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Abstract

In formal strategic reasoning for Multi-Agent Systems
(MAS), agents are typically assumed to (i) employ arbitrar-
ily complex strategies, (ii) execute each move at zero cost,
and (iii) operate over fully crisp game structures. These ideal-
ized assumptions stand in stark contrast with human decision-
making in real-world environments. The natural strategies
framework along with some of its recent variants, partially
addresses this gap by restricting strategies to concise rules
guarded by regular expressions. Yet, it still overlook both the
cost of each action and the uncertainty that often character-
izes human perception of facts over the time. In this work,
we introduce HumanATL[F ], a logic that builds upon natu-
ral strategies employing both fuzzy semantics and resource-
bound actions: each action carries a real-valued cost drawn
from a non-refillable budget, and atomic conditions and goals
have degrees in [0,1]. We give a formal syntax and semantics,
and prove that model checking is in P when both the strategy
complexity k and resource budget b are fixed, NP-complete
if just one strategic operator over Boolean objectives is al-
lowed, and ∆P

2 -complete when k and b vary. Moreover, we
show that recall-based strategies can be decided in PSPACE.
We implement our algorithms in VITAMIN, an open source
model-checking tool for MAS and validate them on an adver-
sarial resource-aware drone rescue scenario.

Code — https://github.com/MarcoAruta/HumanATLFTool
Extended version — https://github.com/MarcoAruta/Paper

Introduction
Formal strategic reasoning in Multi-Agent Systems (MAS)
plays a central role in verifying and synthesizing behav-
iors in distributed and adversarial settings. A milestone in
this area is Alternating-time Temporal Logic (ATL), intro-
duced by Alur, Henzinger, and Kupferman (Alur, Henzinger,
and Kupferman 2002), which provides a formal framework
to express and verify the strategic abilities of coalitions of
agents. ATL and its extensions have greatly advanced the
formal aspects of strategic reasoning, enabling model check-
ing techniques that scale to complex MAS (Ågotnes 2006;
Schnoor 2009; Knapik et al. 2019; Jamroga et al. 2025).

Copyright © 2026, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Over the years, theoretical developments and practical im-
plementations have further refined these foundations, im-
proving expressiveness, decidability, and verification algo-
rithms that bridge logic, game theory, and automated reason-
ing (Chatterjee, Henzinger, and Piterman 2010; Mogavero
et al. 2014).

Although ATL comes with a powerful strategic-reasoning
capability for MAS, it assumes idealized agents with unlim-
ited reasoning capacity, making it unsuitable for modeling
the bounded rationality typical of human decision-making.
This has spurred the community to look for a new strate-
gic reasoning framework that better represents (and allows
to reproduce) bounded, human-like reasoning. This has led
to natural strategies (Jamroga, Malvone, and Murano 2019),
which allows to define human-reproducible strategies repre-
sented by means of rules guarded by regular expressions.

While natural strategies allow to capture the important
aspect of bounded rationality, it measures only the combi-
natorial cost of evaluating propositional conditions; it does
not take into account that in real-world strategic reason-
ing settings, humans (and in general resource-limited AI
agents) cannot maintain arbitrarily complex strategies. In
realistic scenarios, each strategy action consumes tangible
resources, whether cognitive effort or physical energy. As
an example, consider a fleet of delivery drones operating
in a smart city: every “ascend” or “move” maneuver de-
pletes a fixed portion of the battery. A path that seems ad-
missible under Boolean or regular-expression guards may
prove infeasible if the sum of individual action costs ex-
ceeds the drone’s remaining charge. At the same time, de-
cision makers frequently employ graded judgments rather
than strict true–false distinctions: goals such as “maintain
safe distance” or “minimize detection risk” are naturally ex-
pressed in terms of satisfaction levels. By endowing a strate-
gic logic with fuzzy semantics (i.e. the truth degrees in [0, 1])
one can capture these intermediate satisfaction levels and
reason about partial achievements of objectives. We contend
that a unified treatment of human-feasible strategy complex-
ity, action-level resource consumption, and fuzzy outcome
evaluation delivers a more faithful model of strategic rea-
soning in human-like agents.

