
Natural Strategic Ability under Imperfect Information
Wojciech Jamroga

Institute of Computer Science,

Polish Academy of Sciences

Warsaw, Poland

wjamroga@in.tu-clausthal.de

Vadim Malvone

Université d’Evry

Evry, France

vadim.malvone@univ-evry.fr

Aniello Murano

Universitá degli studi di Napoli

"Federico II"

Naples, Italy

murano@na.infn.it

ABSTRACT
Strategies in game theory and multi-agent logics are mathemati-

cal objects of remarkable combinatorial complexity. Recently, the

concept of natural strategies has been proposed to model more

human-like reasoning about simple plans and their outcomes. So

far, the theory of such simple strategic play was only considered in

scenarios where all the agents have perfect information about the

state of the game.

In this paper, we extend the notion of natural strategies to games

with imperfect information. We also show that almost all the com-

plexity results for model checking carry over from the perfect to

imperfect information setting. That is, verification of natural strate-

gies is usually no more complex for agents with uncertainty. This

tells games of natural strategic ability clearly apart from most re-

sults in game theory and multi-agent logics.

KEYWORDS
[Agent Theories and Models] Logic and Game Theory; Logics for

agents and multi-agents systems; [Verification and Validation of

Agent-based Systems] Verification techniques for multi-agents sys-

tems, including model checking;

ACM Reference Format:
Wojciech Jamroga, Vadim Malvone, and Aniello Murano. 2019. Natural

Strategic Ability under Imperfect Information. In Proc. of the 18th Interna-
tional Conference on Autonomous Agents and Multiagent Systems (AAMAS
2019), Montreal, Canada, May 13–17, 2019, IFAAMAS, 9 pages.

1 INTRODUCTION
Game theory provides a powerful mathematical framework to rea-

son about the interaction of autonomous, purposeful agents. It has

seen numerous applications in robotics, computer science, and AI.

An application domain of particular interest for the multi-agent

systems community concerns formal verification, synthesis, and

planning for reactive and embedded systems. As many relevant

properties of multi-agent systems refer to strategic abilities of agents
and their groups, the need for formal specification and verification

of such properties is essential if we want to make sure that the

systems operate in the way we want them to.

Logics for strategic reasoning. A fundamental contribution in

this field is alternating-time temporal logic ATL and its syntactic

extension ATL
∗
[8]. Formulas of ATL are usually interpreted over

concurrent game structures (CGS) which are labeled state-transition

systems that model synchronous interaction among agents. For

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13–17, 2019,
Montreal, Canada. © 2019 International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). All rights reserved.

example, in a ticket vending machine, the ATL formula ⟨⟨c⟩⟩Fticket
may be used to express that the customer c can ensure that he will

eventually obtain a ticket, regardless of the actions of the other

agents. The specification holds if c has a strategy whose every

execution path satisfies Fticket. Clearly, it captures an important

functionality requirement for any ticket vending machine. Similarly,

in a bullet voting system, ⟨⟨v, crc⟩⟩G(AFvotedv, i ↔ AFpaidcrc,v)
says that the voter and the coercer have a collective strategy to

ensure that the coercer will pay out the prearranged bribe when-

ever v has voted for the indicated candidate i . This is obviously
an undesirable property for most voting systems, as it allows to

establish a vote buying scheme between the coercer and the voter.

Natural strategies. Following the game-theoretic model of multi-

step play, strategies inMAS are understood as conditional plans, and

play a central role in reasoning about purposeful agents. Formally,

strategies in ATL, as well as in other logics of strategic reasoning

such as Strategy Logic [25, 47, 48], are defined as functions from

sequences of system states (i.e., possible histories of the game) to

actions. A simpler notion of positional a.k.a.memoryless strategies is
formally defined by functions from states to actions. The approach

makes sense from the mathematical point of view, and might be

appropriate to reason about strategic abilities of a computer pro-

gram with extensive computational power at hand. However, it is

completely unrealistic for reasoning about human behavior. This is

because humans are very bad at handling combinatorially complex

objects. A human strategy should be relatively simple and intuitive

(or “natural”) in order for the person to understand it, memorize it,

and execute it. This applies even more if the human agent is to come

up with the strategy on his own. A similar concern can be raised

for of artificial agents with limited memory and/or computational

power, such as simple robots, sensors in an autonomous sensor

network, and components of Internet of Things.

To address this problem, NatATL was introduced in [39]. The

logic updates ATL by replacing the strategic operator ⟨⟨A⟩⟩φ with

a bounded version ⟨⟨A⟩⟩≤kφ, where k ∈ N denotes the complexity

bound. To measure the complexity of strategies, it was assumed that

they are represented by lists of guarded actions. For memoryless

strategies, guards are boolean propositional formulas. For strategies

with recall, guards are given as regular expressions over boolean

propositional formulas.

Natural ability for imperfect information. A crucial issue in

reasoning about MAS is the observational and epistemic limitations

of the agents. The most important distinction is between perfect and
imperfect information scenarios. In the former case, all the players

have always full knowledge of the current state of the game. In the

latter the players may have to make their decisions with limited in-

formation at hand. Both settings have been intensively investigated

in the literature, and applied in real-life domains. A classic approach

to modeling imperfect information is to use indistinguishability

relations over game states [9, 11–16, 18, 22–24, 26, 32, 38, 40, 42, 44–

46, 50, 52]. Then, the agent is supposed to specify the same action

for all indistinguishable states. This in turn has a huge impact on

the related decision problems, such as game solving and model

checking. Indeed, it is well known that solving multi-player games

of imperfect information are computationally hard (non-elementary

or even undecidable) [50, 52].

In this paper, we present a variant of NatATL for agents with

imperfect information. To measure the complexity of strategies,

we assume that they are represented by lists of guarded actions.

For memoryless strategies, guards are epistemic boolean propo-

sitional formulas. For strategies with recall, guards are given as

regular expressions over epistemic boolean propositional formu-

las. As technical results, we study the problem of model checking

NatATL for both memoryless and memoryfull strategies. The com-

plexity ranges from ∆P
2 to PSPACE in the general case, and from

P to ∆P
2 for small complexity bounds. Thus, verification of natural

strategies is usually no more complex for agents with uncertainty.

This is an interesting result, and one that clearly separates games

of natural strategic ability from most results in game theory and

multi-agent logics.

Outline of the paper. The rest of the paper is organized as follows.
In Sec.2 we introduce natural strategies with uncertainty. In Sec.3

we present NatATL for agents with imperfect information and in

Sec.4 we study the model checking problem under imperfect recall

strategies. In Sec.5 we introduce natural strategies with perfect

recall and in Sec.6 we study the related model checking problem

(under imperfect information). Finally, we conclude in Sec.7.

1.1 Related Work
Imperfect information games have been largely considered in the

literature [21, 29, 36, 43, 52]. A seminal work is [52] in which a num-

ber of variants of 2-player games with imperfect information have

been investigated. Generally, having imperfect information imme-

diately reflects on worsening the complexity of solving the game.

In multi-player games one can easily jump to non-elementary [50]

or even to undecidability [29]. As an evidence we mention [51]

where a pipeline of processes architecture is considered and each

output communication of process i is taken as the input communi-

cation of process i + 1. The reachability problem under imperfect

information in this specific setting is decidable but complete for

non-elementary time
1
.

