
Graded Strategy Logic:
Reasoning about Uniqueness of Nash Equilibria

Benjamin Aminof
Technische Universitat Wien, Austria
benj@forsyte.tuwien.ac.at

Vadim Malvone, Aniello Murano, Sasha Rubin
Università degli Studi di Napoli Federico II, Italy

{vadim.malvone, aniello.murano,
sasha.rubin}@unina.it

ABSTRACT
Strategy Logic (SL) is a well established formalism for strate-
gic reasoning in multi-agent systems. In a nutshell, SL is
built over LTL and treats strategies as first-order objects that
can be associated with agents by means of a binding operator.
In this work we introduce Graded Strategy Logic (Graded-
SL), an extension of SL by graded quantifiers over tuples of
strategy variables such as “there exist at least g different tu-
ples (x1, ..., xn) of strategies”. We study the model-checking
problem of Graded-SL and prove that it is no harder than
for SL, i.e., it is non-elementary in the quantifier rank.

We show that Graded-SL allows one to count the num-
ber of different strategy profiles that are Nash equilibria
(NE), or subgame-perfect equilibria (SPE). By analyzing the
structure of the specific formulas involved, we conclude that
the important problems of checking for the existence of a
unique NE or SPE can both be solved in 2ExpTime, which
is not harder than merely checking for the existence of such
equilibria.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intel-
ligence —Multiagent Systems

General Terms
Theory, Verification

Keywords
Strategic logics; Graded modalities; Nash equilibrium

1. INTRODUCTION
Strategy Logic (SL) is a powerful formalism for reasoning

about strategies in multi-agent systems [43,44]. Strategies
tell an agent what to do — they are functions that prescribe
an action based on the history. The fundamental idea in
SL is to treat strategies as first-order object. A strategy
x can be quantified existentially 〈〈x〉〉 (read: there exists a
strategy x) and universally [[x]] (read: for all strategies x).
Furthermore, strategies are not intrinsically glued to specific
agents: the binding operator (α, x) allows one to bind an

Appears in: Proceedings of the 15th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2016),
J. Thangarajah, K. Tuyls, C. Jonker, S. Marsella (eds.),
May 9–13, 2016, Singapore.
Copyright © 2016, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

agent α to the strategy x. SL strictly subsumes several other
logics for strategic reasoning including the well known ATL
and ATL? [3]. Being a very powerful logic, SL can directly
express many solution concepts [9,19,32,35,43] among which
that a strategy profile x is a Nash equilibrium, and thus also
the existence of a Nash equilibrium (NE).

Nash equilibrium is one of the most important concepts
in game theory, forming the basis of much of the recent
fundamental work in multi-agent decision making. A chal-
lenging and important aspect is to establish whether a game
admits a unique NE [2,20, 48]. This problem impacts on the
predictive power of NE since, in case there are multiple equi-
libria, the outcome of the game cannot be uniquely pinned
down [21,49,57]. Unfortunately, uniqueness has mainly been
established either for special cost functions [2], or for very
restrictive game topologies [47]. More specifically, unique-
ness of NE in game theory is proved with procedures that
are separated from the ones that check for its existence [2];
these procedures require various transformations of the best
response functions of individual contributors [28, 29, 53], and
there is no general theory that can be applied to different
application areas [2].

In this paper, we address and solve the problem of ex-
pressing the uniqueness of certain solution concepts (and
NE in particular) in a principled and elegant way. We in-
troduce an extension of SL called Graded-SL and study its
model-checking problem. More specifically, we extend SL
by replacing the quantification 〈〈x〉〉 and [[x]] over strategy
variables with graded quantification over tuples of strategy
variables: 〈〈x1, . . . , xn〉〉≥g (read 〈〈x1, . . . , xn〉〉≥g as “there
exist at least g different tuples (x1, . . . , xn) of strategies”)
and its dual [[x1, . . . , xn]]<g (g ∈ N). Here, two strategies are
different if they disagree on some history. That is, we count
strategies syntactically as is usual in graded extensions of
modal and description logics [6, 12, 15, 30, 36]. The key for
expressing uniqueness of NE is the combination of quantify-
ing over tuples (instead of singleton variables), and adding
counting (in the form of graded modalities).

We address the model-checking problem for Graded-SL
and prove that it has the same complexity as SL, i.e., it is
non-elementary in the nesting depth of quantifiers. In par-
ticular, we show that model checking Graded-SL formulas
with a nesting depth k > 0 of blocks of quantifiers (a block of
quantifiers is a maximally-consecutive sequence of quantifiers
of the same type, i.e., either all existential, or all universal) is
in (k + 1)ExpTime, and that for the special case where the
formula starts with a block of quantifiers, it is in kExpTime.
Since many natural formulas contain a very small number of

quantifiers, the complexity of the model-checking problem is
not as bad as it seems. Specifically, several solution concepts
can be expressed as SL formulas with a small number of
quantifiers [9,19,32,35,43]. Since the existence of a NE, and
the fact that there is at most one NE, can be expressed in
Graded-SL using simple formulas we are able to conclude
that the problem of checking the uniqueness of a NE can
be solved in 2ExpTime. Previously, it was only known that
existence of NE can be checked in 2ExpTime [32,43], and in-
deed it is 2ExpTime-complete [4,32,50]. Thus, Graded-SL
is the first logic that can solve the existence and uniqueness
of NE (as well as many other solution concepts) in a uniform
way.

SL has a few natural syntactic fragments, the most pow-
erful of which is called Nested-Goal SL which can express
NE [43]. Similarly, we define Graded-SL Nested-Goal, a
syntactic fragment of Graded-SL. The Nested-Goal restric-
tion encompasses formulas in a special prenex normal form
with a particular nested temporal structure that restricts
the application of both strategy quantifiers and agent bind-
ings (see Section 2 for details). We show that the graded
extension of Nested-Goal SL has the same model-checking
complexity, i.e., non-elementary in the alternation number
of the quantifiers appearing in the formula (the alternation
number is, roughly speaking, the maximum number of exis-
tential/universal quantifier switches [43]). Since uniqueness
of NE can be expressed in Nested-Goal Graded-SL using
alternation one, we get an alternative proof for checking the
NE uniqueness in 2ExpTime.

We exemplify our definition and our automata-theoretic
algorithm for the model-checking problem with a large num-
ber of applications. In particular, we use it for reasoning
about repeated one-shot games such as the iterated prisoner’s
dilemma (IPD) [51]. The prisoner’s dilemma game is a pop-
ular metaphor for the problem of stable cooperation and has
been widely used in several application domains [8]. In the
classic definition, it consists of two players, each of them has
an option to defect or collaborate. More involved is the IPD
in which the process is repeated and one can model reactive
strategies in continuous play. The IPD has become a stan-
dard model for the evolution of cooperative behaviour within
a community of egoistic agents, frequently cited for implica-
tions in both sociology and biology (see [8]). Evaluating the
existence of NE in an IPD and, even more, its uniqueness, is a
very challenging and complicated question due to the rich set
of strategies such a game can admit [8, 16,17]. In particular,
such infinite-duration games need to be supported by more
complex solution concepts such as subgame-perfect equilib-
rium [27, 41, 55]. Thanks to Graded-SL and the related
model-checking result, we get that checking the uniqueness
of a NE in an IPD can be solved in 2ExpTime.
Related work. The importance of solution concepts, veri-
fying a unique equilibrium, and the relationship with logics
for strategic reasoning is discussed above. We now give some
highlights from the long and active investigation of graded
modalities in the formal verification community.

