 ;

11: return ?;

The𝑀𝑜𝑑𝑒𝑙𝐶ℎ𝑒𝑐𝑘𝑖𝑛𝑔𝑃𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 () takes in input a model𝑀 and

a formula 𝜑 , and calls the function 𝑃𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔() to generate

the NNF of 𝜑 and to replace all negated atoms with new positive

atoms inside 𝑀 and 𝜑 . After that, it calls the function 𝐹𝑖𝑛𝑑𝑆𝑢𝑏-

𝑚𝑜𝑑𝑒𝑙𝑠 () to generate all the positive and negative sub-models that

represent all the possible sub-models with perfect information. If

the number of candidates is equal to one (line 3), i.e., the model𝑀

given in input is with perfect information, then we can directly call

the ATL
∗
model checking procedure in case of perfect information

and perfect recall. Then, there is a while loop (lines 5-10) that for

each candidate checks the sub-formulas true on the sub-models

via 𝐶ℎ𝑒𝑐𝑘𝑆𝑢𝑏-𝑓𝑜𝑟𝑚𝑢𝑙𝑎𝑠 () and the truth value of the whole formula

via 𝑉𝑒𝑟𝑖 𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛(). If the output of the latter procedure is different
from ? then the result is directly returned (line 10).

Theorem 4.10. Algorithm 5 terminates in double exponential time
w.r.t. the size of 𝜑 and exponential time w.r.t. the size of𝑀 .

4.6 Soundness
Before showing the soundness of our algorithm, we need to pro-

vide some auxiliary lemmas. Since in our procedure we use ATL
∗

formulas in NNF with duplication of atoms to avoid the negations,

in the rest of the section we will consider this type of formulas.

We start with two preservation results from sub-models to the

original model.

Lemma 4.11. Given a model 𝑀 , a negative (resp., positive) sub-
model with perfect information𝑀𝑛 (resp.,𝑀𝑝 ) of𝑀 , and a formula
𝜑 of the form 𝜑 = ⟨⟨Γ⟩⟩𝜓 for some Γ ⊆ 𝐴𝑔. For any 𝑠 ∈ 𝑆𝑛 \ {𝑠⊥}
(resp., 𝑆𝑝 \ {𝑠⊤}) , we have that:

𝑀𝑛, 𝑠 |= 𝜑 ⇒ 𝑀, 𝑠 |= 𝜑

𝑀𝑝 , 𝑠 ̸ |= 𝜑 ⇒ 𝑀, 𝑠 ̸ |= 𝜑

The above result also holds for the universal strategic quantifier.

Now, we give two preservation results from CTL
∗
formulas to

ATL
∗
formulas that derives from [1].

Lemma 4.12. Given a model 𝑀 , a formula 𝜑 in ATL∗ written in
NNF, and the CTL∗ universal (resp., existential) version 𝜑𝐴 (resp., 𝜑𝐸 )
of 𝜑 . For any 𝑠 ∈ 𝑆 , we have that:

𝑀, 𝑠 |= 𝜑𝐴 ⇒ 𝑀, 𝑠 |= 𝜑

𝑀, 𝑠 ̸ |= 𝜑𝐸 ⇒ 𝑀, 𝑠 ̸ |= 𝜑

Finally, we show the soundness of our procedure.

Theorem 4.13. Algorithm 5 is sound: if the value returned is not
?, then𝑀 |= 𝜑 iff 𝑘 = ⊤.

Proof. Suppose that the value returned is different from ?. In

particular, either 𝑘 = ⊤ or 𝑘 = ⊥. If 𝑀 |= 𝜑 and 𝑘 = ⊥, then by

Algorithm 4 and 5, we have that 𝑀 ′ ̸ |= 𝜑𝐸 . Now, there are two

cases: (1)𝑀 and𝑀 ′
are the same models or (2)𝑀 differs from𝑀 ′

for some atomic propositions added to𝑀 ′
in lines 2-4 of Algorithm

4. For (1), we know that𝑀 and𝑀 ′
are labeled with the same atomic

propositions and thus 𝑀 ′ ̸ |= 𝜑𝐸 implies 𝑀 ̸ |= 𝜑𝐸 and, by Lemma

4.12, 𝑀 ̸ |= 𝜑 , a contradiction. Hence, 𝑘 = ⊤ as required. For (2),

suppose that𝑀 ′
has only one additional atomic proposition 𝑎𝑡𝑜𝑚𝜓 ,

i.e. 𝐴𝑃 ′ = 𝐴𝑃 ∪ {𝑎𝑡𝑜𝑚𝜓 }. The latter means that Algorithm 3 found

a positive sub-model𝑀𝑝
in which𝑀𝑝 , 𝑠 |= 𝜓 , for some 𝑠 ∈ 𝑆𝑝 . By

Lemma 4.11, for all 𝑠 ∈ 𝑆𝑝 \ {𝑠⊤}, we know that if𝑀𝑝 , 𝑠 ̸ |= 𝜓 then

𝑀, 𝑠 ̸ |= 𝜓 . So, 𝑀 ′
over-approximates 𝑀 , i.e. there could be some

states that in 𝑀 ′
are labeled with 𝑎𝑡𝑜𝑚𝜓 but they don’t satisfy

𝜓 in 𝑀 . Thus, if 𝑀 ′ ̸ |= 𝜑𝐸 then 𝑀 ̸ |= 𝜑𝐸 and, by Lemma 4.12,

𝑀 ̸ |= 𝜑 , a contradiction. Hence, 𝑘 = ⊤ as required. Obviously, we

can generalize the above reasoning in case 𝑀 and 𝑀 ′
differ for

multiple atomic propositions. The case 𝑘 = ⊤ can be solved by a

similar reasoning. □



5 OUR TOOL
The algorithms presented were implemented in Java

4
(∼7k lines of

code in total). The tool expects a model in input formatted as a Json

file. This file is then parsed, and an internal representation of the

model and formula are generated. After the preprocessing phase,

Algorithm 2 is called to extract the sub-models. The verification of a

sub-model against a sub-formula is achieved by translating the sub-

model into its equivalent ISPL (Interpreted Systems Programming

Language) program, which is then verified by using the model

checker MCMAS
5
. This corresponds to the verification steps for

Algorithm 3 at lines 6 and 9, and Algorithm 4 at lines 14 and 16. The

entire manipulation, from parsing the model formatted in Json, to

translating the latter to its equivalent ISPL program, was performed

by extending an existent Java library [10]; the rest of the tool derives

directly from the algorithms presented in this paper.