In many cases, solving the related decision problem for ATL
∗
be-

comes undecidable [8, 29]. In particular it is undecidable in the case

of three agents having perfect recall of the past, while it is elemen-

tary decidable in case the agents play positional (a.k.a. memoryless)

strategies.

ATL
∗
has been the subject of intensive research within multi-

agent systems andAI.Works that are closest in spirit to our proposal

concern modeling, specification, and reasoning about strategies of

bounded agents. [3] investigates strategic properties of agents with

bounded memory, while [11] considers bounded memory as an

1
Other settings have been also taken in consideration and leading to an undecidable

problem.

approximation of perfect recall. [6, 7, 19, 20] extend temporal and

strategic logics to handle agents with bounded resources. Issues

related to bounded rationality are also investigated in [10, 31, 35].

The papers that studied explicit representation of strategies are

also relevant. This category is much richer and includes extensions

of ATL
∗
with explicit reasoning about actions and strategies [1, 34,

54, 56], and logics that combine features of temporal and dynamic

logic [33, 49]. A variant of STIT logic, that enables reasoning about

strategies and their performance in the object language, can be

found in [30]. Also, plans in agent-oriented programming are in

fact rule-based descriptions of strategies. In particular, reasoning

about agent programs using strategic logics was investigated in [4,

5, 17, 28, 57].

2 NATURAL STRATEGIES UNDER
UNCERTAINTY

We begin by showing that the notion of natural strategies, intro-
duced in [39], can be adapted to imperfect information scenarios

in a very simple way.

2.1 Models of Multi-Agent Interaction
The semantics of NatATL is defined over concurrent game struc-

tures with imperfect information, a variant of synchronous multi-

agent transition systems.

Definition 2.1 (iCGS). A concurrent game structure with imper-
fect information (iCGS for short) is a tuple M = ⟨Agt, St ,Act ,d, t ,
Prop,V , {∼i }i ∈Agt⟩ which includes:

• nonempty finite set of agents (or players)Agt= {a1,. . .,a |Agt |},
• nonempty finite set of states St ,
• nonempty finite set of actions Act ,
• nonempty finite set of atomic propositions Prop,
• propositional valuation V : St → 2

Prop
,

• for every ai ∈ Agt, ∼i is a relation of indistinguishability
between states, that is, given two states s, s ′ ∈ St , s ∼i s

′
iff

s and s ′ are indistinguishable for agent ai ,
• the function d : Agt × St → 2

Act
defines availability of

actions,

• the (deterministic) transition function t assigns a successor
state q′ = t(q,α1, . . . ,α |Agt |) to each state q ∈ St and any

tuple of actions αi ∈d(ai ,q) that can be executed by Agt in q.

In the rest of the paper, we will write da (q) instead of d(a,q),
and we will denote the set of collective choices of group A in state

q by dA(q) =
∏

ai ∈A dai (q). Moreover, we require that the iCGS is

uniform, i.e., q ∼i q
′
implies di (q) = di (q

′).

A pointed iCGS is a pair (M,q0) whereM is a concurrent game

structure and q0 a state inM .

A path λ = q0q1q2 . . . in an iCGS is an infinite sequence of states
such that there is a transition between each qi ,qi+1. λ[i] denotes
the ith position on λ (starting from i = 0), λ[i, j] the part of λ
between positions i and j , and λ[i,∞] the suffix of λ starting with i .
ByΛM ⊆ Stω , we denote the set of all the paths inM , and byΛM (q)
all the paths inM starting in q. Similarly, a history h = q0q1q2 . . .qn
is a finite sequence of states that can be effected by subsequent

transitions. By last(h) = qn we denote the last element of the

sequence. We denote by HM ⊆ St+ the set of all the histories in

modelM . We will omit the subscripts whenever they are clear from

the context.

Example 2.2 (Logistic Robots). Two robots (agents 1 and 2), serve

a machine that produces electronic units for car control systems

(agent 3). The machine has two output belts, marked A and B. The
task of the robots is to pick up the units from the belts, so that

they can be later delivered to the assembly room. The initial state,

labeled by the atomic proposition init, corresponds to the situation

when both robots serve the first belt (qAA). At each moment, the

robots can stay where they are (action st) or move to the other belt

(actionmv). At the same time, the machine can send a unit to one

of the belts (actionsA and B) or stay idle (action i). If the belt where
the unit arrives is not served by any of the robots, the unit falls

down and gets damaged. This is modeled by a system transition to

the “failure” state qf , labeled by proposition damage.
Robot 1 can recognize its own position, but does not see the

other robot. Moreover, robot 2 can see if it is by the same belt as

the other robot, but has no sensor to identify the exact position.

The observational capabilities of the machine are irrelevant.

An iCGSMrobots for the scenario is depicted in Figure 1. States,

transitions (represented by solid arrows), indistinguishability rela-

tions (represented by dotted lines), and valuation of atomic propo-

sitions can be easily derived from the picture.

2.2 Simple Strategies for Uncertain Agents
We start by defining the notion of uniform natural memoryless
strategy (or nir-strategy2) sa for agent a. The idea is to use a rule-

based representation, with a list of condition-action rules. The first

rule whose condition holds in the current state is selected, and the

corresponding action is executed.

Formally, we define the set of epistemic conditions EP for the

agent a as follows:

ψ ::= ⊤ | Kaφ | ¬ψ | ψ ∧ψ
φ ::= p | ¬φ | φ ∧ φ | Kbφ

where p is an atomic proposition and b an agent.

So, we are talking about formulas that are prefixed by Ka and

then possibly combined by Boolean operators. In other words, for-

mulasψ are always Boolean conditions on a’s knowledge.
Given an iCGSM , a stateq ∈ St , and an epistemic conditionφ, we

inductively define whether q satisfies φ (q |= φ) and consequently

as follows:

q |= p iff p ∈ V (q);
q |= ¬φ iff q |= φ does not hold;

q |= φ1 ∧ φ2 iff q |= φ1 and q |= φ2;
q |= Kaφ iff for all q′ ∼a q, it holds that q′ |= φ;

We represent uniform natural strategies by lists of guarded ac-
tions, i.e., sequences of n pairs (φi , αi) such that: (1) φi is an epis-

temic condition, and (2) αi ∈ da (q) for every q ∈ St such that

q |= φi . That is, φi is an epistemic condition on states of the iCGS,

and αi is an action available to agent a in every state where φi
holds. Moreover, we assume that the last pair on the list is (⊤, α),
with α ∈ dAд(q), for all q ∈ St and some α ∈ Act , i.e., the last rule
is guarded by a condition that will always be satisfied and contains

an action that is executable in every state.

2
As usual in literature, we use i for imperfect information and r for imperfect recall

(memoryless). Additionally, we use n for natural strategies, thus the acronym.

The set of all uniform natural memoryless strategies of agent a
is denoted by Σnira . By size(sa) we denote the number of guarded

actions in sa . Moreover, condi (sa) will denote the ith guard (con-

dition) on the list, and acti (sa) the corresponding action. Finally,

match(q, sa) is the smallest i ≤ size(sa) such that q |= condi (sa)
and acti (sa) ∈ da (q). That is,match(q, sa) matches state q with the

first condition in sa that holds in q, and action available in q.
It is easy to see that the strategies are uniform in the sense

of [41, 53], i.e., they specify the same actions in indistinguishable

states.