Graded modalities were first studied in modal logic [26]
and then exported to the field of knowledge representation to
allow quantitative bounds on the set of individuals satisfying
a given property. Specifically, they were considered as count-
ing quantifiers in first-order logics [31] and number restric-
tions in description logics [34]. Graded µ-calculus, in which
immediate-successor accessible worlds are counted, was intro-

duced to reason about graded modal logic with fixed-point
operators [36]. Recently, the notion of graded modalities was
extended to count the number of paths in the branching-
time temporal logic formulas CTL and CTL? [7, 10]. In the
verification of reactive systems, we mention two orthogonal
approaches: module checking for graded µ-calculus [6, 25]
and an extension of ATL by graded path modalities [24].

The work closest to ours is [40]: also motivated by counting
NE, it introduces a graded extension of SL, called GSL. In
contrast with our work, GSL has a very intricate way of
counting strategies: it makes use of a semantic definition of
strategies being equivalent, and counting in which equivalent
strategies are counted as a single strategy. While this ap-
proach has been proved to be sound and general, it heavily
complicates the model-checking problem. Indeed, only a very
weak fragment of GSL has been solved in [40] by exploiting
an ad hoc solution that does not seem to be easily scalable
to (all of) GSL. Precisely, the fragment investigated there
is the vanilla restriction of the graded version of one-goal
SL [42]. There is a common belief that the one-goal fragment
is not powerful enough to express the existence of a Nash
Equilibrium in concurrent games. The smallest fragment
that is know to be able to represent this is the so called
Boolean-goal Strategy Logic, whose graded extension (in the
GSL sense) has no known solution.1

Outline. The sequel of the paper is structured as follows.
In Section 2 we introduce Graded-SL and provide some
preliminary related concepts. In Section 3 we address the
model-checking problem for Graded-SL and its fragments.
We conclude with Section 4 in which we have a discussion
and suggestions for future work.

2. GRADED STRATEGY LOGIC
In this section we introduce Graded Strategy Logic, which

we call Graded-SL for short.

2.1 Models
Sentences of Graded-SL are interpreted over concurrent

game structures, just as for ATL and SL [3, 43].

Definition 2.1. A concurrent game structure (CGS) is

a tuple G , 〈AP,Ag,Ac,St, sI , ap, tr〉, where AP, Ag, Ac,
and St are the sets of atomic propositions, agents, actions
and states, respectively, sI ∈ St is the initial state, and
ap : St→ 2AP is the labeling function mapping each state to
the set of atomic propositions true in that state. Let Dc,
Ag→Ac be the set of decisions, i.e., functions describing the
choice of an action by every agent. Then, tr : Dc→(St→St)
denotes the transition function mapping every decision δ∈Dc
to a function tr(δ) : St→ St.

We will usually take the set Ag of agents to be {α1, . . . , αn}.
A path (from s) is a finite or infinite non-empty sequence

of states s1s2 . . . such that s = s1 and for every i there exists
a decision δ with tr(δ)(si) = si+1. The set of paths starting

1In [33] it has been shown that, in the restricted case of
turn-based structures it is possible to express the existence
of Nash equilibria in m−ATL? [45], a memory-full variant
of ATL? (hence included in one-goal SL), but exponentially
more succinct — and thus with a much more expensive
model-checking algorithm. As also the authors in [33] state,
it is not clear how to extend this result to the concurrent
setting, even in the two player case.

with s is denoted Pth(s). The set of finite paths from s,
called the histories (from s), is denoted Hst(s). A strategy

(from s) is a function σ∈Str(s),Hst(s)→Ac that prescribes
which action has to be performed given a certain history.
We write Pth,Hst, Str for the set of all paths, histories, and
strategies (no matter where they start).

We use the standard notion of equality between strategies,
[38], i.e., σ1 = σ2 iff for all ρ ∈ Hst, σ1(ρ) = σ2(ρ). This
extends to equality between two n-tuples of strategies in the
natural way, i.e., coordinate-wise.

2.2 Syntax
We describe the syntax as well as related basic concepts.

Graded-SL extends SL by replacing the classic singleton
strategy quantifiers 〈〈x〉〉 and [[x]] with the graded (tupled)

quantifiers 〈〈x1, . . . , xn〉〉≥g and [[x1, . . . , xn]]<g, respectively,
where each xi belongs to a countable set of variables Vr
and g ∈ N is called the degree of the quantifier. Intuitively,
these are read as “there exist at least g tuples of strategies
(x1, . . . , xn)” and “all but less than g many tuples of strate-
gies”, respectively. The syntax (α, x) denotes a binding of
the agent α to the strategy x. The syntax of Graded-SL is:

Definition 2.2. Graded-SL formulas are built induc-
tively by means of the following grammar, where p ∈ AP,
α ∈ Ag, x, x1, . . . xn ∈ Vr such that xi 6= xj for i 6= j, and
g, n ∈ N:

ϕ := p | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ | 〈〈x1, . . . , xn〉〉≥gϕ | (α, x)ϕ.

Notation. For the rest of the paper, whenever we write
〈〈x1, . . . , xn〉〉≥g we also mean that xi 6= xj for i 6= j.

Shorthands are derived as usual. Specifically, true , p∨¬p,
false , ¬true, Fϕ , trueUϕ, and Gϕ , ¬F¬ϕ. Moreover,
the graded universal operator corresponds to the dual of the
existential one, i.e., [[x1, . . . , xn]]<gϕ , ¬〈〈x1, . . . , xn〉〉≥g¬ϕ.
A placeholder refers to an agent or a variable. In order
to define the semantics, we first define the concept of free
placeholders in a formula. Intuitively, an agent or variable
is free in ϕ if it does not have a strategy associated with it
(either by quantification or binding) but one is required in
order to ascertain if ϕ is true or not. The definition mimics
that for SL [43]. It is included here both for completeness
and because it is important for defining the model-checking
procedure, in particular for the encoding of strategies as trees
(Definition 3.2).

Definition 2.3. The set of free agents and free variables
of a Graded-SL formula ϕ is given by the function free :
Graded-SL→ 2Ag∪Vr defined as follows:

• free(p) , ∅, where p ∈ AP;

• free(¬ϕ) , free(ϕ);

• free(ϕ1 ∨ ϕ2) , free(ϕ1) ∪ free(ϕ2);

• free(Xϕ) , Ag ∪ free(ϕ);

• free(ϕ1 Uϕ2) , Ag ∪ free(ϕ1) ∪ free(ϕ2);

• free(〈〈x1, . . . , xn〉〉≥gϕ) , free(ϕ) \ {x1, . . . , xn};

• free((α, x)ϕ) , free(ϕ), if α 6∈ free(ϕ), where α ∈ Ag
and x ∈ Vr;

• free((α, x)ϕ) , (free(ϕ) \ {α}) ∪ {x}, if α ∈ free(ϕ),
where α ∈ Ag and x ∈ Vr.

A formula ϕ without free agents (resp., variables), i.e., with
free(ϕ) ∩ Ag = ∅ (resp., free(ϕ) ∩ Vr = ∅), is called agent-
closed (resp., variable-closed). If ϕ is both agent- and variable-
closed, it is called a sentence.

