
NWin: A Tool for Counting Winning Strategies

Vadim Malvone
Università degli Studi di Napoli

Federico II, Italy
vadim.malvone@unina.it

Aniello Murano
Università degli Studi di Napoli

Federico II, Italy
murano@na.infn.it

Marco Tafuto
Università degli Studi di Napoli

Federico II, Italy
marc.tafuto@gmail.com

ABSTRACT
We present NWin, a tool that allows to count all different
winning strategies in two-player turn-based games under
the reachability condition. NWin uses a graphical interface
to build the game model and collect all acyclic and cyclic
winning strategies. By means of benchmarks over random
games we show that NWin has a good performance in practice.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intel-
ligence —Multiagent Systems

General Terms
Algorithms, Performance

Keywords
Game theory; Reachability condition; Strategic reasoning

1. INTRODUCTION
Game theory is a powerful framework with several applica-

tions in MAS [14]. It allows reasoning efficiently about the
strategic behavior of reactive systems [2, 9, 13]. In this paper
we consider two-players turn-based games played under the
reachability condition, i.e, some nodes are declared target.
Solving such a game amounts to check whether one of the
players has a winning strategy, i.e., a sequence of moves that
lead him to a target node no matter how the opponent acts.

In many cases, knowing how many winning solutions exist
is crucial [4,6–8,10,11]. For example, in planning a rescue, it
would give to a rescuer some backup plan in case something
goes wrong. In solution concepts, this would cope with the
uniqueness problem in Nash equilibrium (see [1, 5, 12]).

In this paper we introduce NWin, a tool that addresses
the quantitative question of checking how many different
strategies a player has to win a two-player reachability game.
The tool uses a graphical interface to build the game model
and shows all acyclic and cyclic winning strategies. By means
of benchmarks over random games we show that NWin has
a good performance in practice: it can process 108 acyclic
strategies plays in less than 10 seconds by a pc.

Appears in: Proceedings of the 15th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2016), J. Thangarajah, K. Tuyls, C. Jonker, S.
Marsella (eds.), May 9–13, 2016, Singapore.
Copyright © 2016, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Figure 1: The main window of NWin.

2. THE TOOL
In this section we describe the Graphical User Interface

(GUI) of NWin, in the current release (1.0).
Our tool works over two-player turn-based games, played

by Player 1 and Player 2, under the reachability condition
(2TG, for short). These are directed graphs in which the set
of nodes (V) is partitioned in two subsets V1 and V2. Each
Vi contains all nodes owned by Player i. Nodes in V1 (V2)
are graphically represented by a circle (square). The unique
initial node is colored in blue and all target nodes (T ) in
green. Take a node v, the set of outcoming edges represent
all possible moves of the player that owns v. A play is a path
starting from the initial node and represents a sequence of
performed moves from the players. A strategy for a player is
the set of moves he can perform along every prefix of a play.
A strategy is winning for Player 1 if it induces a play that
reaches a target node, no matter which strategy Player 2
uses.

The GUI is depicted in Figure 1. It consists of two parts:
the Output Areas (OA) and the Control Panel (CP). The OA
is made of three frames. The one on the left side (Graph) is
used to depict the game graph. The frame on the right upper
side (Path to Target) shows all reachable paths that start
at the initial node and end in a target node 1. Finally, the
frame of right lower side (Strategy Path) reports all winning
strategy plays for Player 1. The CP at the right down corner
is composed by four buttons: Draw Graph (DG), Random
Graph (RG), Base Strategies (BS), and All Strategies (AS).
The DG button is used to build a graph manually. By
pressing it, a window pops up in which the user sets the
number of nodes and edges of the game graph. Then, another
window comes out in which the user decides how the nodes
are connected. Finally, he sets in a new window the initial

1Formally, these are the reachability paths obtained by look-
ing at the monolithic version of the game graph.



and the set of target nodes. The RG button works similarly to
the DG button but after the parameters in the first window
are set the game is generated randomly. The BS button
works as follows. The first time it is pressed, all reachable
paths are shown. At the second press it gives all possible
acyclic winning strategy plays in which the Player 1 wins.
The AS button works as the BS button, but it also reports
the cyclic plays. Finally, if we select a winning strategy play
in the frame Strategy Path and push the button View (V),
in the game graph the path appears in red.