Proposition 2.3. Given a uniform natural memoryless strategy sa
and two states such that q ∼a q′, we have that actmatch(q,sa)(sa) =
actmatch(q′,sa)(sa).

Proof. Take sa =
(
(φ1,α1), . . . , (φn ,αn)

)
and any pair of states

q,q′ such that q ∼a q′. Letmatch(q, sa) = i . That is, φi holds in q,
but every φ j for j < i does not. Since all of φi ,φ j are either equal to
⊤ or begin with Ka , they must either hold in both q,q′, or in none

of them. Thus, we get thatmatch(q′, sa) = i , too. □

A collective uniform natural strategy for a group of agents A =
{a1, . . . ,a |A |} is a tuple of individual uniform natural strategies

sA = (sa1 , . . . , sa |A|
). The set of such strategies is denoted by ΣnirA .

The “outcome” function out(q, sA) returns the set of all paths that
occur when agents A execute strategy sA from state q onward.

Formally, given a state q ∈ St , a subset of agents A and a collective

uniform memoryless strategy sA, we define:

out(q, sA) = {λ ∈ Λ | (λ[0] = q) ∧ ∀i≥0∃α1, ...,α |Agt| .

(a ∈ A ⇒ αa = actmatch(λ[i],sa)(sa)) ∧

(a < A ⇒ αa ∈ da (λ[i])) ∧ (λ[i + 1] = t(λ[i],α1,...,α |Agt |))}.

Example 2.4 (Logistic Robots, ctd.). The following collective nat-
ural strategy can be used by the robots to ensure that the goods

never get damaged in the iCGS of Example 2.2:

s1 :
(

(⊤, st)
)
;

s2 :
(

(¬K2¬init, mv),
(⊤, st)

)
.

By looking at Figure 2.2 it is evident that s1 will force robot 1
to always perform action st , and robot 2 to play actionmv only in

qAA and qBB (where he does not know whether init holds or not)

and st elsewhere.

2.3 How to Measure Natural Strategies
By compl (sa), we denote the complexity of the strategy sa . Intu-
itively, the complexity of a strategy is understood as the level of

sophistication of its representation. Several natural metrics can be

used to measure the complexity of a strategy, given its representa-

tion from (EP(Prop) ×Act)+, e.g.:

Used vocabulary: compl
#
(sa) = |dom(sa)| where dom(sa) is the

set of atomic propositions and epistemic operators used in

the conditions of sa ;
Largest condition: compl

max
(sa) = max{|φ | | (φ,α) ∈ sa };

Total size of the representation: complΣ(sa) =
∑
(φ,α)∈sa |φ |

with |φ | being the number of symbols in φ, without parentheses.
From now on, we will focus on the last metric for complexity of

qAA

initinitinit

qAB

qBBqBA

qd

damagedamagedamage

1

2

1

st,mv,∗

m
v,
st
,∗

mv,mv,B
mv,mv,i

mv,mv,A
st,st,B

st,mv,i
st,mv,A

m
v,
st
,i

m
v,
st
,B

mv
,m
v,∗

mv,st,A

st,mv,B

st,mv,∗
m
v,st,∗

mv,mv,i

mv,mv,A

mv,
mv,

Bst,st
,A

st,mv,A
st,mv,i

m
v,st,i

m
v,st,A

mv
,m
v,∗

st,mv,A
mv,st,B

st,st,
i

st,st,
A st,st,∗

st,st,
Bst,st,
i

st,st,
∗

∗,∗,∗

Figure 1: Logistic robots serving the output of a machine. The wildcard (∗) matches any action of the respective agent

strategies, which takes into account the total size of all the condi-

tions used in the representation. That is, unless explicitly specified,

we will assume compl (sa) = complΣ(sa).
For a collective uniform natural strategy sA, we define its com-

plexity as the total complexity of the individual strategies in sA.
Formally, given sA = (sa1 , . . . , sa |A|

), we have that compl (sA) =∑
1≤i≤ |A | compl (sai).

Example 2.5 (Logistic Robots, ctd.). For the natural strategy s {1,2}
in Example 2.4, we get compl (s {1,2}) = 6. Note that an even sparser

representation of the same plan can be obtained by replacing robot

2’s strategy with:

s ′
2
:

(
(K2¬init, st),
(⊤, mv)

)
,

which reduces the complexity of the joint strategy to 5.

3 REASONING ABOUT NATURAL ABILITY
Now we can propose a logic for reasoning about natural strate-

gic ability under imperfect information. To achieve that, we use

exactly the same syntax as for natural strategies with perfect in-

formation [39]. The semantics updates the one from [39] with the

requirement that only uniform natural strategies are allowed.

3.1 A Logic for Natural Strategies
Natural ATL (NatATL, for short) is obtained by replacing in ATL

the modality ⟨⟨A⟩⟩ with the bounded strategic modality ⟨⟨A⟩⟩≤k .

Intuitively, ⟨⟨A⟩⟩≤kγ reads as “coalition A has a collective uniform

strategy of size less or equal than k to enforce the property γ .” As
in ATL, the formulas of NatATL make use of classical temporal

operators: X (“in the next state”), U (strong “until”), and W (weak

“until”). Thus, the language of NatATL can be defined by the fol-

lowing grammar:

φ ::= p | ¬φ |φ ∧ φ | ⟨⟨A⟩⟩≤kX φ | ⟨⟨A⟩⟩≤kφ U φ | ⟨⟨A⟩⟩≤kφW φ.

where p ∈ Prop, A ⊆ Agt, and k ∈ N, given in a unary encoding.

Additionally, operators F (“now or sometime in the future”) and

G (“always from now on”) are defined as follows: Fφ ≡ ⊤U φ,
Gφ ≡ φW ⊥.

We will use 1NatATL to denote the fragment of NatATL that

admits only formulas consisting of a single strategic modality, fol-

lowed by a temporal formula over boolean connectives and atomic

propositions. It would be interesting to consider the broader speci-

fication language of NatATL
∗
, and extend our results accordingly.

We leave this angle for future work.

3.2 Semantics of NatATL under Imperfect
Information

Given an iCGS M , a state q ∈ St , a path λ ∈ Λ, and k ∈ N, the
semantics of NatATL is defined as follows:

M,q |=nir p iff p ∈ V (q), for p ∈ Prop;
M,q |=nir ¬φ iffM,q |=nir φ does not hold;

M,q |=nir φ1 ∧ φ2 iffM,q |=nir φ1 andM,q |=nir φ2;

M,q |=nir ⟨⟨A⟩⟩≤kX φ iff there is a uniform natural strategy

sA ∈ ΣnrA such that compl (sA) ≤ k and, for each path λ ∈

out(q, sA), we haveM, λ[1] |=nir φ;

M,q |=nir ⟨⟨A⟩⟩≤kφ Uψ iff there is a uniform natural strategy

sA ∈ ΣnirA such that compl (sA) ≤ k and, for each path

λ ∈ out(q, sA), we have M, λ[i] |=nir ψ for some i ≥ 0 and

M, λ[j] |=nir φ for all 0 ≤ j < i .
M,q |=nir ⟨⟨A⟩⟩

≤kφWψ iff there is a uniform natural strategy

sA ∈ ΣnirA such that compl (sA) ≤ k and, for each path λ ∈

out(q, sA), we have either thatM, λ[i] |=nir ψ for some i ≥ 0

and M, λ[j] |=nir φ for all 0 ≤ j < i , or that M, λ[i] |=nir φ
for all i ≥ 0.