Another important concept that characterizes the syntax
of Graded-SL is the alternation number of quantifiers, i.e.,
the maximum number of quantifier switches 〈〈 · 〉〉[[·]], [[·]]〈〈 · 〉〉,
〈〈 · 〉〉¬〈〈 · 〉〉, or [[·]]¬[[·]] that binds a tuple of variables in a
subformula that is not a sentence. We denote by alt(ϕ) the
alternation number of a Graded-SL formula ϕ. The quanti-
fier rank of ϕ is the maximum nesting of quantifiers in ϕ, e.g.,
〈〈x1, . . . , xn〉〉≥g(α1, x) . . . (αn, xn)

∧n
i=1(〈〈y〉〉(αi, y)ψi)→ ψi

has quantifier rank 2 if each ψi is quantifier free. Moreover, a
quantifier-block of ϕ is a maximally-consecutive sequence of
quantifiers in ϕ of the same type (i.e., either all existential,
or all universal). The quantifier-block rank of ϕ is exactly
like the quantifier rank except that a quantifier block of j
quantifiers contributes 1 instead of j to the count.
SL has a few natural syntactic fragments, the most power-

ful of which is called Nested-Goal SL. Similarly, we define
Graded-SL Nested-Goal (abbreviated Graded-SL[ng]), as
a syntactic fragment of Graded-SL. As in Nested-Goal SL,
in Graded-SL[ng] we require that bindings and quantifica-
tions appear in exhaustive blocks. I.e., whenever there is a
quantification over a variable in a formula ψ it is part of a con-
secutive sequence of quantifiers that covers all of the free vari-
ables that appear in ψ, and whenever an agent is bound to a
strategy then it is part of a consecutive sequence of bindings of
all agents to strategies. Finally, formulas with free agents are
not allowed. To formalize Graded-SL[ng] we first introduce
some notions. A quantification prefix over a finite set V⊆Vr
of variables is a sequence ℘∈{〈〈x1, . . . , xn〉〉≥g, [[x1, . . . , xn]]<g

: x1, . . . , xn ∈V ∧ g ∈N}∗ such that each x∈V occurs ex-
actly once in ℘. A binding prefix is a sequence [∈{(a, x) :

α∈Ag ∧ x∈Vr}|Ag| such that each α∈Ag occurs exactly
once in [. We denote the set of binding prefixes by Bn, and
the set of quantification prefixes over V by Qn(V).

Definition 2.4. Graded-SL[ng] formulas are built in-
ductively using the following grammar, with p ∈ AP, ℘ ∈
Qn(V) (V ⊆ Vr), and [∈ Bn:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ | ℘ϕ | [ϕ,

where in the rule ℘ϕ we require that ϕ is agent-closed and
℘ ∈ Qn(free(ϕ)).

We conclude this subsection by introducing Graded-SL[1g],
another graded extension of fragment of SL, namely the one-
goal sub-logic. As the name says, this fragment is obtained
by restricting Graded-SL[ng] to encompass formulas with
just one nested goal. The importance of this fragment in SL
stems from the fact that it strictly includes ATL? while main-
taining the same complexity for both the model checking and
the satisfiability problems, i.e. 2ExpTime-complete [42,43].
However, it is commonly believed that Nash Equilibrium
cannot be expressed in this fragment. The definition of
Graded-SL[1g] follows.

Definition 2.5. Graded-SL[1g] formulas are built in-
ductively using the following grammar, with p ∈ AP, ℘ ∈
Qn(V) (V ⊆ Vr), and [∈ Bn:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ | ℘[ϕ,

with ℘ quantification prefix over free([ϕ).

2.3 Semantics
As for SL, the interpretation of a Graded-SL formula

requires a valuation of its free placeholders. This is done via
assignments (from s), i.e., functions χ∈ Asg(s),(Vr∪Ag)→
Str(s) mapping variables/agents to strategies. We denote by
χ[e 7→ σ], with e ∈ Vr ∪Ag and σ ∈ Str(s), the assignment
that differs from χ only in the fact that e maps to σ. Extend
this definition to tuples: for e = (e1, . . . , en) with ei 6= ej for
i 6= j, define χ[e 7→ σ] to be the assignment that differs from
χ only in the fact that ei maps to σi (for each i).

Since assignments are total functions, each assignment
from s determines a unique path from s, called a play:

Definition 2.6. For an assignment χ ∈ Asg(s) the (χ, s)-
play denotes the path π ∈ Pth(s) such that for all i ∈ N,

it holds that πi+1 = tr(dc)(πi), where dc(α) , χ(α)(π≤i)
for α ∈ Ag. The function play : Asg × St → Pth, with
dom(play) , {(χ, s) : χ ∈ Asg(s)}, maps (χ, s) to the (χ, s)-
play play(χ, s) ∈ Pth(s).

The notation π≤i (resp. π<i) denotes the prefix of the
sequence π of length i (resp. i− 1). Similarly, the notation
πi denotes the ith symbol of π. Thus, play(χ, s)i is the ith
state on the play determined by χ from s.

The following definition of χi says how to interpret an
assignment χ starting from a point i along the play, i.e., for
each placeholder e, take the action the strategy χ(e) would
do if it were given the prefix of the play up to i followed by
the current history.

Definition 2.7. For χ ∈ Asg(s) and i ∈ N, writing ρ ,
play(χ, s)≤i (the prefix of the play up to i) and t , play(χ, s)i
(the last state of ρ) define χi ∈ Asg(t) to be the assignment
from t that maps e ∈ Vr ∪ Ag to the strategy that maps
h ∈ Hst(t) to the action χ(e)(ρ<i · h).

We now define the semantics of Graded-SL. In particular,
we define G, χ, s |= ϕ and say that ϕ holds at s in G under χ.

Definition 2.8. Fix a CGS G. For all states s ∈ St and
assignments χ ∈ Asg(s), the relation G, χ, s |= ϕ is defined
inductively on the structure of ϕ:

• G, χ, s |= p iff p ∈ ap(s);

• G, χ, s |= ¬ϕ iff G, χ, s 6|= ϕ;

• G, χ, s |= ϕ1 ∨ ϕ2 iff G, χ, s |= ϕ1 or G, χ, s |= ϕ2;

• G, χ, s |= Xϕ iff G, χ1, play(χ, s)1 |= ϕ;

• G, χ, s |= ϕ1 Uϕ2 iff there is an index i ∈ N such that
G, χi, play(χ, s)i |= ϕ2 and, for all indexes j ∈ N with
j < i, it holds that G, χj , play(χ, s)j |= ϕ1;

• G, χ, s |= (α, x)ϕ iff G, χ[α 7→ χ(x)], s |= ϕ;

• G, χ, s |=〈〈x1, . . . , xn〉〉≥gϕ iff there exist g many tuples
σ1, . . . , σg of strategies such that:

– σi 6= σj for i 6= j, and

– G, χ[x 7→ σi], s |= ϕ for 1 ≤ i ≤ g.

Intuitively, the existential quantifier 〈〈x1, . . . , xn〉〉≥gϕ al-
lows us to count the number of distinct tuples of strategies
that satisfy ϕ.