Our Contribution. We introduce HumanATL[F ], a
Human-like logic that extends ATL on three key quanti-



tative dimensions. First, strategy descriptions are human-
readable natural strategies: each rule is a simple guarded-
action pair whose syntactic complexity is capped by a pa-
rameter k. Second, every action draws from a finite, non-
refillable budget b, ensuring plans respect explicit resource
constraints. Third, objectives are evaluated under fuzzy se-
mantics, assigning truth degrees in [0, 1] to capture partial
fulfillment of the aforementioned goals. On this foundation,
we develop the full syntax and fuzzy, cost-aware seman-
tics of HumanATL[F ] and then analyze the computational
complexity of the model-checking problem. The latter estab-
lished three key results: the verification is in P when both the
strategy complexity bound k and the available budget b are
fixed; following that, even a single strategic operator over
Boolean objectives induces NP-completeness; and finally,
that model checking becomes ∆P

2 -complete when k and b
are treated as part of the input. In the case of recall-based
strategies, we show that model checking remains tractable
by exploring a bounded unfolding of the game graph that re-
spects the fixed complexity bound, demonstrating that it is in
PSPACE. To demonstrate practicality, we implement our al-
gorithms within the open-source VITAMIN tool (Ferrando
and Malvone 2024b) and evaluate their performance on a
suite of benchmarks, including an adversarial drone-rescue
scenario designed to highlight the interplay between fuzzy
satisfaction, energy limitations, and natural strategy con-
struction. This comprehensive framework aims to offer the
first end-to-end approach to strategic verification that unifies
interpretability, quantitative reasoning, and cost-awareness
within a single, executable formalism.

Related Works. The seminal quantitative Alternating-
Time Temporal Logic first provided by Jamroga in 2008
(Jamroga 2008) helped to blossom interest in the interac-
tion between logics for strategic reasoning and fuzziness.
The other foundational work that inspired our approach is
the contribution of Alechina et al. (Alechina et al. 2010)
where they reason about the availability of resources and
the lack of a straightforward way of reasoning about re-
source requirements in ATL (Alur, Henzinger, and Kupfer-
man 2002). Subsequent works explored the impact of re-
strictions such as memory bounds and imperfect informa-
tion on expressiveness and decidability (Mogavero et al.
2014; Chen et al. 2013; Huang and van der Meyden 2014;
Cermák et al. 2014; Cermák, Lomuscio, and Murano 2015;
Gutierrez et al. 2018; Kurpiewski et al. 2021; Lomuscio,
Qu, and Raimondi 2017). In parallel, temporal and strate-
gic logics were extended to quantitative settings: finite-
trace LTL F with averaging semantics (Almagor, Boker, and
Kupferman 2016), threshold-based CTL F (Ma et al. 2024),
continuous-truth ATL[F ] (Ferrando et al. 2024), payoff-
oriented Strategy Logic (SL[F ]) (Bouyer et al. 2023), as
well as timed extensions (Brihaye et al. 2007; Henzinger
and Prabhu 2006), multi-valued semantics (Jamroga et al.
2020; Belardinelli, Ferrando, and Malvone 2023), weighted
and discounted objectives (Aminof et al. 2016, 2018; Fer-
rando and Malvone 2024a; Bulling and Goranko 2022; ?;
?; Laroussinie, Markey, and Oreiby 2006; Vester 2015;
Almagor, Boker, and Kupferman 2014; De Alfaro et al.

2005; Mittelmann, Murano, and Perrussel 2023), proba-
bilistic frameworks (Belardinelli et al. 2024; Chen and Lu
2007; Aminof et al. 2019; Chatterjee et al. 2009), and
resource-constrained strategies (Nguyen et al. 2018; Catta,
Ferrando, and Malvone 2024). Separately, the paradigm of
natural strategies bounded the complexity of the strategy
through simple representations based on rules, to improve
interpretability without losing the determinability (Jamroga,
Malvone, and Murano 2019). Foundational resource logics
have also tracked consumable budgets in plays (Alechina
et al. 2009, 2011, 2015), but none of these approaches is
suitable for a more human-like representation of strategies
to catch fuzzy achievements of goals using non-refillable re-
source budgets.

Outline. Section 2 defines the background notions for the
reader. Section 3 provides the syntax and semantics of Hu-
manATL[F ]. Section 4 presents the model-checking algo-
rithms analysis. Section 5 describes the implementation.
Section 6 reports the evaluation with a drone-rescue case
study. Section 7 concludes the paper. All proofs are provided
in the Technical Appendix of the supplementary material.

Preliminaries
We begin by introducing resource-bounded fuzzy Concur-
rent Game Structures (rfCGS), fuzzy operators, and the
foundation for interpreting HumanATL[F ] formulas and for
defining its model checking problem.