We will refer to the logical system (NatATL, |=nir) as NatATLir,

and analogously for 1NatATLir.

Example 3.1 (Logistic Robots, ctd.). Following Example 2.5, we

getMrobots,qAA |= ⟨⟨1, 2⟩⟩≤5G¬damage. It is also easy to see that no
simpler strategyworks. Thus,Mrobots,qAA |= ¬⟨⟨1, 2⟩⟩≤4G¬damage.

Remark 1 (Objective vs. subjective semantics of ability).

We note that the above semantics encodes the “objective” notion of
strategic ability. That is, ⟨⟨A⟩⟩γ holds in q if the agents have a joint
strategy to enforce γ from q. The alternative is to require the existence
of a strategy that succeeds from all the states that are indistinguishable
fromq forA (the “subjective” semantics). We refer the interested reader
to [2] for an in-depth discussion.

The subjective semantics of NatATLir can be obtained by a simple
modification of the semantic clauses for ⟨⟨A⟩⟩≤k . We also note that
the model checking results, presented in the subsequent sections, can
be adapted to the subjective case in a straightforward way.

4 MODEL CHECKING FOR NATATL
In this section we study algorithms and the complexity of the model

checking problem for NatATL with nir-strategies, i.e. NatATLir.
We consider two cases: one in which the bound k on the size of

natural strategies is assumed to be constant, and the more general

case where k is variable and a parameter of the problem. For the

former case, we prove that the problem is polynomial in the size

of the model. For the latter, model checking becomes ∆P
2 -complete.

Moreover, it is NP-complete for simple formulas with only one

strategic operator, i.e., formulas of 1NatATLir.

The results and the proofs proposed in this section have been

inspired by [37, 39, 53].

4.1 Model Checking for Small Natural
Strategies

We begin by looking at NatATLir model checking under the assump-

tion that the complexity bounds k used in formulas are constant

or bounded. In other words, they are not a parameter of the model

checking problem. Under this restriction, one can show a polyno-

mial reduction to the model checking problem for CTL formulas.

Thus, we obtain the following result.

Theorem 4.1. The model checking problem for NatATLir with
fixed k is in P with respect to the size of the model and the length of
the formula.

Proof. First, consider the formula φ = ⟨⟨A⟩⟩≤kγ , in which A ⊆

Agt and γ is a formula over boolean connectives and atomic propo-

sitions. By assumption, the collective strategy that we can assign

to coalition A, namely sA, is bounded and precisely it holds that

complΣ(sA) ≤ k . Recall that epistemic boolean formulas are com-

binations of atomic propositions from the set Prop, boolean con-

nectives from Bool , and the epistemic operators Kn. Thus, there

are O((|Prop | + |Bool | + |Kn |)k · |Act |) possible guarded actions of

length at most k , and henceO(((|Prop |+ |Bool |+ |Kn |)k · |Act |)k) =

O((|Prop | + |Bool | + |Kn |)k
2

(|Act |)k) possible strategies, which is

ensured to be finite as k is fixed. Note that the strategies are uni-

form by construction, cf. Proposition 2.3. The idea is to check the

available collective strategies one by one, in an arbitrary order.

Given a collective strategy sA, we can prune the CGS by re-

moving all the edges that disagree with sA. This operation costs

O(|t |) in the worst case, where t is the transition relation of the

input iCGS . So far we have dealt with the strategic operator in

the input formula φ, and we are left with a structure S that can

be seen as a Kripke structure. Now, we can reduce our problem

to model checking the CTL formula Aγ (“for all paths γ ”) over
S by using the standard model checking algorithm for CTL [27],

well-known to have complexity O(|t | · |γ |). The total complexity

is thus O((|Prop | + |Bool | + |Kn |)k
2

(|Act |)k ·O(|A| ·max({| ∼a | |

a ∈ A})) · (|t | + (|t | · |γ |))) = O((|Prop | + |Bool | + |Kn |)k
2

(|Act |)k ·

O(|A| ·max({| ∼a | | a ∈ A})) · |t | · |γ |), and hence polynomial in

the size of the model and the length of the formula.

To conclude the proof, note that if we have a formula with more

strategic operators then we can use a classic bottom-up procedure.

I.e., we start by solving the innermost subformula with a strategic

operator (as we have done above) and, once this is solved, we

update the formula and the structure, and continue with the new

innermost subformula. The procedure ends when we have dealt

with the outermost strategic operator in the input formula. □

4.2 Model Checking: General Case
We now study the complexity for NatATLir with the bounds in

strategic modalities given as variables.

Theorem 4.2. Model checking 1NatATLir is NP-complete with
respect to the size of the model, the length of the formula, and the
maximal bound k in the formula.

Proof. For the lower bound, we recall that 1NatATLIr is NP-
hard [39]. For the upper bound, consider φ = ⟨⟨A⟩⟩≤kγ , in which

A ⊆ Agt and γ is a formula over boolean connectives and atomic

propositions. We cannot anymore enumerate all the suitable strate-

gies and check them one by one. To overcome this, we nondeter-

ministically guess a uniform collective strategy sA, and proceed

using the same reasoning as in the proof of Theorem 4.1. Since the

size of sA is polynomial in the size of the model, the complexity of

the algorithm is NP. □

To establish the model checking complexity for all formulas of

NatATLir, we adapt the above proofs in a way similar to [37, 39].

Theorem 4.3. Model checking NatATLir is ∆P
2 -complete with re-

spect to the size of the model, the length of the formula, and the
maximal bound k in the formula.3

3 ∆P
2 = PNP

is the class of problems solvable in polynomial time by a deterministic

Turing machine making adaptive calls to an oracle for problems in NP.

Proof. For the lower bound, we recall that NatATLIr is ∆P
2 -hard

[39]. For the upper bound, we make use of a bottom-up procedure

based on the one introduced in the proof of Theorem 4.1. Precisely,

take an arbitrary formula φ of NatATLir and consider its inner

part that is of the kindψ = ⟨⟨A⟩⟩≤kγ , with γ being a formula over

boolean connectives and atomic propositions. Now, apply overψ the

procedure used in the proof of Theorem 4.2 that we know to be NP.
Onceψ is solved, use the same NP procedure to solveψ ′

, a formula

that containsψ and a strategic operator, and so on for each strategic

operator in φ. This means that we use an oracle over a polynomial

procedure for each strategic operator in φ. Summing up, the total

complexity to solve a formula in NatATLir is PNP = ∆P
2 . □

5 NATURAL ABILITIES OF AGENTS WITH
MEMORY

Agents with memory can base their decisions on the history of the

game, i.e., the sequence of states that has occurred so far. How can

we represent conditions on such sequences? One possibility is to

use states in some kind of automaton [55]. Here, we suggest that it

is more intuitive for humans to represent conditions on histories

by regular expressions over epistemic propositional formulas.