As usual, if χ and χ′ agree on free(ϕ), then G, χ, s |= ϕ if
and only if G, χ′, s |= ϕ, i.e., the truth of ϕ does not depend
on the values the assignment takes on placeholders that are
not free. Thus, for a sentence ϕ, we write G |= ϕ to mean
that G, χ, sI |= ϕ for some (equivalently, for all) assignments
χ, and where sI is the initial state of G.

Comparison with other logics. In the following we give
the main intuitions relating Graded-SL with SL and a naive
fragment of Graded-SL in which quantifiers are over single
variables (and not tuple of variables).

Graded-SL extends SL by replacing universal and exis-
tential strategy quantifiers 〈〈x〉〉 and [[x]] with their graded

versions over tuples of variables 〈〈x1, . . . , xn〉〉≥g and [[x1, . . . ,
xn]]<g. Grades allow one to count, which is not possible, a
priori, in SL. On the other hand, every formula of SL has
an equivalent formula of Graded-SL: formed by replacing
every quantifier 〈〈x〉〉 with 〈〈x〉〉≥1.

An important power of Graded-SL is that it can quan-
tify over tuples of strategy variables. Consider the for-
mula ϕ = 〈〈x, y〉〉≥2(a, x)(b, y)ψ in Graded-SL that rep-
resents the property in which there exist two tuples of
strategies that satisfy ψ, and compare it to the following at-
tempt at expressing ϕ only quantifying over single strategies:
ϕ′ , 〈〈x〉〉≥2〈〈y〉〉≥2(a, x)(b, y)ψ. Observe that ϕ′ says that
there are two different strategies σ1 and σ2 for agent α1, and
for each σi there are two different strategies δi1 and δi2 for the
agent α2 that satisfy ψ. Thus, there are four tuples of strate-
gies that satisfy ψ, i.e., {σ1, δ

1
1}, {σ1, δ

1
2}, {σ2, δ

2
1}, {σ2, δ

2
2}.

Other attempts (such as 〈〈x〉〉≥2〈〈y〉〉≥1(a, x)(b, y)ψ), also fail
to capture ϕ as they restrict one of the agents to a single
strategy. This demonstrates the inadequacy of quantifying
over single strategies for counting solution concepts.

2.4 Games with temporal objectives
In game theory, players have objectives that are sum-

marised in a payoff function they receive depending on the
resulting play. In order to specify such payoffs we follow a
formalisation from [35] called objective LTL. This will allow
us to model the Prisoner’s Dilemma (PD), probably the most
famous game in game-theory, as well as an iterated version
(IPD). We then discuss appropriate solution concepts, and
show how to express these in Graded-SL.

Let G be a CGS with n agents. Let m ∈ N and fix, for
each agent αi ∈ Ag, an objective tuple Si , 〈fi, ϕ1

i , . . . , ϕ
m
i 〉,

where fi : {0, 1}m → N, and each ϕji is an LTL formula over

AP. If π is a play, then agent αi receives payoff fi(h) ∈ N
where the j’th bit hj of h is 1 if and only if π |= ϕji . For
instance, f may count the number of formulas that are true.

Prisoner’s Dilemma – One shot and Iterated
Two people have been arrested for robbing a bank and

placed in separate isolation cells. Each has two possible
choices, remaining silent or confessing. If a robber confesses
and the other remains silent, the former is released and the
latter stays in prison for a long time. If both confess they
get two convictions, but they will get early parole. If both
remain silent, they get a lighter sentence (e.g., on firearms
possession charges). The dilemma faced by the prisoners is
that, whatever the choice of the other prisoner, each is better
off confessing than remaining silent. But the result obtained
when both confess is worse than if they both remain silent.

We describe this (one-shot) scenario with the CGS in Fig-

ure 1 and, for agent αi, the objective Si , 〈fi, ϕ1
i , ϕ

2
i , ϕ

3
i , ϕ

4
i 〉

∅

T1S2 P1P2S1T2R1R2

CC CD DC DD

∗∗ ∗∗ ∗∗ ∗∗

Figure 1: Prisoner’s dilemma.

∅

T1S2 P1P2S1T2R1R2

CC

CD DC

DD

∗∗
∗∗ ∗∗

∗∗

Figure 2: Iterated Prisoner’s dilemma.

where ϕ1
i , XSi, ϕ

2
i , XPi, ϕ

3
i , XRi, and ϕ4

i , XTi and
fi returns the value of its input vector interpreted as a binary
number, e.g., fi(0100) = 4.

In words, we have two agents α1 and α2. Each agent has
two actions: cooperate (C) and defect (D), corresponding,
respectively, to the options of remaining silent or confessing.
For each possible pair of moves, the game goes in a state
whose atomic propositions represent the payoffs: Ri repre-
sents the reward payoff that αi receives if both cooperate;
Pi is the punishment that αi receives if both defect; Ti

is the temptation that αi receives as a sole defector, and
Si is the sucker payoff that αi receives as a sole coopera-
tor. The payoffs satisfy the following chain of inequalities:
Ti > Ri > Pi > Si.

The Iterated Prisoner’s Dilemma (IPD) is used to model
a series of interactions. This is like PD except that after the
first choice, both agents have another choice and so on. This
is modeled in Figure 2. The main difference between the one-
shot and iterated PD is that in the latter the agents’ actions
(may) depend on the past behaviour. Convenient payoff
functions for the IPD are the mean-average and discounted-
payoff [11]. Such quantitative payoffs can be replaced, in a
first approximation, by LTL payoffs such as “maximise the
largest payoff I receive infinitely often”. This is formalised,
for agent αi, by the objective Si , 〈fi, ϕ1

i , ϕ
2
i , ϕ

3
i , ϕ

4
i 〉 where

ϕ1
i , GFSi, ϕ

2
i , GFPi, ϕ

3
i , GFRi, and ϕ4

i , GFTi,
and fi is as in the one-shot PD.

Solution Concepts. Solution concepts are criteria by which
one captures what rational agents would do. This is especially
relevant in case each agent has its own objective. The central
solution concept in game theory is the Nash Equilibrium.

A tuple of strategies, one for each player, is called a strategy
profile. A strategy profile is a Nash equilibrium (NE) if
no agent can increase his payoff by unilaterally choosing a
different strategy. A game may have zero, one, or many NE.

Consider first a CGS G with n agents, where the objective
of the agent αi ∈ Ag contains a single LTL formula ϕi
(with a larger payoff if it holds than if it doesn’t). It is not
hard to see that the following formula of SL expresses that

x , (x . . . xn) is a Nash Equilibrium:

ψ1
NE(x),(α1, x) . . . (αn, xn)

n∧
i=1

(〈〈y〉〉(αi, y)ϕi)→ ϕi

An alternative (which we will later use to obtain a formula
in the fragment Graded-SL[ng] that expresses the existence
of a unique NE) is the following:

φ1
NE(x), [[y1]] . . . [[yn]]

n∧
i=1

([iϕi)→ [ϕi

where [= (α1, x) . . . (αn, xn), and [i = (α1, x) . . . (αi−1,
xi−)(αi, yi)(αi+1, xi+) . . . (αn, xn).

