
Dynamic Escape Game
Demonstration

Antonio Di Stasio
Università degli Studi di Napoli Federico II

Paolo Domenico Lambiase
Università degli Studi di Napoli Federico II

Vadim Malvone
Université d’Évry

Aniello Murano
Università degli Studi di Napoli Federico II

ABSTRACT
We introduce Dynamic Escape Game (DEG), a tool that provides
emergency evacuation plans in situations where some of the escape
paths may become unavailable at runtime. We formalize the setting
as a reachability two-player turn-based game where the universal
player has the power of inhibiting at runtime some moves to the
existential player. Thus, the universal player can change the struc-
ture of the game arena along a play. DEG uses a graphical interface
to depict the game and displays a winning play whenever it exists.
ACM Reference Format:
Antonio Di Stasio, Paolo Domenico Lambiase, Vadim Malvone, and Aniello
Murano. 2018. Dynamic Escape Game. In Proc. of the 17th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2018),
Stockholm, Sweden, July 10–15, 2018, IFAAMAS, 3 pages.

1 INTRODUCTION
Game theory is a well-developed branch of mathematics, largely
applied in computer science to reason about the strategic behavior
of reactive systems [1, 13]. These are characterized by an ongo-
ing interaction between two or more entities, modeled as players,
and the behavior of the whole system deeply relies on this in-
teraction [8]. To reason about resource constraints, quantitative
games have been considered [4, 5]. Accordingly, games are played
on weighted graphs, where edges are equipped with integer val-
ues modeling rewards or costs. Well-stated quantitative games are
Mean-Payoff [6] and Energy Games [5]. In this paper, we consider
a variant of weighted two-player turn-based reachability games.
These are games with weighted transitions in which Player1 (P1)
tries to reach a target state while Player2 (P2) tries to prevent it.
Along a play, P1 plays as usual, i.e. from his current position, he
chooses one of the available successors and moves to it. Conversely,
P2, sitting on a set of states S , chooses some of its successors that
become irrevocably unavailable to P1 and added to S . The game
starts with S being the initial state for P2 (different from the one
for P1). P2 chooses successors under the constraint that the sum
of the weights along the involved edges is lower to a given bound.
Note that P2 can dynamically change the structure of the game.
The introduced game framework takes inspiration from [20] and
it can be usefully applied to solve questions in planning, rescue,
and traffic control. Other applications and similar reasoning can
be found in [2, 3, 9–12, 14–19]. To solve the above game, we intro-
duce the tool Dynamic Escape Game (DEG). The solution of the

Proc. of the 17th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2018), M. Dastani, G. Sukthankar, E. André, S. Koenig (eds.), July 10–15, 2018,
Stockholm, Sweden. © 2018 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

game is based on the computation of two priority functions, one for
each player, representing their best performing strategies respec-
tively. Our empirical evaluation shows that the priority functions
computed by DEG use good heuristic and have excellent runtime
execution.

2 GAME STRUCTURE
Our tool works over two-player turn-based games, on weighted
graphs under the reachability condition (2TGW, for short).

Definition 2.1. A 2TGW is a tuple G = (P, I1, I2, St,E,T,w,b),
where P= {P1, P2} is the set of players, Ij is the initial state for Pj ,
St is the set of states, E ⊆ St × St is the set of edges, T ⊆ St is the
set of the target states,w :E→N is a function that given an edge
returns its weight, and b is a bound.

Given a game G, the players move in turn, starting from their
starting states, with P1 moving first. The game makes use of a set
S containing states that are unavailable to P1 along a play. The
game starts with S = {I2} and only P2 can operate on it by possibly
adding states. If the game is at P1’s round, given the current state s ,
P1 can move in any successor state of s ∈ St , but those in S . If the
game is at P2’s round then he can add to S any set S ′ ∈ St \ S of
states reachable from S whose sum of the weights of the traversed
edges is not greater than b. A configuration is a couple (s, S) ∈