A video demonstration of NWin is on YouTube 2.

3. HOW TO COMPUTE THE STRATEGIES
Given a 2TG, NWin computes all winning strategies through

three main steps. The first two are preliminary and used to
partition all nodes in “good” and “bad”.

The first step calculates all acyclic reachability paths, i.e.
the acyclic paths, from the initial node to a target node,
that are present in the monolithic version of the game graph.
This is done by applying a classic DFS algorithm. Precisely,
the algorithm uses two sets of nodes, namely white (W ) and
black (B). The set W (B) represents all nodes that can
(cannot) reach a target node in T . This step starts with
B = ∅ and W = T . For each node v, if it is adjacent to a
node in W , then W = W ∪{v}, otherwise B = B ∪{v}. The
algorithm ends when a fixed point is reached.

The second step works on the nodes in {W ∩ V2} \ T , i.e.
the nodes of Player 2 that are white but not target nodes.
Along this step we remove a node v from W and add it in B
iff at least one of the following conditions is satisfied: (i) v
has a loop; (ii) v is adjacent to a node in B; (iii) v belongs
to a trap cycle C for Player 1 (from which he can not go
out). Note that, each v′ ∈ C ∩ V1 has a single outcome edge.

The third step considers the entire game and in particular
the strategies of the players. Given a node v ∈ W ∩ V1 \ T ,
Player 1 has a degree of preference in the mining that, if
there exists a node v′ adjacent to v and v′ ∈ W , then he
chooses and moves to v′ (even if this node has been already
visited). Similarly, given a node v ∈ W ∩ V2, if there exists a
node v′ adjacent to v and v′ ∈ B, then Player 2 chooses v′,
otherwise he prefers to choose a node that has been already
visited, if possible. This step, and thus the algorithm, ends
when a target node or a node in B is entered.

It is important to note that, after the first step the tool
prints all possible reachability paths. All winning strategy
plays are printed only after the third step is completed.

4. CRITICAL ISSUE
To compute all winning strategy plays, we have faced with

two main critical issues: all the edges need to be visited in
order to discover cycles and nodes require to be visited more
than ones whenever they belong to a winning strategy play.
The classical DFS is too weak to handle these two points.
Indeed, the DFS analyzes all the nodes of the graph, but
it does not analyze all edges and so all possible moves of
both players. For this reason, we have introduced opportune
extensions of the DFS. The first we consider is DFSR, in
which it allows the algorithm to revisit a node in order to
consider all possible edges and all possible acyclic winning
strategy plays. In order to retrieve the winning strategy plays
for Player 1 that contain also cycles, we have built MDFSR

2
www.youtube.com/playlist?list=PL0f6qAJrAYnFBl5PXUbloDMGyj1kif9aF

Figure 2: The table of performance.

a modified version of the DFSR that is able to collect plays
in which there are cycles repeated at most once. We consider
only this kind of cycles for two reasons: (i) one can pump a
cycle an arbitrary number of times to obtain other winning
plays, (ii) to avoid the algorithm running forever. As last
remark it is worth noting that the DFSR is used to visit
several times the same node while the MDFSR version is
required to visit more than ones the same edge.

5. PERFORMANCE
In this section we report on some benchmarks. For the

lack of space we only describe those over DSFR. We have
run NWin on an i5 processor with 4GB of RAM. We have
considered random games evaluated under the RG button
by setting as number of nodes n ∈ {2, . . . , 16} and number
of edge e ∈ {n + 1, . . . , n2}. In particular, we have executed
one hundred cases for each n and thus one thousand and five
hundred games in total. For each game, we have collected
the execution time and the number of paths processed.