Resource-Bounded Fuzzy Concurrent Game
Structures
A Concurrent Game Structure (CGS) (Alur, Henzinger, and
Kupferman 2002) is a formal model that effectively rep-
resents systems where multiple agents interact with each
other and their environment. It is a graph where nodes de-
note system states, and edges show possible transitions be-
tween states. These transitions are non-deterministic, mean-
ing that agents can choose from multiple possible actions in
a given state and each chosen action leads to a new state.
The overall outcome of the game emerges from the collec-
tive agents choices. Building on this foundation, our field of-
ten addresses the inadequacy of the CGS in verifying quan-
titative goals by employing a Weighted Concurrent Game
Structure (wCGS) (Bouyer et al. 2023; Belardinelli et al.
2022). In a wCGS, every state is further characterized by
fuzzy truth values (weights) assigned to propositions, quan-
tifying the value of each property within the game. It is
worth to note that, we extend the wCGS with a resource
function res and a consume function to handle action costs.
We refer to the resulting model as a resource-bounded fuzzy
Concurrent Game Structure (rfCGS).

Definition 1. A rfCGS is a tuple G =
(Ag,Ap, {Acta}a∈Ag, St, stI , ℓ, d, t, res, consume) where:

• Ag is a not empty finite set of agents.
• Ap is a not empty finite set of atomic propositions

(atoms).



• For every a ∈ Ag, Acta is a not empty finite set of ac-
tions. Let Act =

⋃
a∈Ag Acta be the set of all actions,

and ACT =
∏
a∈Ag Acta the set of all joint actions.

• St is a finite set of states.
• stI ∈ St is an initial state.
• ℓ : St× Ap→ [0, 1] is a weight function.
• d : Ag×St→ 2Act is an availability function that defines

a non-empty set of actions available to agents at each
state.

• t is a transition function which assigns the outcome state
st′ = t(st, c) to each state st and tuple of actions c ∈∏
a∈Ag d(a, st) that can be executed by the agents in st.

• res : Ag→ N is the resource function.
• consume : Ag× Act→ N is the consume function.

Obviously, res defines the maximum total action cost that
agent a can incur during execution. With consume(a, α) we
specify the cost for agent a to perform action α. Given a joint
action c and a coalition of agentsA, we use cA to denote the
projection of c onto the actions of the agents inA, and cAg\A
to denote the projection of c onto the actions of the agents
outside A.

Fuzzy Operators
We characterize the Boolean operators ∧, ∨ and ¬ with the
quantitative counterparts functions min{x, y}, max{x, y},
and 1 − x. Specifically, φ1 ∨ φ2 yields the maximum of
the values of φ1 and φ2, φ1 ∧ φ2 yields their minimum,
and ¬φ equals 1 minus the value of φ; consequently, the
implication φ1 → φ2 is defined as the maximum of φ2

and (1 − φ1). These three truth functions correspond to the
original fuzzy logic semantics formulated by Joseph Goguen
(Goguen 1969).

Natural Strategies
We now review the definition of natural strategies and their
complexities (Jamroga, Malvone, and Murano 2019), intro-
ducing memoryless and recall-based strategies.

Memoryless Strategies. We introduce the notion of a nat-
ural memoryless strategy (nr-strategy) sa for an agent a, de-
fined as a rule-based, condition-action representation. For-
mally, a natural strategy is given by an ordered list of
guarded actions, i.e., pairs (φi, αi) such that:

1. φi ∈ Bool(Ap) is a propositional condition on states of
the rfCGS,

2. αi ∈ da(q) for every state q ∈ St where q |= φi.
We require that the last pair is of the form (⊤, α), ensur-
ing a default action is always available. The collection of
all natural memoryless strategies for agent a is denoted by
Σnra . We denote by length(sa) the number of guarded ac-
tions in sa, by condi(sa) and acti(sa) the ith condition and
action respectively, and by match(q, sa) the smallest index
i ≤ length(sa) for which q |= condi(sa) and acti(sa) ∈
da(st). Moreover, we define dom(φ) = {p ∈ Ap | p ∈ φ}
and dom(sa) =

⋃length(sa)
i=1 dom(condi(sa)). A collective

natural strategy for a group of agents A = {a1, ..., a|A|} is
the tuple sA = (sa1 , ..., sa|A|), with the set of such strategies

denoted by ΣnrA . The outcome function out(st, sA) returns
all paths that can occur when the agents in A execute strat-
egy sA starting from state st. Formally, for st ∈ St:

out(st, sA) = {π ∈ Π | π[0] = st ∧ ∀i≥0 ∃α1,...,α|Agt| :

(a ∈ A⇒ αa = actmatch(π[i],sa)(sa))∧
(a /∈ A⇒ αa ∈ da(π[i]))∧
(π[i+ 1] = t(π[i], α1, ..., α|Agt|))}.

Note that out(st, sA) encompasses all paths consistent with
sA, without imposing any assumptions on the strategies or
behavior of the opponents.

