
LAMAS&SR Proceedings

Julian Gutierrez and Vadim Malvone Editors

Logics and strategic reasoning play a central role in multi-agent systems. Logic can be used, for
instance, to express the agents’ abilities, knowledge, and objectives. Strategic reasoning refers to
algorithmic methods that allow for developing good behaviour for the agents of the system. At
the intersection, we find logics that can express the existence of strategies or equilibria, and can
be used to reason about them. The LAMAS&SR workshop merges two international workshops:
LAMAS (Logical Aspects of Multi-Agent Systems), which focuses on all kinds of logical aspects
of multi-agent systems from the perspectives of AI, computer science, and game theory, and SR
(Strategic Reasoning), devoted to all aspects of strategic reasoning in formal methods and AI.

LAMAS: The LAMAS workshop provides a meeting forum for the research community working
on various logical aspects of multi-agent systems from the perspectives of artificial intelligence,
computer science, and game theory. It addresses the whole range of issues that arise in the context
of using logic in multi-agent sytems, from theoretical foundations to algorithmic methods and
implemented tools. The workshop LAMAS has been regularly organised since 2002 and became
the main annual event of the LAMAS research network.

SR: Strategic reasoning is a key topic in the multi-agent systems research area. The extensive
literature in this field includes a number of logics used for reasoning about the strategic abilities of
the agents in the system, but spans also game theory, decision theory or epistemic logics to name
a few. The aim is to provide sound theoretical foundations and tools to tackle a variety of strategic
problems in formal methods and artificial intelligence involving agents in adversarial settings. The
SR workshop has been organised annually since 2013, often in co-location with the most important
conferences in formal methods and AI.

LAMAS&SR: Over the years the communities and research themes of both workshops got
closer and closer, with a significant overlap in the participants and organisers of both events. For
this reason, the next editions of LAMAS and SR will be unified under the same flag, formally
joining the two communities.

Julian Gutierrez
Monash University, Melbourne, Australia, e-mail: julian.gutierrez@monash.edu

Vadim Malvone
Télécom Paris, Paris, France e-mail: vadim.malvone@telecom-paris.fr

1

Different Strokes in Randomised Strategies:
Revisiting Kuhn’s Theorem under Finite-memory

Assumptions (extended abstract)?

James C. A. Main and Mickael Randour

F.R.S.-FNRS & UMONS – Université de Mons, Belgium

Games on graphs. Games on (possibly stochastic) graphs have been studied
for decades, both for their own interest (e.g., [17, 14, 20]) and for their value as a
framework for reactive synthesis (e.g., [21, 25, 7, 3]). The core problem is almost
always to find optimal strategies for the players: strategies that guarantee winning
for Boolean winning conditions (e.g., [18, 29, 10, 8]), or strategies that achieve the
best possible payoff in quantitative contexts (e.g., [17, 5, 11]). In multi-objective
settings, one is interested in Pareto-optimal strategies (e.g., [13, 28, 26, 16]), but
the bottom line is the same: players are looking for strategies that guarantee the
best possible results.

In reactive synthesis, we model the interaction between a system and its
uncontrollable environment as a two-player antagonistic game, and we represent
the specification to ensure as a winning objective. An optimal strategy for the
system in this game then constitutes a formal blueprint for a controller to
implement in the real world [3].
Randomness in strategies. In essence, a pure strategy is simply a function
mapping histories (i.e., the past and present of a play) to an action.

Optimal strategies may require randomisation when dealing with inherently
probabilistic goals, balancing multiple objectives, or in contexts of partial infor-
mation: see, e.g., [12, 26, 16]. There are different ways of randomising strategies.
For instance, a mixed strategy is essentially a probability distribution over a set
of pure strategies. That is, the player randomly selects a pure strategy at the
beginning of the game and then follows it for the entirety of the play without
resorting to randomness ever again. By contrast, a behavioural strategy randomly
selects an action at each step: it thus maps histories to probability distributions
over actions.
Kuhn’s theorem. In full generality, these two definitions yield different classes
of strategies (e.g., [15] or [24, Chapter 11]). Nonetheless, Kuhn’s theorem [2]
proves their equivalence under a mild hypothesis: in games of perfect recall, for
any mixed strategy there is an equivalent behavioural strategy and vice versa. A
game is said to be of perfect recall for a given player if said player never forgets

? Mickael Randour is a Research Associate of the Fonds de la Recherche Scientifique
- FNRS and James C. A. Main is a Research Fellow of the Fonds de la Recherche
Scientifique - FNRS. Both authors are members of the TRAIL Institute. This work
has been supported by the Fonds de la Recherche Scientifique - FNRS under Grant
n° T.0188.23 (PDR ControlleRS).

2 James C. A. Main and Mickael Randour

their previous knowledge and the actions they have played (i.e., they can observe
their own actions). Let us note that perfect recall and perfect information are
two different notions: perfect information is not required to have perfect recall.

Let us highlight that Kuhn’s theorem crucially relies on two elements. First,
mixed strategies can be distributions over an infinite set of pure strategies. Second,
strategies can use infinite memory, i.e., they are able to remember the past
completely, however long it might be. Indeed, consider a game in which a player
can choose one of two actions in each round. One could define a (memoryless)
behavioural strategy that selects one of the two actions by flipping a coin each
round. This strategy generates infinitely many sequences of actions, therefore
any equivalent mixed strategy needs the ability to randomise between infinitely
many different sequences, and thus, infinitely many pure strategies. Moreover,
infinitely many of these sequences require infinite memory to be generated (due
to their non-regularity).