5.1 Natural Strategies with Recall
Let Reд(L) be the set of regular expressions over the language L
(with the standard constructors ·,∪, ∗ representing concatenation,

nondeterministic choice, and finite iteration). A uniform natural
strategy with recall (or niR-strategy) sa for agent a is a sequence of

appropriate pairs from Reд(EP(Prop)) ×Act . That is, it consists of
pairs (r , α) where r is a regular expression over EP(Prop), and α is

an action available in last(h), i.e. α ∈ da (last(h)), for all histories
h ∈ H consistent with r . Formally, given a regular expression r and
the language L(r) on words generated by r , a historyh = q0 . . .qn is

consistent with r iff ∃b ∈ L(r) such that |h | = |b | and ∀0≤i≤nh[i] |=
b[i]. Similarly to nir-strategies, the last pair on the list is assumed

to be simply (⊤∗, idle). The set of such strategies is denoted by

ΣniRa . Finally,match(λ[0, i], sa) is the smallest n ≤ size(sa) such that
∀0≤j≤iλ[j] |= condn (sa)[j] and actn (sa) ∈ da (λ[i]).

Again, we observe that the strategies are uniform in the sense

of [41, 53], i.e., they specify the same actions in indistinguishable

sequences of states.

Proposition 5.1. Given a uniform natural strategy with recall sa
and two histories h,h′ such that |h | = |h′ | and ∀i . h[i] ∼a h′[i], we
have that actmatch(h,sa)(sa) = actmatch(h′,sa)(sa).

Proof. The result follows directly by considering the proof

given in Prop.2.3. In particular, take sa =
(
(φ1,α1), . . . , (φn ,αn)

)
and any pair of histories h,h′ such that |h | = |h′ | and ∀i ≤ |h |,
h[i] ∼a h′[i]. Letmatch(h, sa) =m. That is, ∀i ≤ |h |, φm [i] holds in
h[i], but every φ j [i] for j < m does not. Since all of φm [i],φ j [i] are
either equal to ⊤ or begin with Ka , they must either hold in both

h[i],h′[i], or in none of them. Thus, we get thatmatch(h′, sa) =m,

too. □

A collective uniform natural strategy for a group of agents A =
{a1, . . . ,a |A |} is a tuple of individual uniform natural strategies

sA = (sa1 , . . . , sa |A|
). The set of such strategies is denoted by ΣniRA .

Figure 2: A maze with no loops

Again, out(q, sA) returns the set of all paths from q, consistent
with strategy sA. For strategies with recall, we simply replace

“match(λ[i], sa)” with “match(λ[0, i], sa)” in the definition of out(q,
sA) that we gave in Section 2.2 for memoryless strategies.

The metrics from Section 2.2 extend to strategies with recall

and collective strategies with recall in the straightforward way.

Additionally, we define a variant of the metric complΣ(·) that skips
the initial ⊤∗

whenever it appears in a regular expression:

Size of the significant pattern: complΣ∗ (sa) =
∑
(r,α)∈sa | |r | |,

with | |⊤∗ | | = 1, | |⊤∗ · r | | = |r |, and | |r | | = |r | otherwise.
The latter is the size of a regular expression that is, as usual,

the number of symbols it contains, including the syntactic

symbols such as brackets, +, ·, and ∗.4

From now on, we will focus on the last metric for the complexity

of strategies with recall. That is, unless explicitly specified, we will

assume compl (sa) = complΣ∗ (sa).

Example 5.2 (Foggy maze). Consider agent r (“the rover”) whose
goal is to get through a maze, such as the one in Figure 2. We

assume that the maze is perfect, i.e., it has no loops. Moreover, it is

inhabited by a number of other, hostile agents. Each agent can, at

any moment, decide to turn left (action turnL), turn right (action

turnR), move forward (step) or do nothing (wait). Moving succeeds

if there is neither a wall nor another agent in front. Agent r can
also execute action destroy that annihilates the agent standing in

front of him, if there is one. The maze is sometimes overtaken by

fog, in which case the agents see nothing for 1 or 2 moments.

Assume an iCGSMmaze modeling the scenario as follows. The

states register the positions and the orientation of all the agents.

Two states are indistinguishable to an agent i iff they agree on the

position and the orientation of i , and:

• either in both states the maze is foggy,

• or in both states the fog is absent, and they agree on the

content of the cell in front of i .

4
Sometimes we will also use as an abbreviation (r)i to denote the concatenation of r
i-times. In this case the size of |(r)i | = i |r | + (i − 1).

The atomic propositions start and finish label the states where the

rover is respectively at the maze entry and exit. Propositions wall
and creature label the states where the rover faces respectively a

wall or another agent.

The following natural strategy with recall guarantees that the

rover gets through the maze (we use ψfog as a shorthand for

¬Kr creature ∧ ¬Kr¬creature to simplify the notation):

sr :

(
(⊤∗ ·ψfog, wait),

(⊤∗ · Kr creature, destroy),
(⊤∗ · Kr¬wall, step),
(⊤∗ · ¬Krwall ·ψfog

∗ · Krwall, turnL),
(⊤∗ · ¬Krwall · (ψfog

∗ · Krwall)2, turnR),
(⊤∗ · ¬Krwall · (ψfog

∗ · Krwall)3, turnR),
(⊤∗, turnR)).

That is, if the fog is in the maze, the rover waits until it clears; if

he sees an enemy, he destroys it. If he faces a wall, he tries first to

turn left; if there is a wall as well, he keeps turning right until he

finds a passage.

The complexity of the strategy is compl (sr) = {8 + 2 + 3 + 16 +

29+ 42+ 1} = 101. Note also that, if we add to the model an atomic

proposition fog that labels all the “foggy” states, we can use it

instead ofψfog to specify the same behavior. This would reduce the

complexity of the strategy to compl (s ′r) = {1+2+3+9+15+21} = 51.

Finally, we observe that the strategy may result in a very inef-

fective traversal of the maze, i.e., the number of steps between the

start and the exit can be large. Still, the natural strategy above has

two important advantages. First, it is much simpler – and therefore

much easier to store and use – than the combinatorial strategy that

specifies the right choice for every position of the rover. Secondly,

it is general in the sense that it does not depend on the actual shape

of the labyrinth.

5.2 NatATL for Strategies with Recall
Now it is easy to define the semantics of natural strategic ability

for agents with recall. Formally, we construct the semantic relation

|=niR by replacing “|=nir” with “|=niR” and ΣnirA with ΣniRA in the

clauses from Section 3.2, so that the clauses for strategic modalities

become as follows:

M,q |=niR ⟨⟨A⟩⟩≤kX φ iff there is a uniform natural strategy

sA ∈ ΣniRA such that compl (sA) ≤ k and, for each path λ ∈

out(q, sA), we haveM, λ[1] |=niR φ;
M,q |=niR ⟨⟨A⟩⟩≤kφ Uψ iff there is a uniform natural strategy

sA ∈ ΣniRA such that compl (sA) ≤ k and, for each path

λ ∈ out(q, sA), we have M, λ[i] |=niR ψ for some i ≥ 0 and

M, λ[j] |=niR φ for all 0 ≤ j < i .
M,q |=niR ⟨⟨A⟩⟩≤kφWψ iff there is a uniform natural strategy

sA ∈ ΣniRA such that compl (sA) ≤ k and, for each path λ ∈

out(q, sA), we have either thatM, λ[i] |=niR ψ for some i ≥ 0

and M, λ[j] |=niR φ for all 0 ≤ j < i , or that M, λ[i] |=niR φ
for all i ≥ 0.