Recall-based Strategies. Memoryless strategies are of-
ten insufficient when decisions depend on the history of
the game. Agents with memory can base their choices on
past states, which can be represented using automaton states
(Vester 2013). However, we propose a more intuitive ap-
proach: using regular expressions over propositional formu-
las. So, let Reg(L) be the set of regular expressions over the
language L with standard operations concatenation ·, non-
deterministic choice

⋃
, and Kleene star ∗. A natural strat-

egy with recall (nR-strategy) sa for agent a is a sequence of
pairs from Reg(Bool(Ap))× Act, namely a pair (r, a) with
r being a regular expression over Bool(Ap), and a an action
available in last(h) for all histories h consistent with r. For-
mally, given a r and the language L(r) on words generated
by r, an h = q0...qn is consistent with r iff ∃ d ∈ L(r) such
that |h| = |d| and ∀0≤j≤n h[j] |= d[j]. For an individual
agent a, the set of all such strategies is denoted ΣnRa . To de-
cide which rule applies to a given h the matching function
match(h[0, j], sa) is the smallest n ≤ length(sa) such that
∀0≤m≤jh[j] |= condn(sa)[m] and actn(sa) ∈ da(π[m]).
The function out(q, sa) continues to denote the set of all
paths starting from a state q that are consistent with the col-
lective strategy sa.

Natural Strategy Complexity The complexity compl(sa)
of a natural strategy is determined by the size of its repre-
sentation. In the case of nr-strategies, complexity is mea-
sured by the total number of symbols in the Boolean con-
ditions, while for nR-strategies, it is quantified by the total
size of all the regular expressions used. A collective strategy
(sA) is equal to the sum of its individual strategies complex-
ities (sa), formally complΣ(sA) =

∑
i=1,...,n complΣ(sai).

Hereafter in this paper, we will refer to each strategy type us-
ing the abbreviations nr and nR. By adopting natural strate-
gies, we establish HumanATL[F ] combining them with a
quantitative approach.

Model Path. In a rfCGS G, a path π represents an infinite
sequence of states. The set of paths over St is denoted by
Stω . For a joint natural strategy sA, consisting of one strat-
egy for each agent in coalition A, a path π is sA-compatible
if, for every j ≥ 1, πj+1 = out(πj , c) for some joint action
c such that for every i ∈ A, ci = si(π≤j), and for every
i ∈ A, ci ∈ d(i, πj). The set of all sA-compatible paths
from s is denoted by out(s, sA).



HumanATL[F ]
In this section, we provide a more precise formalization of
human-like strategies, that takes into account a cost over the
actions and then give the formal syntax and semantics of
HumanATL[F ] and illustrate its use on the concrete exam-
ple drawn from the aforementioned drone scenario.

Human Resource-Bounded Strategies. We extend the
definition of natural strategies by incorporating resource
constraints on the feasibility of actions. As stated above,
a natural strategy for an agent a is a sequence of guarded
actions (φ, α). We define cost over action integrating it as
(φ, ατ ), where φ is a Boolean formula over atomic propo-
sitions, defining the guard under which the rule applies;
α ∈ d(a, s) is an action available to agent a in any state
st such that G, st |= φ; τ ∈ N is the fixed resource
cost for executing action α. The association of costs and
actions are defined via the resource consumption function
consume : Ag × Act → N, where consume(a, α) speci-
fies the cost for agent a to perform action α. Each rule in
a natural strategy must satisfy τ = consume(a, α), ensur-
ing that costs are consistently assigned based solely on the
agent and the action, independent of the system state. Each
agent a ∈ Ag is initially endowed with a finite quantity of
resources, given by the function: res : Ag → N, which de-
fines the maximum total cost that agent a can incur during
actions. In particular, for each rule (φ, ατ ) in the strategy of
agent a, it must hold that the collection of total action cost
b ≤ res(a). Before the presentation of HumanATL[F ], we
introduce some notation that will be used throughout the pa-
per. We denote the length of a tuple v as |v|, its j-th element
as vj , and its last element v|v| as last(v). For j ≤ |v|, let
v≥j be the suffix vj , ..., v|v| of v starting from vj and v≤j
the prefix v1, ..., vj of v.

HumanATL[F ] Syntax. The grammar of HumanATL[F ]
is given by the following definition:

Definition 2. Formulas φ in HumanATL[F ] are defined as
follows:

φ ::= p | f [φ, ..., φ] | ⟨⟨A⟩⟩≤k
≤b

Xφ | ⟨⟨A⟩⟩≤k
≤b

(φUφ) | ⟨⟨A⟩⟩≤k
≤b

(φ1Rφ2)

where p ∈ Ap, A ∈ 2Ag, k ∈ N is the complexity bound
for the strategies of agents inA, b ∈ N is the resource bound
over actions, and f ∈ F , where F ⊆ {f : [0, 1]m →
[0, 1] | m ∈ N} represents the set of computable functions.
Temporal operators G and F are classically derived.