St× 2St where s < S . By C we denote the set of all configurations. A
play is a finite sequence of configurations π = (s0, S0), . . . , (sn , Sn),
such that s0 = I1, S0 = {I2}, Si ⊆ Si+1, (si , si+1) ∈ E, and for
all s ′ ∈ Si+1 \ Si there exists s ∈ Si such that (s, s ′) ∈ E, where
0 ≤ i < n. Note that the maximum length of a play is n = |St| − 1,
since in the worst case |Sn | = |St| − 1. A P1 strategy is a function
σ1 : C → St such that for all (s, S) ∈ C it holds that σ1(s, S) < S and
(s,σ1(s, S)) ∈ E. A P2 strategy is a function σ2 : C → 2St such that:
i) for all (s, S) ∈ C and for all s ′ ∈ σ2(s, S) \ S there exists s ∈ S such
that (s, s ′) ∈ E; ii) it holds that Σ(s,s ′)∈Ew(s, s ′) < b, where s ∈ S
and s ′ ∈ σ2(s, S). Given P1 strategy σ1 and P2 strategies σ2 they
induce a play π = (s0, S0), . . . , (sn , Sn) such that for all 0 ≤ i ≤ n,
si+1 = σ1((si , Si)) and Si+1 = σ2((si , Si)). Finally, P1 (resp., P2) wins
the game G if there exists a P1 (resp., P2) strategy such that for all
P2 (resp., P1) strategies, the induced play π = (s0, S0), . . . , (sn , Sn)
allows P1 (resp., prevents P1) to visit a target state.

3 HOW TO COMPUTE THE STRATEGIES
In this section we describe the two functions we implemented in
our tool which are used by the players to select the strategies to win
the game. Let dist(x ,y) be the smallest distance w.r.t. the number
of edges from x to y, v the current state of P1, and S the set of

states of P2. The priority function δ1 for P1 works as follows: (1)
The distances between S and target states are calculated. For each
t ∈ T , such a distance is set as mins ∈S{dist(s, t)} and calculated by
applying a BFS algorithm on the transpose graph for each t ∈ T
and by choosing the smallest value, which we call distP2(t). (2) The
distances between each state u such that (v,u) ∈ E and each state
t ∈ T are calculated by using the BFS algorithm. So, if the state
u cannot reach any target state, u is colored with red. Instead, if
a target state t ∈ T exists such that dist(u, t) ≤ distP2(t), then u
is colored with green since P2 cannot block P1 to reach t . Finally,
u is colored with yellow if dist(u, t) > distP2. Using the priority
function δ1, P1 chooses a green state, if such a state exists, otherwise
he chooses a yellow state with the smallest distance between u and
a state t ∈ T . The priority function for P2 works as follows: (1)
The distances between v and each state t ∈ T are calculated by
applying the BFS algorithm. (2) For each s ∈ S and for allu such that
(s,u) ∈ E, the distance between u and the target states is calculated
by using the BFS algorithm. Moreover, a priority, i.e. an integer
value between 0 and 3, is associated to u in this way: (i) if u ∈ T
and (v,u) ∈ E, then the priority of u is 3. Instead, if (v,u) < E the
priority of u is 1 because P2 is in advantage on this state; (ii) if there
is a t ∈ T such that dist(u, t) < dist(v, t) and the constraint on
the edges holds then the priority of u is 2. (iii) if there is no t ∈ T
such that dist(u, t) < dist(v, t), then the priority of u is 0 because
P1 could escape anyway in t . Using the priority function described
above, P2 chooses a state starting from those with higher priority
up to a smallest priority, as long as the sum of the weights of the
edges is not over the bound.

Complexity result. Given a configuration (s, S) ∈ C, the above
algorithm computes the priority functions δ1 and δ2 in O(|V |2 ·
(|V | + |E |)). Since in the worst case the number of rounds of the
game is |V |, the overall complexity is O(|V | · [|V |2 · (|V | + |E |)]).

4 THE TOOL
The GUI is depicted in Fig. 1. It consists of two parts: the Output
Area (OA) and the Control Panel (CP). The OA is made of two
frames. The one on the left side is used to depict the game graph.
In particular, according to the positions of P1, P2, as well as the
target states, the states of the graph are colored in the follow way:
purple for P1, red for P2 and blue for the target states. The frame
on the right upper side shows all possible paths that P1 can follow
starting from its adjacent states and ending to a target state. The CP
at the right button corner is composed by five buttons: Manual (M),
Random (RD), Clear (C), Restart (RS) and Next (N). The M button
is used to build a graph manually. By pressing it, a window pops
up in which the user sets the number of states of the game graph.
Then, another window comes out in which the user decides how
to connect the states. Finally, the user sets the initial states for P1
and P2 and the target states. The RD button works similarly to the
M one, but generates a random game of n states, with n provided
by the user. The C button allows to clean the graph area. The RS
button allows to restart the current game. Finally, the N button runs
automatically a move for the player’s round. Note that there are
two ways to move for P1: by pressing the N button or manually. 1

1A video demonstration is available from https://goo.gl/71FqHF

Figure 1: The main window of our tool.