We will refer to the logical system (NatATL, |=niR) as NatATLiR.

Example 5.3 (Foggy maze, ctd.). For the maze model in Exam-

ple 5.2, we have e.g. thatMmaze,qstart |= ⟨⟨r ⟩⟩≤93Ffinish.

Algorithm mCheckconst
NatATLiR

(M,q, ⟨⟨A⟩⟩≤kγ) :

1 for every sA with compl (sA) ≤ k do

2 i f not I sLosinд(sA, M, q, p1 U p2) then return (t r u e) ;

3 return (f a l s e) ;

Figure 3: Model checking NatATLiR for simple goals, i.e.,
γ ≡ p1 U p2 or γ ≡ p1Wp2. The value of k is bounded by a
constant

6 MODEL CHECKING FOR NATURAL
STRATEGIES WITH RECALL

In this section we investigate the model checking problem for

NatATL with niR-strategies, i.e., NatATLiR. We consider the cases

of both constant and variable bounds on strategies. We begin with

the following lemma.

Lemma 6.1. Given an iCGS M , a uniform natural strategy with
recall sA = (sa1 , . . . , san) ∈ ΣniRA of size k = compl (sA), and a
reachability objective γ ≡ p1 U p2. In order to check if sA enforces γ
from q ∈ StM , it suffices to consider the prefixes of length |StM | · 22k

2

of paths in out(q, sA). The same applies to safety objectives (p1W p2).

Proof. Consider the tree of paths inM , starting from q and con-

sistent with sA. It can be obtained by an (infinite) process, based on

the following notion of configuration: C = (qM ,qr eд1 , . . . ,qr eдn)
where qM is the current state ofM , and every qr eдi is the current
state of a deterministic finite automaton (DFA) accepting the ith
regular expression in sA. The initial configuration C0 consists of q
and the initial states of the DFA’s.

Let C be the current configuration. The process takes, for each

agent a ∈ A, the first DFA for a regular expression in sa that is

currently in an accepting state, and selects the corresponding action

in sa for execution by a. Then, for every possible tuple of responses
from Agt \A, a transition is added, leading to the configuration C ′

consisting of the successor state q′ inM and the states of the DFA’s

updated accordingly. Note that, whenever the process revisits a

previously encountered configuration, exactly the same transitions

as before are added. Thus, whatever reachability objective can be

validated (resp. safety objective invalidated), it can be done on the

initial, cycle-free segment of the tree.

Finally, observe that sA contains at most k regular expressions,

and each expression is of length at most k . For every regular expres-
sion of length ℓ, there exists an equivalent nondeterministic finite

automaton (NFA) with at most 2ℓ states (Thompson’s construction).

Finally, for every NFA with n states, there exists an equivalent DFA

with at most 2
n
states (powerset construction). Thus, the number

of configurations is at most |StM | · (22k)k = |StM | · 22k
2

. □

6.1 Model Checking for Small Strategies
When the bound on strategies is fixed or bounded by some constant

K, model checking can again proceed by checking the available

strategies one by one. The algorithm for formulas with no nested

strategic modalities is shown in Figure 3.

Note that the verification of strategies is somewhat more in-

volved than in the memoryless case. To this end, we use an oracle

Algorithm IsLosinд(sA,M,q, p1 U p2) :

1 count := 0 ; state := q ;

2 size := compl (sA) ; l imit := 2
2·size2

;

3 for every r e g u l a r e x p r e s s i o n ri ∈ sA do

4 i n i t i a l i z e the NFA Ai for ri ;
5 repeat
6 i f M, state |= p2 then return (f a l s e) ;

7 i f M, state ̸ |= p1 then return (t r u e) ;

8 for each a ∈ A do

9 match := minimal i such t h a t ri ∈ sa
10 and Ai i s in an a c c e p t i n g s t a t e ;

11 αa := actmatch (sa) ;
12 for each a < A do

13 n o n d e t e rm i n i s t i c a l l y choose αa ∈ d (a, state) ;
14 state := t (state, α1, . . . , α |Agt|) ;

15 for every NFA Ai do

16 n o n d e t e rm i n i s t i c a l l y update the s t a t e o f Ai ;
17 count := count + 1 ;
18 until count > l imit ;
19 return (t r u e) ;

Figure 4: Oracle that tries to invalidate strategy sA for a sim-
ple reachability goal p1 U p2

Algorithm mCheckNatATLiR (M,q, ⟨⟨A⟩⟩
≤kγ) :

1 gues s a s t r a t e g y sA ∈ ΣniRA with compl (sA) ≤ k ;

2 return (not I sLosinд(sA, M, q, p1 U p2)) ;

Figure 5: Model checking NatATLiR for simple goals; k is a
parameter of the problem

IsLosinд that returns “true” if it manages to guess a path invalidat-

ing the goal γ , and “false” otherwise. The case of simple reachability

goals is presented in Figure 4; for simple safety goals, the oracle is

defined analogously. It proceeds by nondeterministically unfolding

a path consistent with strategy sA from state q on until it either

fulfills the goal, invalidates it, or exceeds the limit determined in

Lemma 6.1. Notice that the oracle uses NFA implementations of the

regular expressions in sA, and not the DFA’s that were employed in

the proof of Lemma 6.1.

The complexity of the procedure is as follows. The oracle runs in

O(22K2

) +O(K) +O(|StM | · 22K2

· (K|Agt| + |t | + |St |)) steps. Since
K is a constant, this reduces to O(|StM | · (|Agt| + |t | + |St |)). Thus,
the oracle runs in nondeterministic polynomial time with respect

to the size of the model. In consequence, the algorithm in Figure 3

runs in time PNP = ∆P
2 .

For nested strategic modalities, we proceed recursively, bottom-

up, which yields the complexity of P∆P
2 = ∆P

2 for the whole problem.

Theorem 6.2. Model checking forNatATLiR with fixed or bounded
k is in ∆P

2 w.r.t. the size of the model and the length of the formula.

6.2 Model Checking: General Case
We now study the model checking complexity for NatATLiR in case

the bound on strategies is a parameter of the problem. For variable

k , the algorithm in Figures 3 and 4 clearly runs in exponential time.

It may also use an exponential amount of memory if we are not

careful with how the space of strategies is explored. To avoid this,

we slightly change the main procedure, see Figure 5.

The algorithm still runs in exponential time. Observe, however,

that the oracle uses only polynomial space: the NFA’s have at most

2k states altogether, and, by using binary representations of vari-

ables count and limit , we need at most log
2
(22k

2

) = 2k2 memory

cells for each of them. Thus, the complexity of the algorithm in

Figure 5 is NPNPSPACE = NPPSPACE = PSPACE.
For nested strategic modalities, we again proceed recursively,

which results in the PPSPACE = PSPACE complexity for the whole

problem.

Theorem 6.3. Model checking NatATLiR is in PSPACE with re-
spect to the size of the model, the length of the formula, and the
maximal bound k in the formula.