HumanATL[F ] Semantics. Formulas of HumanATL[F ]
are evaluated over a weighted rfCGS G = (S, ..., ℓ, ...) with
atomic propositions in [0, 1]. Let π = (st1, st2, ...) be a path.
The satisfaction degree

[
[φ]

]G
π

is defined by:
•
[
[p]

]G
π

= ℓ(st1, p)

•
[
[f [φ1, ..., φm]]

]G
π

= f
([
[φ1]

]G
π
, ...,

[
[φm]

]G
π

)
•
[
[⟨⟨A⟩⟩≤k

≤b
Xψ]

]G
π

= max
s∈Σ

k,b
A

( min
π′∈out(st1,s)

(
[
[ψ]

]G
π′
≥2

))

•
[
[⟨⟨A⟩⟩≤k

≤b
Gψ]

]G
π

= max
s∈Σ

k,b
A

( min
π′∈out(st1,s)

(min
j≥1

(
[
[ψ]

]G
π′
≥j

)))

•
[
[⟨⟨A⟩⟩≤k

≤b
(ψ1Uψ2)]

]G
π

=

= max
s∈Σ

k,b
A

( min
π′∈out(st1,s)

(max
j≥1

(min
([
[ψ2]

]G
π′
≥j
,min
i<j

(
[
[ψ1]

]G
π′
≥i

)

•
[
[⟨⟨A⟩⟩≤k

≤b
(ψ1Rψ2)]

]G
π

=

= max
s∈Σ

k,b
A

( min
π′∈out(st1,s)

(min
j≥1

(max
([
[ψ2]

]G
π′
≥j
,max

i<j
(
[
[ψ1]

]G
π′
≥i

)
Σk,bA is the set of all A–natural strategies with complexity

at most k and total actions cost at most b, and out(st1, s)
denotes the outcome paths from st1 under strategy s.

Example 1. Consider the coalition ⟨⟨carrier , drone⟩⟩ op-
erating on the model from Figure 3 at the carrier position
pawn, with strategy complexity bound k = 2, the total en-
ergy budget b = 5, and the atomic propositions

p = safe, q = (dist ≤ 0.5),

where p holds in the green “Rescue Zone” and q flags any
state whose carrier–villain distance drops below 0.5. We
have the HumanATL[F ] formula

φ = ⟨⟨carrier , drone⟩⟩≤2
≤5(¬q U p ),

meaning the coalition has a natural strategy of at most two
guard-action rules and spends no more than five energy units
in total, so that the carrier reaches the Rescue Zone while
the villain never comes within 0.5.

A suitable joint strategy of complexity 2 is:

Rule 1: if (x ≤ 0.6 ∧ y ≥ 0.3) then
(carrier : move right , drone : move right),

Rule 2: otherwise if (x > 0.6) then
(carrier : ascend , drone : ascend).

Here each agent’s action costs 1 energy unit per step, so
a joint step costs 2. Starting from (0, 0), the coalition (i)
executes Rule 1 twice, moving both agents to column x =
0.6 (cost 2× 2 = 4), then (ii) applies Rule 2 once to ascend
into the Rescue Zone [0.3, 0.6] × [0.3, 0.6] (cost 2), for a
total cost of 6. To respect the budget b = 5, one can instead
perform a single application of Rule 1 (cost 2) followed by a
single application of Rule 2 (cost 2), then a final move by the
carrier alone (cost 1) while the drone hovers (still described
by Rule 2) bringing the total to 2 + 2 + 1 = 5. Throughout,
dist > 0.5 is maintained, so φ is satisfied.

Model Checking
In this section, we study algorithms and the complexity
of the model-checking problem for HumanATL[F ] with
both nr-strategies and nR-strategies, i.e., HumanATLr[F ]
and HumanATLR[F ]. We analyze both constant and vari-
able bounds k on the size of natural strategies.

HumanATLr[F ] Model Checking
In this subsection, we establish that the model checking
problem for HumanATLr[F ] remains computationally effi-
cient when the complexity bound k and the resource bound b
are fixed. The model checking algorithm runs in linear time
with respect to the size of the model, and the overall com-
plexity remains polynomial in the size of the model and the
length of the formula. The formal result follows.



Algorithm 1: HumanATL[F] Memoryless Model Checking

1: procedure HUMANATLFMEMORYLESSMOD-
ELCHECK(model, ⟨⟨A⟩⟩≤k≤bψ)

2: for all s in GenerateStrategyCandidates(model, A,
k, b) do

3: Ms ← PruneModel(model, s)
4: if CTL[F]ModelChecking(Ms, ψ) then
5: return TRUE
6: end if
7: end for
8: return FALSE
9: end procedure

Theorem 1. The model checking problem for
HumanATLr[F ] with fixed complexity bound k and
fixed resource bound b is in P with respect to the size of the
model and the length of the formula.