The benchmarks are depicted in Figure 2 in which we
report the number of paths (#Path) processed per second
(s). The graph gives a proportional relationship between the
number of paths processed and the seconds that NWin takes
to process such paths. In particular, it shows that under 10
seconds NWin can process more than 108 paths. It is worth
observing that we analyze the number of paths rather than
nodes as the former is the fulcrum of NWin.

6. CONCLUSION
In this paper, we have presented NWin a tool that allows

to retrieve all possible winning strategy plays in a two-player
game under the reachability condition. NWin makes use of a
simple but efficient GUI that allows to build the game under
two options: random and manual. The tool calculates and
reports, upon request, all acyclic and cyclic winning strategy
plays. We have reported on some benchmarks on the former
case and showed that NWin can calculate more than 108

paths in less than 10 seconds. We believe that our tool can
be used as a core engine to solve several problems in MAS.
As future work we plan to extend this tool in the setting of
solution concepts, e.g. Nash Equilibrium (NE). In particular,
by means of this extension, we aim to solve the uniqueness
of NE in practice [3].

https://www.youtube.com/playlist?list=PL0f6qAJrAYnFBl5PXUbloDMGyj1kif9aF


REFERENCES
[1] E. Altman, H. Kameda, and Y. Hosokawa. Nash

equilibria in load balancing in distributed computer
systems. IGTR, 4(2):91–100, 2002.

[2] R. Alur, T. Henzinger, and O. Kupferman.
Alternating-Time Temporal Logic. JACM,
49(5):672–713, 2002.

[3] B. Aminof, V. Malvone, A. Murano, and S. Rubin.
Graded Strategy Logic: Reasoning about Uniqueness of
Nash Equilibria. In AAMAS’16. International
Foundation for Autonomous Agents and Multiagent
Systems, 2016, (to appear).

[4] P. Bonatti, C. Lutz, A. Murano, and M. Vardi. The
Complexity of Enriched muCalculi. LMCS, 4(3):1–27,
2008.

[5] R. Cornes, R. Hartley, and T. Sandler. An elementary
proof via contraction. Journal of Public Economic
Theory, 1(4):499–509, 1999.

[6] M. Faella, M. Napoli, and M. Parente. Graded
Alternating-Time Temporal Logic. FI,
105(1-2):189–210, 2010.

[7] A. Ferrante, A. Murano, and M. Parente. Enriched
Mu-Calculi Module Checking. LMCS, 4(3):1–21, 2008.

[8] O. Kupferman, U. Sattler, and M. Vardi. The
Complexity of the Graded muCalculus. In CADE’02,
LNCS 2392, pages 423–437. Springer, 2002.

[9] O. Kupferman, M. Vardi, and P. Wolper. Module
Checking. IC, 164(2):322–344, 2001.

[10] V. Malvone, F. Mogavero, A. Murano, and
L. Sorrentino. On the counting of strategies. In TIME
2015, pages 170–179, 2015.

[11] V. Malvone, A. Murano, and L. Sorrentino. Games
with additional winning strategies. In CILC 2015,
pages 175–180, 2015.

[12] G. Papavassilopoulos and J. B. Cruz. On the
uniqueness of nash strategies for a class of analytic
differential games. Journal of Optimization Theory and
Applications, 27(2):309–314, 1979.

[13] A. Pnueli and R. Rosner. Distributed reactive systems
are hard to synthesize. In FOCS’90, pages 746–757.
IEEE, 1990.

[14] Y. Shoham and K. Leyton-Brown. Multiagent Systems:
Algorithmic, Game-Theoretic, and Logical Foundations.
Cambridge University Press, 2008.


	Introduction
	The tool
	How to compute the strategies
	Critical issue
	Performance
	Conclusion