5.1 Experiments
We tested our tool over the rover’s mission, on a machine with

the following specifications: Intel(R) Core(TM) i7-7700HQ CPU @

2.80GHz, 4 cores 8 threads, 16 GB RAM DDR4. By considering the

model of Figure 1 and the three formulas 𝜑1, 𝜑2 and 𝜑3 presented

in the same section, Algorithm 2 finds 3 sub-models with perfect

information (precisely, 3 negative and 3 positive sub-models). Such

sub-models are then evaluated by applying first Algorithm 3, and

then Algorithm 4 (as shown in Algorithm 5). The resulting imple-

mentation takes 0.2 [sec] to conclude the satisfaction of 𝜑2 and

the violation of 𝜑1 and 𝜑3 on the model (empirically confirming

our expectations). The example of Figure 1 is expressly small, since

it is used as running example to help the reader to understand

the contribution. However, we further tested our tool on several

extensions of the rover example that contained hundreds (∼ 150)

of states and dozens of agents (multiple rovers and mechanics).

Such more complex scenarios served us as a stress test to analyse

the performance of our tool for more realistic MAS
6
. Since Algo-

rithm 5 is 2𝐸𝑋𝑃𝑇 𝐼𝑀𝐸, when the model grows, the performance is

highly affected. Furthermore, we tested our tool on a large set of

automatically and randomly generated iCGSs and ATL formulas.

The size of each iCGS was between 5 and 30 states while the for-

mulas where between 2 and 10 strategic/temporal operators. The

objective of these experiments was to show how many times our

algorithm returned a conclusive verdict. For each model, we ran

our procedure and counted the number of times a solution was

returned. Note that, our approach terminates in any case, but since

the general problem is undecidable, the result might be inconclu-

sive (i.e. ?). The execution time to complete all experiments took

∼ 15 hours in total. In Figure 4, we report our results by varying

the percentage of imperfect information (x axis) inside the iCGSs,

from 0% (perfect information, i.e. all states are distinguishable for
all agents), to 100% (no information, i.e. no state is distinguishable

for any agent). For each percentage selected, we generated 10k

random iCGSs and counted the number of times our algorithm

returned with a conclusive result (i.e. ⊤ or ⊥). As shown in Figure 4,

4
https://github.com/AngeloFerrando/StrategyCTL

5
https://vas.doc.ic.ac.uk/software/mcmas/

6
In such experiments, the maximum execution time observed reaches even 3 hours

(naturally, this does not only depend on the size of the model, but on the kind of

formula verified as well).

Figure 4: Experimental results.

our algorithm returned a conclusive verdict for 80% of the models

analysed (y axis). It is important to notice how this result was not

influenced (empirically) by the percentage of imperfect information

added inside the iCGSs. In fact, the accuracy of the algorithm is

not determined by the number of indistinguishable states, but by

the topology of the iCGS and the structure of the formula under

exam. In order to have pseudo-realistic results, the automatically

generated iCGSs varied over the number of states, the complexity

of the formula to analyse, and the number of transitions among

states. More specifically, not all iCGSs were generated completely

randomly, but a subset of them was generated considering more

interesting topologies; that is, iCGSs obtained by modifying the

iCGS presented in the rover’s example by adding and/or removing

new states and/or transitions. This contributed to have more real-

istic iCGSs, and consequently, more realistic results. The results

obtained by our experiments using our procedure are encouraging.

Unfortunately, no benchmark of existing iCGSs – to test our tool

on – exists, thus these results may vary on more realistic scenarios.

Nonetheless, considering the large set of iCGSs we experimented

on, we do not expect substantial differences.

6 CONCLUSIONS AND FUTUREWORK
In this paper, we proposed a procedure to overcome the issue in em-

ploying logics for strategic reasoning in the context of MAS under

perfect recall and imperfect information, a problem in general un-

decidable. Specifically, we showed how to generate the sub-models

in which the verification of strategic objectives is decidable and

then used CTL
∗
model checking to provide a verification result. We

proved that the entire procedure is in the same complexity class

of ATL
∗
𝐼𝑅

model checking. We also implemented our procedure by

using MCMAS and provided encouraging experimental results.

In future work, we intend to extend our procedure to increase the

types of games and specifications that we can cover. In fact, we recall

that our procedure is sound but not complete. It is not possible to

find a complete method since, in general, ATL model checking with

imperfect information and perfect recall strategies is undecidable. In

this work, we considered how to remove the imperfect information

from the models to find decidability, but it would be interesting to

consider the other direction that produces undecidability, i.e. the
perfect recall strategies. In particular, we could remove the perfect

recall strategies to generate games with imperfect information and

imperfect recall strategies, a decidable problem, and then use CTL

model checking to provide a verification result. Additionally, we

plan to extend our techniques to more expressive languages for

strategic reasoning like Strategy Logic [19].

https://github.com/AngeloFerrando/StrategyCTL
https://vas.doc.ic.ac.uk/software/mcmas/
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