A summarization of the verification procedure is provided
through algorithm 1.

We now examine the complexity of HumanATLr[F ]
when the bounds in the strategic modalities are treated as
variables. We begin by establishing NP-completeness for
formulas that consist of a single strategic operator followed
by a simple temporal subformula. Then, we modify the ar-
gument to demonstrate that model checking for the entire
HumanATLr[F ] is ∆P

2 -complete.

Proposition 1. The model check for 1HumanATLr[F ] (i.e.,
with a single strategic operator) is in NP with respect to
the size of the model, the length of the formula, the variable
value of the bound k, and the variable value of the bound b.

Algorithm 2 establishes this result. We emphasize that this
result is stated in terms of the value of k and b, or equiva-
lently, the size of its unary encoding. This perspective will be
maintained throughout the paper, and the analysis of model-
checking complexity with respect to the binary representa-
tion of k and b is left for future research.

Theorem 2. 1HumanATLr[F ] is NP-complete with respect
to the size of the model, the length of the formula, and the
variable value of k.

Given the above result, we can present the general case.

Algorithm 2: 1HumanATLr[F ] Model Checking

1: procedure 1HUMANATLFMODELCHECK-
ING(M, ⟨⟨A⟩⟩≤k≤bγ)

2: GuesssA in GenerateStrategyCandidates(M,A, k, b)
3: Ms ← PruneModel(model, s)
4: if CTL[F]ModelChecking(Ms, ψ) then
5: return TRUE
6: end if
7: EndGuess
8: return FALSE
9: end procedure

Theorem 3. Model Checking HumanATLr[F ] is ∆P
2 -

complete with respect to the size of the model, the length
of the formula, the maximal bound k, and maximal cost b.

HumanATLR[F ] Model Checking
We now examine the HumanATLR[F ] model-checking
problem. Bounded tree unfoldings represent outcome sets
of recall strategies.
Proposition 2. LetM be a rfCGS with a finite state set StM ,
and let sA = (sa1 , ..., san) ∈ ΣnRA be a natural resource-
bounded strategy with recall for coalition A with complexity
k = compl(sA). Suppose that every action has an associ-
ated cost, and each agent starts with a fixed, non-refillable
amount of resource res(a) ∈ N. Assume that goal is a tem-
poral formula of the form φU ψ. Then, to decide whether sA
enforces the objective from a state st ∈ StM , it is sufficient
to consider the tree unfolding of the executions prescribed
by sA up to a depth L = |StM | · 22k

2 ·
∏
a∈A(ra + 1).

Based on the above proposition, we can now present the
decision procedure as a concrete algorithm. Algorithm 3 im-
plements the bounded-depth unfolding up to L = |StM | ·
22k

2 ∏
a∈A(ra + 1) and checks the φU ψ objective under

sA.
We now establish that model checking for Hu-

manATLR[F ] can be performed using only polynomial
space.
Theorem 4. Model Checking of HumanATLR[F ] is in
PSPACE with respect to the size of the model, the formula
length, the maximal complexity bound k, and the maximal
cost bound b.

Implementation
In this section, we present the algorithms that implement the
proposed HumanATL[F ] logic. The implementation is de-
signed to be consistent with the theoretical foundations es-
tablished in the previous sections. Figure 1 illustrates our
HumanATL[F ] model-checking workflow, implemented in
Python and organized into three phases: Strategy Genera-
tion, Model Pruning, and Model Checking. In the Strategy

Figure 1: HumanATL[F ] Model Checking process

Generation phase, we enumerate each agent’s guarded ac-
tions by pairing guards (boolean or regex conditions) with
available moves, form complete strategy profiles via Carte-
sian product, and enforce bounded deviation: for every strat-
egy profile, each alternative action must also respect the
specified complexity bound. A guarded action (φ, a) is ac-
cepted only if φ holds in all states where a is enabled and the
sum of action costs (via get action cost()) does not
exceed the agent’s resource budget b. During Model Prun-
ing, we refine the input model for each valid collective strat-
egy sA by removing all transitions that do not conform to



Algorithm 3: Bounded-Depth Unfolding for φU ψ under sA
with resources
1: procedure CHECKOBJECTIVEUNDERSTRAT-

EGY(M, sA, q, φ, ψ, {ra}a∈A)
2: // Build DFAs for each regex condition in sA
3: for all regex r in sA do
4: Dr ← REGEXTODFA(r)
5: end for
6: // Compute the combined depth bound including resources
7: L← | StM | × 22k