5 BENCHMARKS
In this section we report experimental results to evaluate the per-
formance between DEG and a brute force algorithm, named BF,
that uses all possible strategies for P1 and the priority function for
P2. Note that we used in BF the priority function for P2 because
it is optimal. In particular, we tested the tool on several instances
by comparing the priority function with all possible strategies for
P2 and we observed that the output in both cases is the same for
all instances. The tool2 has been implemented in C++ and all tests
have been run on an Intel Core i7-6500u with 8 GB of RAM run-
ning Microsoft Windows 10. The benchmarks show that over 500
instances, with 17 ≤ |St| ≤ 21, DEG returns the correct solution,
that is P1 wins in both DEG and BF, in about 91% of the instances.
Moreover, as reported in Fig. 2, DEG outperforms the BF algorithm
in all the instances. In conclusion, the results show that DEG uses
a good heuristic for P1 and an excellent runtime execution.

Figure 2: Comparison between DEG and BF w.r.t. running
time execution.

6 CONCLUSION
This paper introduces Dynamic Escape Game, a tool solving a
specific weighted game under reachability condition, where the
opponent can dynamically modify the game arena. To solve the
game we have introduced two priority functions to be used by the
players. Our benchmarks have showed that our tool exhibits an
excellent running-time execution. Also that the introduced priority
functions are good heuristics. We believe that our tool can be used
as a core engine to practically address real escape problems in MAS.

2 The tool is available for download from https://bitbucket.org/antonylogic/deg/

REFERENCES
[1] R. Alur, T.A. Henzinger, and O. Kupferman. 2002. Alternating-Time Temporal

Logic. JACM 49, 5 (2002), 672–713.
[2] B. Aminof, V. Malvone, A. Murano, and S. Rubin. 2016. Graded Strategy Logic:

Reasoning about Uniqueness of Nash Equilibria. In AAMAS’16. 698–706.
[3] B. Aminof, V. Malvone, A. Murano, and S. Rubin. 2018. Graded Modalities in

Strategy Logic. Inf. Comput. (2018), to appear.
[4] R. Bloem, K. Chatterjee, T. A. Henzinger, and B. Jobstmann. 2009. Better Quality

in Synthesis through Quantitative Objectives. In CAV 2009. 140–156.
[5] A. Chakrabarti, L. de Alfaro, T. A. Henzinger, and M. Stoelinga. 2003. Resource

Interfaces. In EMSOFT 2003. 117–133.
[6] A. Ehrenfeucht and J. Mycielski. 1979. Positional strategies for mean payoff

games. International Journal of Game Theory 8, 2 (1979), 109–113.
[7] T. Gawlitza and H. Seidl. 2009. Games through Nested Fixpoints. In CAV 2009.

291–305.
[8] D. Harel and A. Pnueli. 1985. On the Development of Reactive Systems. Springer.
[9] W. Jamroga, V. Malvone, and A. Murano. 2017. Reasoning about Natural Strategic

Ability. In AAMAS17. 714–722.
[10] W. Jamroga and A. Murano. 2014. On Module Checking and Strategies.. In

AAMAS14. 701–708.

[11] W. Jamroga and A. Murano. 2015. Module Checking of Strategic Ability. In
AAMAS15. 227–235.

[12] O. Keidar and N. Agmon. 2017. Safety First: Strategic Navigation in Adversarial
Environments. In AAMAS17. 1581–1583.

[13] O. Kupferman, M.Y. Vardi, and P. Wolper. 2001. Module Checking. IC 164, 2
(2001), 322–344.

[14] C. Löding and P. Rohde. 2003. Model Checking and Satisfiability for Sabotage
Modal Logic. In FST TCS 2003. 302–313.

[15] V. Malvone, F. Mogavero, A. Murano, and L. Sorrentino. 2015. On the Counting
of Strategies. In TIME 2015. 170–179.

[16] V. Malvone, F. Mogavero, A. Murano, and L. Sorrentino. 2018. Reasoning about
graded strategy quantifiers. Inf. Comput. 259, 3 (2018), 390–411.

[17] V. Malvone, A. Murano, and L. Sorrentino. 2015. Games with additional winning
strategies. In CILC 2015. 175–180.

[18] V. Malvone, A. Murano, and L. Sorrentino. 2017. Hiding Actions in Multi-Player
Games. In AAMAS17. 1205–1213.

[19] V. Malvone, A. Murano, and L. Sorrentino. 2018. Additional Winning Strategies
in Reachability Games. Fundam. Inform. 159, 1-2 (2018), 175–195.

[20] A. Murano, G. Perelli, and S. Rubin. 2015. Multi-agent Path Planning in Known
Dynamic Environments. In PRIMA 2015. 218–231.

	Abstract
	1 Introduction
	2 Game Structure
	3 How to compute the strategies
	4 The tool
	5 Benchmarks
	6 Conclusion
	References