Consider now the general case, where each agent αi has
an objective tuple Si , 〈fi, ϕ1

i , . . . , ϕ
m
i 〉. Given a vector

h ∈ {0, 1}m, let gdi(h) , {t ∈ {0, 1}m | fi(t) ≥ fi(h)} be the
set of vectors t for which the payoff for agent αi is not worse

than for h. Also, let ηhi be the formula obtained by taking
a conjunction of the formulas ϕ1

i , . . . , ϕ
m
i or their negations

according to h, i.e., by taking ϕja if the j’th bit in h is 1, and

otherwise taking ¬ϕja. Formally, ηhi , ∧j∈{1≤j≤m|hj=1}ϕ
j
i

∧
∧j∈{1≤j≤m|hj=0}¬ϕji . Observe that the following formula

says that x , (x . . . xn) is a Nash Equilibrium:

ψNE(x) ,(α1, x) . . . (αn, xn)
n∧
i=1

∧
h∈{0,1}m

(〈〈y〉〉(αi, y)ηhi)→
∨

t∈gdi(h)

ηti

Alike, one can modify φ1
NE(x) to obtain a similar formula

φNE(x) expressing that x , (x . . . xn) is a Nash Equilibrium:

φNE(x) ,[[y1]] . . . [[yn]]
n∧
i=1

∧
h∈{0,1}m

([iη
h
i)→

∨
t∈gdi(h)

[ηti

Going back to the PD example, due to the simplicity of
the payoff functions, the formula ψNE collapses to become:

ψPD(x),(α1, x) . . . (αn, xn)

2∧
i=1

4∧
j=1

(〈〈y〉〉(αi, y)ϕji)⇒(
∨
r≥j

ϕri)

As it turns out (again due to the simplicity of the payoff
functions), the formula above is also correct for the IPD.

It has been argued (in [35,55]) that NE may be implausible
when used for sequential games (of which iterated one shot
games are central examples), and that a more robust notion
is subgame-perfect equilibrium [52]. Given a game G, a
strategy profile is a subgame-perfect equilibrium (SPE) if for
every possible history of the game, the strategies are an NE.
The following formula expresses that x , (α1, x) . . . (αn, xn)
is an SPE:

φSPE(x), [[z, . . . , zn]](α1, z) . . . (αn, zn)GφNE(x)

Using graded modalities, we can thus express the unique-
ness of a NE using the following Graded-SL formula:

〈〈x, . . . , xn〉〉≥1ψNE(x) ∧ ¬〈〈x, . . . , xn〉〉≥2ψNE(x)

By replacing ψNE with φNE (resp. by φSPE) in the formula
above, we can express the uniqueness of a NE (resp. SPE)
in Graded-SL[ng].

3. THE MODEL-CHECKING PROCEDURE
In this section we study the model-checking problem for

Graded-SL and show that it is decidable with a time-
complexity that is non-elementary (i.e., not bounded by any
fixed tower of exponentials). However, it is elementary if the
number of blocks of quantifiers is fixed. For the algorithmic
procedures, we follow an automata-theoretic approach [37],
reducing the decision problem for the logic to the emptiness
problem of an automaton. The procedure we propose here ex-
tends that used for SL in [43]. The only case that is different
is the new graded quantifier over tuples of strategies.

We start with the central notions of automata theory, and
then show how to convert a Graded-SL sentence ϕ into an
automaton that accepts exactly the (tree encodings) of the
concurrent game structures that satisfy ϕ. This is used to
prove the main result about Graded-SL model checking.

3.1 Automata Theory
A Σ-labeled Υ-tree T is a pair 〈T, V 〉 where T ⊆ Υ+ is

prefix-closed (i.e., if t ∈ T and s ∈ Υ+ is a prefix of t then
also s ∈ T), and V : T → Σ is a labeling function. Note that
every word w ∈ Υ+ ∪Υω with the property that every prefix
of w is in T , can be thought of as a path in T. Infinite paths
are called branches.

Nondeterministic tree automata (Nta) are a generalization
to infinite trees of the classical automata on words [54]. Al-
ternating tree automata (Ata) are a further generalization of
nondeterministic tree automata [23]. Intuitively, on visiting
a node of the input tree, while an Nta sends exactly one
copy of itself to each of the successors of the node, an Ata
can send several copies to the same successor. We use the
parity acceptance condition [37].

For a set X, let B+(X) be the set of positive Boolean
formulas over X, including the constants true and false. A
set Y ⊆ X satisfies a formula θ ∈ B+(X), written Y |= θ,
if assigning true to elements in Y and false to elements in
X \ Y makes θ true.

Definition 3.1. An Alternating Parity Tree-Automaton
(Apt) is a tuple A , 〈Σ,∆,Q, δ, q,ℵ〉, where Σ is the input
alphabet, ∆ is a set of directions, Q is a finite set of states,
q ∈ Q is an initial state, δ : Q × Σ → B+(∆ × Q) is
an alternating transition function, and ℵ, an acceptance
condition, is of the form (F1, . . . ,Fk) ∈ (2Q)+ where F1 ⊆
F2 . . . ⊆ Fk = Q.

The set ∆×Q is called the set of moves. An Nta is an Ata
in which each conjunction in the transition function δ has
exactly one move (d, q) associated with each direction d.

An input tree for an Apt is a Σ-labeled ∆-tree T = 〈T, v〉.
A run of an Apt on an input tree T = 〈T, v〉 is a (∆×Q)-tree
R such that, for all nodes x ∈ R, where x = (d, q) . . . (dn, qn)

(for some n ∈ N), it holds that (i) y , (d, . . . , dn) ∈ T and
(ii) there is a set of moves S ⊆ ∆×Q with S |= δ(qn, v(y))
such that x · (d, q) ∈ R for all (d, q) ∈ S.

The acceptance condition allows us to say when a run is
successful. Let R be a run of an Apt A on an input tree T and
u ∈ (∆×Q)ω one of its branches. Let inf(u) ⊆ Q denote the
set of states that occur in infinitely many moves of u. Say that
u satisfies the parity acceptance condition ℵ=(F1, . . . ,Fk) if
the least index i∈ [1, k] for which inf(u) ∩ Fi 6= ∅ is even. An
Apt accepts an input tree T iff there exists a run R of A on
T such that all its branches satisfy the acceptance condition

ℵ. The language L(A) of the Apt A is the set of trees T
accepted by A. Two automata are equivalent if they have the
same language. The emptiness problem for alternating parity
tree-automata is to decide, given A, whether L(A) = ∅. The
universality problem is to decide whether A accepts all trees.

3.2 From Logic to Automata
Following an automata-theoretic approach, we reduce the

model-checking problem of Graded-SL to the emptiness
problem for alternating parity tree automata [43]. The main
step is to translate every Graded-SL formula ϕ (i.e., ϕ may
have free placeholders), concurrent-game structure G, and
state s, into an Apt that accepts a tree if and only if the
tree encodes an assignment χ such that G, χ, s |= ϕ.

We first describe the encoding, following [43]. Informally,
the CGS G is encoded by its “tree-unwinding starting from s”
whose nodes represent histories, i.e., the St-labeled St-tree
T , 〈Hst(s), u〉 such that u(h) is the last symbol of h. Then,
every strategy χ(e) with e ∈ free(ϕ) is encoded as an Ac-
labelled tree over the unwinding. The unwinding and these
strategies χ(e) are viewed as a single (Val× St)-labeled tree

where Val , free(ϕ)→ Ac.