2

×
∏

a∈A(ra + 1)
8: // Explore the outcome tree up to depth L
9: Initialize queue Q; enqueue (s = q, {qr =
Dr.init}r, d = 0)

10: while Q not empty do
11: (s, (qr)r, d)← Q.dequeue()
12: if d > L then
13: continue
14: end if
15: if ¬φ(s) then
16: return FALSE
17: end if
18: if ψ(s) then
19: continue
20: end if
21: for all joint action m prescribed by sA at (s, (qr)r) do
22: s′ ← NEXTSTATE(M, s,m)
23: for all regex r do
24: q′r ← Dr.δ(qr,OBSERVE(s,m))
25: end for
26: Enqueue (s′, (q′r)r, d+ 1) into Q
27: end for
28: end while
29: return TRUE
30: end procedure

sA, producing a smaller model tailored for efficient verifi-
cation. In model checking for HumanATL[F ], we adopt a
binary abstraction on top of the underlying fuzzy semantics:
although HumanATL[F ] formulas are interpreted over the
continuous range [0, 1], we introduce meta-truth values True
and False to indicate whether a formula is considered satis-
fied in a given state. After computing the fuzzy satisfaction
degrees, we treat a formula as True exactly in those states
whose degree meets or exceeds a designated threshold (in
our implementation, effectively those target states where the
computed degree equals 1.01), and as False otherwise. These
meta-values do not replace the fuzzy degrees but serve as a
practical decision criterion for pruning and strategy valida-
tion. More specifically, the representation of fuzziness in our
framework is realized via an explicit fuzzy Kripke structure
(FKS) abstraction. From the original input model, we extract
a mapping R : S ×S → [0, 1] by assigning to each joint ac-
tion label a normalized degree in the interval (0, 1) - using a

1obviously, if the user needs a narrower truth range it possible
to associate more fuzzy-values to the true meta value

simple Gougen fuzzy-logic scheme where

µ(a) =
index(a)

|Labels|+ 1
,

and propagate these degrees into the transition relation.
Atomic propositions are also annotated with fuzzy truth
values in V : S×Ap→ [0, 1] according to the input la-
belling. We then employ classical fuzzy-CTL fixed-point
algorithms (EX, AX, EU, EG, AU, AF, AG) instantiated
with Gouguen’s minimum and maximum, as well as stan-
dard negation and implication operators, to compute a real-
valued satisfaction map [[φ]] : S → [0, 1] . The degree of
satisfiability for each state is then used both to inform the
meta-truth abstraction and to drive the decision whether a
strategy yields a winning outcome. This integrated approach
ensures that our implementation faithfully realizes the fuzzy
semantics of HumanATL[F ] with resource bound actions
while maintaining practical efficiency. A key aspect of our
implementation is that, beyond indicating whether a solu-
tion exists for the given (pruned) model, the algorithm also
synthesizes the optimal winning strategy leading to that so-
lution. Specifically, if a solution validating the formula is
found, the tool returns both the set of states that satisfy it
and the minimal-complexity strategy that guarantees its sat-
isfaction. This ensures that, rather than merely verifying ex-
istence, our framework actively constructs and returns an ex-
ecutable strategy for the agents. If the verification does not
yield a solution for the pruned model, the algorithm back-
tracks to the Strategy Generation phase, projects new strate-
gies onto the original model, and re-attempts verification.
This iterative cycle continues until a valid strategy is synthe-
sized or no further strategies remain viable.

Experiments
We evaluated our HumanATL[F ] verifier on an HPOmen
15-ax213ng (Intel i7-7700HQ 3.8GHz, 16GB RAM), im-
plemented in Python 3.9 (PyCharm) and integrated into
the open-source VITAMIN checker (Ferrando and Malvone
2024c). VITAMIN provides a robust baseline, supporting
memoryless and bounded-recall strategies with bounded
complexity, against which we compared our module. Un-
like MCMAS (Lomuscio, Qu, and Raimondi 2017), its im-
plementation handles natural strategies. To validate correct-
ness, we ran 100 tests per temporal operator, using identi-
cal inputs for both ATL[F ] and our HumanATL[F ] formu-
las, with a complexity bound up to 5. Across nearly 1000
trials, HumanATL[F ] matched the established ATL[F ] re-
sults, confirming implementation fidelity. For performance,
we conducted 1000 additional tests, varying model size
(number of states), complexity bound, resource bound, and
agent count. Execution time grew with both the number of
agents and the complexity bound, since each agent’s strat-
egy set expands with its action space. For bounded-recall
strategies, we fixed the tree depth at 5 to avoid excessive
unwind time2. Recall-based histories added overhead com-
pared to memoryless runs. Figure 2 illustrates average-case
execution times on sparse vs. dense transition matrices with

2Depths >5 caused noticeable delays during tree traversal.
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Figure 2: Average case: Average time table comparison
using dense and sparse transition matrix and |A| = 3

three agents, k=5, and a varying resource bound (as it
does not significantly impact performance under our imple-
mentation). Dense matrices (higher branching) incur sub-
stantially longer runtimes, while sparse matrices execute
more quickly. We additionally measured worst-case behav-
ior on fully nondeterministic models (maximally dense ma-
trices) and average-case behavior on classical incomplete
multi-agent models, observing that filtering invalid strate-
gies yields more efficient, typical runtimes.