7 CONCLUSIONS
In this paper, we extend the alternative take on strategic reason-

ing, proposed in [39], that allows to reason about agents who can

handle only relatively simple strategies. We show how to adapt the

approach to the important (and nontrivial) case of imperfect infor-

mation. To this end, we use a natural representation of strategies by

lists of actions guarded by epistemic conditions, and assume that

only strategies up to size k can be used. We show that such strate-

gies are always executable. Furthermore, we formalize reasoning

about the corresponding strategic play through two new variants of

alternating-time temporal logic: NatATLir and NatATLiR. We argue

that, similarly to perfect information games, this may be a more

accurate view of ability than the one which admits any function

from sequences of states to actions.

In terms of technical results, we concentrate on model checking

for natural strategies under imperfect information. We show that,

for memoryless agents, the problem is in P when k is fixed, and

∆P
2 -complete when k is among the input parameters. Thus, synthe-

sis and verification of natural memoryless strategies in the context

of imperfect information is no more difficult than for perfect in-

formation. For agents with recall, the problem is in ∆P
2 when k is

fixed, and in PSPACE in the general case, which is still close to the

complexity results obtained in [39]. Thus, we ultimately identify

a natural subclass of model checking for imperfect information

strategies, where the verification is distinctly cheaper than in the

general case.

This is certainly good news, and may prove beneficial in prac-

tical algorithms. Still, we emphasize that the main motivation for

this work is conceptual rather than technical. We believe that the

⟨⟨A⟩⟩≤k operator captures an intuitive concept of strategic ability,

and one that is useful in modeling of and reasoning about multi-

agent interaction.

Acknowledgements.We thank the anonymous reviewers for their

comments and suggestions. Wojciech Jamroga acknowledges the

support of the National Centre for Research and Development

(NCBR), Poland, under the PolLux project VoteVerif (POLLUX-

IV/1/2016). Aniello Murano acknowledges the support from the

Italian GNCS 2018 project "Metodi formali per la verifica e la sintesi

di sistemi discreti e ibridi".

REFERENCES
[1] T. Ågotnes. 2006. Action and Knowledge in Alternating-time Temporal Logic.

Synthese 149, 2 (2006), 377–409.
[2] T. Ågotnes, V. Goranko, W. Jamroga, and M. Wooldridge. 2015. Knowledge and

Ability. In Handbook of Epistemic Logic, H.P. van Ditmarsch, J.Y. Halpern, W. van

der Hoek, and B.P. Kooi (Eds.). College Publications, 543–589.

[3] T. Ågotnes and D. Walther. 2009. A Logic of Strategic Ability Under Bounded

Memory. Journal of Logic, Language and Information 18, 1 (2009), 55–77.

[4] N. Alechina, M. Dastani, B. Logan, and J.-J. Ch. Meyer. 2007. A Logic of Agent

Programs. In Proceedings of AAAI. 795–800.
[5] N. Alechina, B. Logan, M. Dastani, and J.-J. Ch. Meyer. 2008. Reasoning about

agent execution strategies. In Proceedings of International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS). 1455–1458.

[6] N. Alechina, B. Logan, N.H. Nga, and A. Rakib. 2009. A Logic for Coalitions with

Bounded Resources. In Proceedings of International Joint Conference on Artificial
Intelligence (IJCAI). 659–664.

[7] N. Alechina, B. Logan, H.N. Nguyen, and A. Rakib. 2010. Resource-Bounded

Alternating-Time Temporal Logic. In Proceedings of International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS). 481–488.

[8] R. Alur, T.A. Henzinger, and O. Kupferman. 2002. Alternating-Time Temporal

Logic. J. ACM 49, 5 (2002), 672–713.

[9] R. Alur, S. Moarref, and U. Topcu. 2018. Compositional and symbolic synthesis

of reactive controllers for multi-agent systems. Inf. Comput. 261, Part (2018),
616–633.

[10] M. Barlo, G. Carmona, and H. Sabourian. 2008. Bounded memory with finite

action spaces. Sabanci University, Universidade Nova de Lisboa and University of
Cambridge (2008).

[11] F. Belardinelli, A. Lomuscio, and V. Malvone. 2018. Approximating Perfect Recall

When Model Checking Strategic Abilitie. In KR. 435–444.
[12] F. Belardinelli, A. Lomuscio, A. Murano, and S. Rubin. 2017. Verification of Broad-

casting Multi-Agent Systems against an Epistemic Strategy Logic. In Proceedings
of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI
2017, Melbourne, Australia, August 19-25, 2017. 91–97.

[13] F. Belardinelli, A. Lomuscio, A. Murano, and S. Rubin. 2017. Verification of Multi-

agent Systems with Imperfect Information and Public Actions. In Proceedings of
the 16th Conference on Autonomous Agents and MultiAgent Systems, AAMAS 2017,
São Paulo, Brazil, May 8-12, 2017. 1268–1276.

[14] R. Berthon, B. Maubert, and A. Murano. 2017. Decidability Results for ATL* with

Imperfect Information and Perfect Recall. In AAMAS. ACM, 1250–1258.

[15] R. Berthon, B. Maubert, A. Murano, S. Rubin, and M. Y. Vardi. 2017. Strategy

logic with imperfect information. In 32nd Annual ACM/IEEE Symposium on Logic
in Computer Science, LICS 2017, Reykjavik, Iceland, June 20-23, 2017. 1–12.

[16] D. Berwanger and A. B. Mathew. 2017. Infinite games with finite knowledge

gaps. Inf. Comput. 254 (2017), 217–237.
[17] R. Bordini, M. Fisher, W. Visser, and M. Wooldridge. 2006. Verifying Multi-Agent

Programs by Model Checking. Autonomous Agents and Multi-Agent Systems 12,
2 (2006), 239–256.

[18] P. Bouyer, N. Markey, and S. Vester. 2017. Nash equilibria in symmetric graph

games with partial observation. Inf. Comput. 254 (2017), 238–258.
[19] N. Bulling and B. Farwer. 2010. Expressing Properties of Resource-Bounded

Systems: The Logics RTL* and RTL. In Proceedings of Computational Logic in
Multi-Agent Systems (CLIMA) (Lecture Notes in Computer Science), Vol. 6214.
22–45.

[20] N. Bulling and B. Farwer. 2010. On the (Un-)Decidability of Model Checking

Resource-Bounded Agents. In Proceedings of ECAI (Frontiers in Artificial Intelli-
gence and Applications), Vol. 215. IOS Press, 567–572.

[21] N. Bulling and W. Jamroga. 2014. Comparing variants of strategic ability: how

uncertainty and memory influence general properties of games. Journal of
Autonomous Agents and Multi-Agent Systems 28, 3 (2014), 474–518.

[22] S. Busard, C. Pecheur, H. Qu, and F. Raimondi. 2015. Reasoning about memoryless

strategies under partial observability and unconditional fairness constraints. Inf.
Comput. 242 (2015), 128–156.

[23] P. Cermák, A. Lomuscio, F. Mogavero, and A. Murano. 2018. Practical verification

of multi-agent systems against Slk specifications. Inf. Comput. 261, Part (2018),
588–614.