Definition 3.2. The encoding of χ (w.r.t. ϕ,G, s) is the

(Val× St)-labeled St-tree T , 〈T, u〉 such that T is the set

of histories h of G starting with s and u(h) , (f, q) where
q is the last symbol in h and f : free(ϕ)→ Ac is defined by

f(e) , χ(e)(h) for all e ∈ free(ϕ).2

Lemma 3.1. For every Graded-SL formula ϕ, CGS G,
and state s ∈ St, there exists an Apt Aϕ such that for all
assignments χ, if T is the encoding of χ (w.r.t. ϕ,G, s), then
G, χ, s |= ϕ iff T ∈ L(Aϕ).

Proof. As in [43] we induct on the structure of the for-
mula ϕ to construct the corresponding automaton Aϕ. The
Boolean operations are easily dealt with using the fact that
disjunction corresponds to non-determinism, and negation
corresponds to dualising the automaton. Note (†) that thus
also conjunction is dealt with due to De Morgan’s laws. The
temporal operators are dealt with by following the unique
play (determined by the given assignment) and verifying the
required subformulas, e.g., for Xψ the automaton, after tak-
ing one step along the play, launches a copy of the automaton
for ψ. All of these operations incur a linear blowup in the
size of the automaton. The only case that differs from [43]
is the quantification, i.e., we need to handle the case that
ϕ = 〈〈x1, . . . , xn〉〉≥gψ. Recall that G, χ, s |=〈〈x1, . . . , xn〉〉≥gψ
iff there exists g many tuples σ1, . . . , σg of strategies such
that: σa 6= σb for a 6= b, and G, χ[x 7→ σi], s |= ψ for
1 ≤ i ≤ g. We show how to build an Npt for ϕ that mimics
this definition: it will be a projection of an Apt Dψ, which
itself is the intersection of two automata, one checking that
each of the g tuples of strategies satisfies ψ, and the other
checking that each pair of the g tuples of strategies is distinct.

In more detail, introduce a set of fresh variables X ,
{xji ∈ Vr : i ≤ n, j ≤ g}, and consider the formulas ψj (for

j ≤ g) formed from ψ by renaming xi (for i ≤ n) to xji .

Define ψ′ , ∧j≤gψj . Note that, by induction, each ψj has
a corresponding Apt, and thus, using the conjunction-case

2In case free(ϕ) = ∅, then f is the (unique) empty function.
In this case, the encoding of every χ may be viewed as the
tree-unwinding from s.

(†) above, there is an Apt B for ψ′. Note that the input
alphabet for B is (free(ψ′)→ Ac)×St and that X ⊆ free(ψ′).

On the other hand, let C be an Apt with input alphabet
(free(ψ′) → Ac) × St that accepts a tree T = 〈T, v〉 if and
only if for every a 6= b ≤ g there exists i ≤ n and h ∈ T such
that v(h) = (f, q) and f(xai) 6= f(xbi).

Form the Apt Dψ for the intersection of B and C.
Now, using the classic transformation [46], we remove

alternation from the Apt Dψ to get an equivalent Npt N
(note that this step costs an exponential). Finally, use the
fact that Npts are closed under projection (with no blowup)
to get an Npt for the language projX(L(N)) of trees that
encode assignments χ satisfying ϕ.

For completeness we recall this last step. If L is a language
of Σ-labeled trees with Σ , A → B, and X ⊂ A, then
the X-projection of L, written projX(L), is the language

of Σ′-labeled trees with Σ′ , A \ X → B such that T ,
〈T, v〉 ∈ projX(L) if and only if there exists an X-labeled
tree 〈T,w〉 such that the language L contains the tree 〈T, u〉
where u : T→ (A→ B) maps t ∈ T to v(t) ∪ w(t). Now, if

N is an Npt with input alphabet Σ , A→ B, and if X ⊂ A,
then there is an Npt with input alphabet Σ′ , A \X→ B
with language projX(L(N)).

The proof that the construction is correct is immediate.

We make some remarks about the proof. First, all the
cases in the induction incur a linear blowup except for the
quantification case (recall that the translation from an Apt
to an Npt results in an exponentially larger automaton [37]).
Thus, the size of the Apt for ϕ is non-elementary in the
quantifier-rank of ϕ. However, we can say a little more. Note
that a block of k identical quantifiers only costs, in the worst
case, a single exponential (and not k many exponentials)
because we can extend the proof above to deal with a block
of quantifiers at once. Thus, we get that the size of the Apt
for ϕ is non-elementary in the quantifier-block rank of ϕ.

Here is the main decidability result.

Theorem 3.1. The model-checking problem for Graded-
SL is PTime-complete w.r.t. the size of the model and
(k + 1)ExpTime if k ≥ 1 is the quantifier-block rank of ϕ.
Moreover, if ϕ is the form ℘ψ, where ℘ is a quantifier-block,
and ψ is of quantifier-block rank k − 1, then the complexity
is kExpTime.

Proof. The lower-bound w.r.t the size of the model al-
ready holds for SL [43]. For the upper bound, use Lemma 3.1
to transform the CGS and ϕ into an Apt and test its empti-
ness. The complexity of checking emptiness (or indeed, uni-
versality) of an Apt is in ExpTime [37]. As discussed after
the proof of the Lemma, the size of the Apt is a tower of
exponentials whose height is the quantifier-block rank of ϕ.
This gives the (k + 1)ExpTime upper bound.

Moreover, suppose that ϕ = ℘ψ where ℘ consists of, say,
n existential quantifiers (resp. universal quantifiers). The
quantifier-block rank of ψ is k − 1. Moreover, in the proof
of Lemma 3.1, the Apt Dψ, whose size is non-elementary in
k− 1, has the property that it is non-empty (resp. universal)
if and only if the CGS satisfies ℘ψ. Conclude that model
checking ℘ψ can be done in kExpTime.

Theorem 3.2. The model-checking problem for Graded-
SL[ng] is PTime-complete w.r.t. the size of the model and
(k + 1)-ExpTime when restricted to formulas of maximum
alternation number k.

Proof. The lower bound already holds for SL[ng] [43],
and the upper bound is obtained by following the same
reasoning for SL[ng] of the singleton existential quantifier [43]
but using the automaton construction as in Theorem 3.1.

Directly from the statements reported above, we get the
following results:

Theorem 3.3. Checking the uniqueness of NE, and check-
ing the uniqueness of SPE, can be done in 2ExpTime.

Proof. For NE: by Section 2.4, we need to check that
〈〈x, . . . , xn〉〉≥1ψNE(x) holds but 〈〈x, . . . , xn〉〉≥2ψNE(x) does
not; by the second part of Theorem 3.1, each of these two
model-checking problems can be decided in 2ExpTime.

For SPE: apply Theorem 3.2 and use the fact that the
formula for SPE in Section 2.4 is in Graded-SL Nested-Goal
and has alternation number 1.

We conclude this section with the complexity of the model
checking problem for Graded-SL[1g]. Also in this case one
can derive the lower bound from the one holding for the
corresponding sub-logic in SL (SL[1g]) and the upper bound
by using the same algorithm for SL[1g] but plugging a (yet no
more complex) different automata construction for the new
existential quantifier modality. Indeed the model checking
problem for Graded-SL[1g] is 2ExpTime-complete. It is
worth recalling that SL[1g] strictly subsumes ATL? [43]. It
is quite immediate to see that this also holds in the graded
setting (note that ATL? already allows quantifying over
tuples of agents’ (bound) strategies). As the model checking
for ATL? is already 2ExpTime-hard, we get that also for
the graded extension for this logic, which we name GATL?,
the model checking problem is 2ExpTime-complete. The
model checking results for both GATL? and Graded-SL[1g]

are reported in the following theorem.