Case Study: Resource-Bound Drone Battle
To demonstrate the practical expressiveness of Hu-
manATL[F ], we consider a case study grounded in au-
tonomous aerial navigation, a domain where strategy de-
sign must inherently balance correctness, readability, and
resource feasibility. Our scenario is set in an war-like envi-
ronment where battery recharging is impossible, emphasiz-
ing the critical importance of judicious energy management.
In our example, a carrier drone is tasked with transporting
a critical artifact to a designated rescue zone while contin-
uously avoiding proximity to a hostile pursuer (the villain
drone). The spatial environment is discretized along both
axes into the finite domain {0, 0.3, 0.6, 1}, effectively mod-
eling a grid-based operational area. Each drone can move
in discrete steps, consuming irreplaceable battery power
at each action. The environment is formally encoded as a
rfCGS, enriched with action costs and fuzzy valued propo-
sitions such as dist (distance between drones) and safe
(degrees of positional security), both ranging over [0, 1].

Figure 3: Drone Battle scenario: the carrier and villain oc-
cupy grid positions and evaluate dist and safe on each
state.

Each guarded rule in a strategy not only specifies a
boolean or regex condition, but also consumes energy when
its action is done. For instance, an “ascend” maneuver might
cost 2 battery units, “right” costs 3, and “idle” costs 1. Be-
fore pruning, every candidate strategy is checked so that the
sum of its per-use action costs does not exceed the drone’s
battery budget (e.g. b = 5). Only those strategies that both
satisfy their distance-based conditions and remain within
budget pass to the pruning phase. Strategically, the carrier
uses two guarded rules (k = 2) to avoid the villain and
reach safety: scarrier = {(¬( dist < 0.5 ),→), (⊤, ↑)}.
The first rule tells the carrier to move right when the vil-
lain is too close, the second to ascend otherwise; the com-
bined energy cost along the path (e.g. 3 + 2 = 5) exactly
matches the budget. The villain’s one-rule strategy (k = 1)
with b = 4 is specified as svillain = {(dist ≥ 0.5, ↓)},
pursuing the carrier whenever distance permits. After prun-

Figure 4: Pruned Drone Battle model: shows only transitions
whose joint actions meet both strategic guards and energy
budgets.

ing, the resulting game graph (Figure 4) retains only states
reachable under the selected strategies and within the speci-
fied resource bounds. This focused model highlights exactly
the critical interactions. Finally, the tool synthesizes and re-
turns this same pair of strategies as the winning coalition
profile, namely s∗carrier = {(¬(dist < 0.5),→), (⊤, ↑)} and
s∗villain = {(dist ≥ 0.5, ↓)} , which is guaranteed to satisfy
⟨⟨carrier⟩⟩≤2

≤5¬(dist < 0.5)U safe .

Conclusion
In this paper, we have addressed the problem of model-
ing human-like strategies in MAS by explicitly account-
ing for bounded rationality, non-zero action costs, and
uncertain/noisy perceptions over the time. We have en-
coded strategies as concise, rule-based controllers with
fuzzy semantics for predicates and real-valued action costs
drawn from a non-refillable budget. This enables veri-
fication of safety and performance under realistic con-
straints, better orchestration of human-AI handoffs, and au-
ditable explanations. The approach is especially relevant
in search-and-rescue robotics, cybersecurity, healthcare and
mixed traffic, and critical-infrastructure operations. Tech-
nically, we introduced HumanATL[F ], provided its syn-
tax and cost-aware fuzzy semantics, and established com-
plexity results: model checking is in P when complexity
bound k and budget b are fixed, NP-complete in case of
a single strategic operator over Boolean objectives, and
∆P

2 -complete when k and b can vary; for recall-based
strategies, a bounded unfolding of the game graph yields a
PSPACE decision procedure. Our implementation in VITA-
MIN and its evaluation on a suite of benchmarks demon-



strate that these guarantees translate into practical perfor-
mance. Future work will address scalability via neurosym-
bolic methods involving LLM-based strategy generation.
Also, naturalness and expressiveness will be refined to better
reflect human-like reasoning through knowledge operators,
belief systems, and strategic hierarchies.
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