[24] K. Chatterjee, L. Doyen, E. Filiot, and J. F. Raskin. 2017. Doomsday equilibria for

omega-regular games. Inf. Comput. 254 (2017), 296–315.
[25] K. Chatterjee, T.A. Henzinger, and N. Piterman. 2010. Strategy Logic. Information

and Computation 208, 6 (2010), 677–693.

[26] T. Chen, F. Song, and Z. Wu. 2017. Model Checking Pushdown Epistemic Game

Structures. In Formal Methods and Software Engineering - 19th International Con-
ference on Formal Engineering Methods (ICFEM17) (Lecture Notes in Computer

Science), Vol. 10610. Springer, 36–53.
[27] E.M. Clarke and E.A. Emerson. 1981. Design and Synthesis of Synchronization

Skeletons Using Branching Time Temporal Logic. In Proceedings of Logics of
Programs Workshop (Lecture Notes in Computer Science), Vol. 131. 52–71.

[28] M. Dastani and W. Jamroga. 2010. Reasoning about Strategies of Multi-Agent

Programs. In Proceedings of AAMAS. 625–632.
[29] C. Dima and F.L. Tiplea. 2011. Model-checking ATL under Imperfect Information

and Perfect Recall Semantics is Undecidable. Technical Report. arXiv.
[30] H. Duijf and J.M. Broersen. 2016. Representing Strategies. In Proceedings of SR.

15–26. https://doi.org/10.4204/EPTCS.218.2

[31] A. Gupta, S. Schewe, and D. Wojtczak. 2014. Making the best of limited memory

in multi-player discounted sum games. arXiv preprint arXiv:1410.4154 (2014).
[32] J. Gutierrez, G. Perelli, and M. Wooldridge. 2018. Imperfect information in

Reactive Modules games. Inf. Comput. 261, Part (2018), 650–675.
[33] D. Harel and D. Kozen. 1982. Process Logic: Expressiveness, Decidability, Com-

pleteness. J. Comput. System Sci. 25, 2 (1982), 144–170.
[34] A. Herzig, E. Lorini, F. Maffre, and D. Walther. 2014. Alternating-time Temporal

Logic with Explicit Programs. In Proceedings of LAMAS.
[35] J. Hörner andW. Olszewski. 2009. How robust is the Folk Theorem? The Quarterly

Journal of Economics (2009), 1773–1814.
[36] W. Jamroga and T. Ågotnes. 2007. Constructive knowledge: what agents can

achieve under imperfect information. J. Applied Non-Classical Logics 17, 4 (2007),
423–475.

[37] W. Jamroga and J. Dix. 2006. Model Checking ATLir is Indeed ∆P
2
-complete. In

Proceedings of EUMAS (CEUR Workshop Proceedings), Vol. 223.
[38] W. Jamroga, M. Knapik, and D. Kurpiewski. 2017. Fixpoint Approximation

of Strategic Abilities under Imperfect Information. In Proceedings of the 16th
International Conference on Autonomous Agents and Multiagent Systems (AAMAS).
IFAAMAS, 1241–1249.

[39] W. Jamroga, V. Malvone, and A. Murano. 2017. Reasoning about Natural Strategic

Ability. In Proceedings of the 16th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS). IFAAMAS, 714–722.

[40] W. Jamroga and A. Murano. 2015. Module Checking of Strategic Ability. In Pro-
ceedings of the 14th International Conference on Autonomous Agents andMultiagent
Systems AAMAS 2015. IFAAMAS, 227–235.

[41] W. Jamroga and W. van der Hoek. 2004. Agents that Know how to Play. Funda-
menta Informaticae 63, 2–3 (2004), 185–219.

[42] O. Kupferman and M. Y. Vardi. 1997. Module checking revisited. In CAV’97.
Springer, 36–47.

[43] O. Kupferman and M. Y. Vardi. 2000. Synthesis with incomplete informatio. In

Advances in Temporal Logic. Springer, 109–127.
[44] V. Malvone, A. Murano, and L. Sorrentino. 2017. Hiding Actions in Multi-Player

Games. In AAMAS. 1205–1213.
[45] V. Malvone, A. Murano, and L. Sorrentino. 2018. Additional Winning Strategies

in Reachability Games. Fundam. Inform. 159, 1-2 (2018), 175–195.
[46] B. Maubert and A. Murano. 2018. Reasoning about Knowledge and Strategies

under Hierarchical Information. In KR. AAAI Press, 530–540.
[47] F. Mogavero, A. Murano, G. Perelli, and M.Y. Vardi. 2014. Reasoning About

Strategies: On the Model-Checking Problem. ACM Transactions on Computational
Logic 15, 4 (2014), 1–42.

[48] F. Mogavero, A. Murano, G. Perelli, and M.Y. Vardi. 2017. Reasoning about

Strategies: on the Satisfiability Problem. Logical Methods in Computer Science 13,
1 (2017). https://doi.org/10.23638/LMCS-13(1:9)2017

[49] P. Novák and W. Jamroga. 2009. Code Patterns for Agent Oriented Programming.

In Proceedings of AAMAS’09. 105–112.
[50] A. Pnueli and R. Rosner. 1989. On the Synthesis of a Reactive Module.. In POPL’89.

Association for Computing Machinery, 179–190.

[51] A. Pnueli and R. Rosner. 1990. Distributed reactive systems are hard to synthesize.

In FOCS. 746–757.
[52] J. H. Reif. 1984. The Complexity of Two-Player Games of Incomplete Information.

J. Comput. Syst. Sci. 29, 2 (1984), 274–301.
[53] P. Y. Schobbens. 2004. Alternating-Time Logic with Imperfect Recall. Electronic

Notes in Theoretical Computer Science 85, 2 (2004), 82–93.
[54] W. van der Hoek, W. Jamroga, and M. Wooldridge. 2005. A Logic for Strategic

Reasoning. In Proceedings of AAMAS’05. 157–164.
[55] S. Vester. 2013. Alternating-time temporal logic with finite-memory strategies.

In GandALF 2013. 194–207.
[56] D. Walther, W. van der Hoek, and M. Wooldridge. 2007. Alternating-time Tempo-

ral Logic with Explicit Strategies. In Proceedings TARK XI. Presses Universitaires
de Louvain, 269–278.

[57] N. Yadav and S. Sardiña. 2012. Reasoning about Agent Programs Using ATL-Like

Logics. In Proceedings of JELIA. 437–449.

https://doi.org/10.4204/EPTCS.218.2
https://doi.org/10.23638/LMCS-13(1:9)2017

	Abstract
	1 Introduction
	1.1 Related Work

	2 Natural Strategies under Uncertainty
	2.1 Models of Multi-Agent Interaction
	2.2 Simple Strategies for Uncertain Agents
	2.3 How to Measure Natural Strategies

	3 Reasoning about Natural Ability
	3.1 A Logic for Natural Strategies
	3.2 Semantics of NatATL under Imperfect Information

	4 Model Checking for NatATL
	4.1 Model Checking for Small Natural Strategies
	4.2 Model Checking: General Case

	5 Natural Abilities of Agents with Memory
	5.1 Natural Strategies with Recall
	5.2 NatATL for Strategies with Recall

	6 Model Checking for Natural Strategies with Recall
	6.1 Model Checking for Small Strategies
	6.2 Model Checking: General Case

	7 Conclusions
	References