Theorem 3.4. The model-checking problem for GATL?

and Graded-SL[1g] is PTime-complete w.r.t. the size of
the model and 2-ExpTime-complete in the size of formula.

4. CONCLUSION
The Nash equilibrium is the foundational solution concept

in game theory. The last twenty years have witnessed the
introduction of many logical formalisms for modeling and
reasoning about solution concepts, and NE in particular [9,14,
19,32,39,43,44]. These formalisms are useful for addressing
qualitative questions such as “does the game admit a Nash
equilibrium?”. Among others, Strategy Logic (SL) has come
to the fore as a general formalism that can express and solve
this question, for LTL objectives, in 2ExpTime. Contrast
this with the fact that this question is 2ExpTime-complete
even for two player zero-sum LTL games [4].

One of the most important questions about NE in compu-
tational game theory is “does the game admit more than one
NE?” [20, 48] — the unique NE problem. This problem is
deeply investigated in game theory and is shown to be very
challenging [2, 21, 28, 29, 47, 49, 53, 57]. Prior to this work, no
logic-based technique, as far as we know, solved this prob-
lem.3 In this paper we introduced Graded-SL to address
3In the related work section we discussed the logic GSL that,
although motivated by the need to address the unique NE
problem, only supplies a model-checking algorithm for a very
small fragment of GSL that, it is assumed, is not able to
express the existence of NE.

and solve the unique NE problem. We have demonstrated
that Graded-SL is elegant, simple, and very powerful, and
can solve the unique NE problem for LTL objectives in
2ExpTime, and thus at the same complexity that is required
to merely decide if a NE exists. We also instantiate our
formalism by considering the well-known prisoner’s dilemma
and its iterated version. We have also shown that using the
same approach one can express (and solve) the uniqueness
of other standard solution concepts, e.g., subgame-perfect
equilibria, again in 2ExpTime. Finally, our work gives the
first algorithmic solution to the model-checking problem of
a graded variant of ATL?, and proves it to be 2ExpTime-
complete.

The positive results presented in this paper open several
directions for future work. We are most excited about ex-
tending LTL objectives to quantitative objectives such as
mean-payoff or discounted-payoff. These naturally extend
classic games with quantitative aspects. That is, the result of
a play is a real-valued payoff for each player [58]. In a mean-
payoff game, one is interested in the long-run average of the
edge-weights along a play, called the value of the play. In the
basic setting, there are two players, one wishing to minimize
this value, and the other to maximize it. In the discounted
version, the weights associated with edges are “discounted”
with time. In other words, an edge chosen at time t adds a
weight to the long-run average that is greater than the value
the same edge would contribute if chosen later on. Because
of their applicability to economics these games have been
studied from an algorithmic perspective for some time [58].
Also, the connection of mean-payoff and discounted-payoff
objectives with NE has been recently investigated in the
multi-agent setting (see [13] for a recent work). However,
extending our results to the weighted setting may prove
challenging since, in this setting, the automata-theoretic
approach gives rise to weighted-automata, for which many
problems are much harder or undecidable (though not in all
cases) [1, 5].

In the multi-agent setting, reasoning about epistemic al-
ternatives plays a key role. Thus, an important extension
would be to combine the knowledge operators in SLK [18]
with the graded quantifiers we introduced for Graded-SL.
Since strategic reasoning under imperfect information has
an undecidable model-checking problem [22], one may re-
strict to memoryless strategies as was done for SLK. More
involved, would be to add grades to the knowledge operators,
thus being able to express “there exists at least g equivalent
worlds” [56].

Last but not least, another direction is to consider imple-
menting Graded-SL and its model-checking procedure in
a formal verification tool. A reasonable approach would be,
for example, to extend the tool SLK-MCMAS [18].

Acknowledgments
We thank Michael Wooldridge for suggesting uniqueness of
Nash Equilibria as an application of graded strategy logic.
Benjamin Aminof is supported by the Austrian National
Research Network S11403-N23 (RiSE) of the Austrian Science
Fund (FWF) and by the Vienna Science and Technology Fund
(WWTF) through grant ICT12-059. Sasha Rubin is a Marie
Curie fellow of the Istituto Nazionale di Alta Matematica.
Aniello Murano is partially supported by the GNCS 2016
project: Logica, Automi e Giochi per Sistemi Auto-adattivi.

REFERENCES
[1] S. Almagor, U. Boker, and O. Kupferman. What’s

decidable about weighted automata? In ATVA’11,
LNCS 6996, pages 482–491, 2011.

[2] E. Altman, H. Kameda, and Y. Hosokawa. Nash
equilibria in load balancing in distributed computer
systems. IGTR, 4(2):91–100, 2002.

[3] R. Alur, T. Henzinger, and O. Kupferman.
Alternating-Time Temporal Logic. JACM,
49(5):672–713, 2002.

[4] R. Alur, S. La Torre, and P. Madhusudan. Playing
games with boxes and diamonds. In CONCUR’03,
LNCS 2761, pages 127–141. Springer, 2003.

[5] B. Aminof, O. Kupferman, and R. Lampert. Rigorous
approximated determinization of weighted automata.
Theor. Comput. Sci., 480:104–117, 2013.

[6] B. Aminof, A. Legay, A. Murano, and O. Serre.
µ-calculus pushdown module checking with imperfect
state information. In IFIP-TCS’08, IFIP 273, pages
333–348. Springer, 2008.

[7] B. Aminof, A. Murano, and S. Rubin. On CTL∗ with
graded path modalities. In LPAR-20’15, LNCS 9450,
pages 281–296, 2015.

[8] R. Axelrod. The evolution of strategies in the iterated
prisoners dilemma. The dynamics of norms, pages 1–16,
1987.

[9] F. Belardinelli. A logic of knowledge and strategies
with imperfect information. In LAMAS’15, 2015.

[10] A. Bianco, F. Mogavero, and A. Murano. Graded
Computation Tree Logic. TOCL, 13(3):25:1–53, 2012.

[11] K. G. Binmore. Fun and Games: A Text on Game
Theory. D.C. Heath, 1992.

[12] P. Bonatti, C. Lutz, A. Murano, and M. Vardi. The
Complexity of Enriched muCalculi. LMCS, 4(3):1–27,
2008.

[13] E. Boros, K. M. Elbassioni, V. Gurvich, and K. Makino.
Nested family of cyclic games with k-total effective
rewards. CoRR, abs/1412.6072, 2014.

[14] T. Brihaye, A. D. C. Lopes, F. Laroussinie, and
N. Markey. ATL with Strategy Contexts and Bounded
Memory. In LFCS’09, LNCS 5407, pages 92–106, 2009.

[15] D. Calvanese, G. De Giacomo, and M. Lenzerini.
Reasoning in expressive description logics with
fixpoints based on automata on infinite trees. In
IJCAI’99, pages 84–89, 1999.

[16] V. Capraro. A model of human cooperation in social
dilemmas. CoRR, abs/1307.4228, 2013.

[17] V. Capraro, M. Venanzi, M. Polukarov, and N. R.
Jennings. Cooperative equilibria in iterated social
dilemmas. In SAGT’13, LNCS 8146, pages 146–158.
2013.

[18] P. Čermák, A. Lomuscio, F. Mogavero, and A. Murano.
MCMAS-SLK: A Model Checker for the Verification of
Strategy Logic Specifications. In CAV’14, LNCS 8559,
pages 524–531. Springer, 2014.

[19] K. Chatterjee, T. Henzinger, and N. Piterman.
Strategy Logic. IC, 208(6):677–693, 2010.

[20] R. Cornes, R. Hartley, and T. Sandler. An elementary
proof via contraction. Journal of Public Economic
Theory, 1(4):499–509, 1999.

[21] J. B. D. Simchi-Levi, X. Chen. The Logic of Logistics:

Theory, Algorithms, and Applications for Logistics
Management. Science and Business Media. 2013.

[22] C. Dima and F. Tiplea. Model-checking ATL under
Imperfect Information and Perfect Recall Semantics is
Undecidable. Technical report, arXiv, 2011.

[23] E. A. Emerson and C. S. Jutla. Tree automata,
mu-calculus and determinacy (extended abstract). In
ASFCS’91, pages 368–377, 1991.

[24] M. Faella, M. Napoli, and M. Parente. Graded
Alternating-Time Temporal Logic. FI,
105(1-2):189–210, 2010.

[25] A. Ferrante, A. Murano, and M. Parente. Enriched
Mu-Calculi Module Checking. LMCS, 4(3):1–21, 2008.

[26] K. Fine. In So Many Possible Worlds. NDJFL,
13:516–520, 1972.

[27] D. Fisman, O. Kupferman, and Y. Lustig. Rational
Synthesis. In TACAS’10, LNCS 6015, pages 190–204.
Springer, 2010.

[28] C. D. Fraser. The uniqueness of nash equilibrium in the
private provision of public goods: an alternative proof.
Journal of Public Economics, 49(3):389–390, 1992.

[29] A. Glazer and K. A. Konrad. Private provision of
public goods, limited tax deducibility, and crowding
out. FinanzArchiv / Public Finance Analysis,
50(2):203–216, 1993.

[30] E. Grädel. On the restraining power of guards. J. Symb.
Log., 64(4):1719–1742, 1999.

[31] E. Grädel, M. Otto, and E. Rosen. Two-Variable Logic
with Counting is Decidable. In LICS’97, pages 306–317.
IEEE Computer Society, 1997.

[32] J. Gutierrez, P. Harrenstein, and M. Wooldridge.
Reasoning about equilibria in game-like concurrent
systems. In KR’14, 2014.

[33] J. Gutierrez, P. Harrenstein, and M. Wooldridge.
Expressiveness and complexity results for strategic
reasoning. In CONCUR’15, LIPIcs 42, pages 268–282,
2015.

[34] B. Hollunder and F. Baader. Qualifying Number
Restrictions in Concept Languages. In KR’91, pages
335–346. Kaufmann, 1991.

[35] O. Kupferman, G. Perelli, and M. Y. Vardi. Synthesis
with rational environments. In EUMAS’14, LNCS 8953,
pages 219–235, 2014.

[36] O. Kupferman, U. Sattler, and M. Vardi. The
Complexity of the Graded muCalculus. In CADE’02,
LNCS 2392, pages 423–437. Springer, 2002.

[37] O. Kupferman, M. Vardi, and P. Wolper. An Automata
Theoretic Approach to Branching-Time Model
Checking. JACM, 47(2):312–360, 2000.

[38] K. Leyton-Brown and Y. Shoham. Essentials of Game
Theory: A Concise, Multidisciplinary Introduction
(Synthesis Lectures on Artificial Intelligence and
Machine Learning). M&C, 2008.

[39] A. Lopes, F. Laroussinie, and N. Markey. ATL with
Strategy Contexts: Expressiveness and Model Checking.
In FSTTCS’10, LIPIcs 8, pages 120–132, 2010.

[40] V. Malvone, F. Mogavero, A. Murano, and
L. Sorrentino. On the counting of strategies. In
TIME’15, pages 170–179, 2015.

[41] J. H. Miller. The coevolution of automata in the
repeated prisoner’s dilemma. Journal of Economic
Behavior & Organization, 29(1):87–112, 1996.

[42] F. Mogavero, A. Murano, G. Perelli, and M. Vardi.
What Makes ATL? Decidable? A Decidable Fragment
of Strategy Logic. In CONCUR’12, LNCS 7454, pages
193–208. Springer, 2012.

[43] F. Mogavero, A. Murano, G. Perelli, and M. Vardi.
Reasoning About Strategies: On the Model-Checking
Problem. TOCL, 15(4):34:1–42, 2014.

[44] F. Mogavero, A. Murano, and M. Vardi. Reasoning
About Strategies. In FSTTCS’10, LIPIcs 8, pages
133–144. Leibniz-Zentrum fuer Informatik, 2010.

[45] F. Mogavero, A. Murano, and M. Vardi. Relentful
Strategic Reasoning in Alternating-Time Temporal
Logic. In LPAR’10, LNAI 6355, pages 371–387, 2010.

[46] D. E. Muller and P. E. Schupp. Simulating alternating
tree automata by nondeterministic automata: New
results and new proofs of the theorems of rabin,
mcnaughton and safra. Theor. Comput. Sci.,
141(1&2):69–107, 1995.

[47] A. Orda, R. Rom, and N. Shimkin. Competitive
routing in multiuser communication networks.
IEEE/ACM Trans. Netw., 1(5):510–521, 1993.

[48] G. Papavassilopoulos and J. B. Cruz. On the
uniqueness of nash strategies for a class of analytic
differential games. Journal of Optimization Theory and
Applications, 27(2):309–314, 1979.

[49] L. Pavel. Game Theory for Control of Optical Networks.
Science and Business Media. Springer, 2012.

[50] A. Pnueli and R. Rosner. Distributed reactive systems
are hard to synthesize. In FOCS’90, pages 746–757,
1990.

[51] A. Rubinstein. Finite automata play the repeated
prisoner’s dilemma. Journal of Economic Theory,
39(1):83–96, 1986.

[52] R. Selten. Spieltheoretische behandlung eines
oligopolmodells mit nachfragetragheit. Zeitschrift fur
die gesamte Staatswissenschaft, 121:301–324, 1965.

[53] H. R. V. T. C. Bergstrom, L. E. Blume. On the private
provision of public goods. Journal of Public Economics,
29(1):25–49, 1986.

[54] W. Thomas. Infinite trees and automaton definable
relations over omega-words. In STACS’90, pages
263–277, 1990.

[55] M. Ummels. Rational behaviour and strategy
construction in infinite multiplayer games. In
FSTTCS’06, LNCS 4337, pages 212–223, 2006.

[56] W. van der Hoek and J.-J. Meyer. Graded modalities in
epistemic logic. In LFCS’92, LNCS 620, pages 503–514.
1992.

[57] Y. Zhang and M. Guizani. Game Theory for Wireless
Communications and Networking. CRC Press, 2011.

[58] U. Zwick and M. Paterson. The complexity of mean
payoff games on graphs. Theor. Comput. Sci.,
158(1&2):343–359, 1996.

	Introduction
	Graded Strategy Logic
	Models
	Syntax
	Semantics
	Games with temporal objectives

	The Model-checking procedure
	Automata Theory
	From Logic to Automata

	Conclusion