Finite-memory strategies. From the point of view of reactive synthesis,
infinite-memory strategies, along with randomised ones relying on infinite sup-
ports, are undesirable for implementation. This is why a plethora of recent ad-
vances has focused on finite-memory strategies, usually represented as (a variation
on) Mealy machines, i.e., finite automata with outputs. See, e.g., [20, 13, 9, 16, 4, 6].
Randomisation can be implemented in these finite-memory strategies in different
ways: the initialisation, outputs or transitions can be randomised or deterministic
respectively.

Depending on which aspects are randomised, the expressiveness of the corre-
sponding class of finite-memory strategies differs: in a nutshell, Kuhn’s theorem
crumbles when restricting ourselves to finite memory. For instance, we show that
some finite-memory strategies with only randomised outputs (i.e., the natural
equivalent of behavioural strategies) cannot be emulated by finite-memory strate-
gies with only randomised initialisation (i.e., the natural equivalent of mixed
strategies). Similarly, it is known that some finite-memory strategies that are
encoded by Mealy machines using randomisation in all three components admit
no equivalent using randomisation only in outputs [1, 15].

Our contributions. The results mentioned in the following are presented in [22].
We consider two-player zero-sum stochastic games (e.g., [27, 14, 23, 6]), encompass-
ing two-player (deterministic) games and Markov decision processes as particular
subcases. We establish a Kuhn-like taxonomy of the classes of finite-memory
strategies obtained by varying which of the three aforementioned components
are randomised: we illustrate it in Figure 1.

Let us highlight a few elements. Naturally, the least expressive model cor-
responds to pure strategies. In contrast to what happens with infinite memory,
and as noted in the previous paragraph, we see that mixed strategies are strictly
less expressive than behavioural ones. We also observe that allowing randomness
both in initialisation and in outputs (RRD strategies) yields an even more ex-
pressive class — and incomparable to what is obtained by allowing randomness
in updates only. Finally, the most expressive class is obviously obtained when

Different Strokes in Randomised Strategies 3

DRR = RRR = RDR

RRD

DDR

DRD (behavioural)

RDD (mixed)

DDD (pure)

Direct

Direct

Fig. 1. Lattice of strategy classes in terms of expressible probability distributions over
plays against all strategies of the other player. In the three-letter acronyms, the letters,
in order, refer to the initialisation, outputs and updates of the Mealy machines: D and
R respectively denote deterministic and randomised components.

allowing randomness in all components; yet it may be dropped in initialisation or
in outputs without reducing the expressiveness — but not in both simultaneously.

Constructions used to establish inclusions between classes of randomised
finite-memory strategies are effective. To show that any mixed strategy can be
emulated by a behavioural one, we derive an appropriate Mealy machine via an
adapted subset construction. To show that randomisation in the initialisation can
be dropped from the most expressive model without losing expressiveness, we add
a new initial state to the Mealy machine that emulates the initial distribution
and the choice of the first action. Finally, to show that removing randomisation
in the outputs in the most expressive model is not restrictive, we incorporate the
randomisation over actions in the randomised initialisation and updates of the
Mealy machine.

To compare the expressiveness of strategy classes, we consider outcome-
equivalence. Intuitively, two strategies are outcome-equivalent if, against any
strategy of the opponent, they yield identical probability distributions (i.e.,
they induce identical Markov chains). Hence we are agnostic with regard to
the objective, winning condition, payoff function, or preference relation of the
game, and with regard to how they are defined (e.g., colours on actions, states,
transitions, etc).

Finally, let us note that in our setting of two-player stochastic games, the
perfect recall hypothesis holds. Most importantly, we assume that actions are
visible. Lifting this hypothesis drastically changes the relationships between the
different models. We note that our results hold in games of imperfect information
too, assuming visible actions, and that our results hold in games with more than
two players.

4 James C. A. Main and Mickael Randour

References

1. de Alfaro, L., Henzinger, T.A., Kupferman, O.: Concurrent reachability games.
Theor. Comput. Sci. 386(3), 188–217 (2007)

2. Aumann, R.J..: 28. Mixed and Behavior Strategies in Infinite Extensive Games, pp.
627–650. Princeton University Press (2016)

3. Bloem, R., Chatterjee, K., Jobstmann, B.: Graph games and reactive synthesis.
In: Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.) Handbook of Model
Checking, pp. 921–962. Springer (2018)

4. Bouyer, P., Le Roux, S., Oualhadj, Y., Randour, M., Vandenhove, P.: Games
where you can play optimally with arena-independent finite memory. Log. Methods
Comput. Sci. 18(1) (2022)

5. Bouyer, P., Markey, N., Randour, M., Larsen, K.G., Laursen, S.: Average-energy
games. Acta Inf. 55(2), 91–127 (2018)

6. Bouyer, P., Oualhadj, Y., Randour, M., Vandenhove, P.: Arena-independent finite-
memory determinacy in stochastic games. In: Haddad, S., Varacca, D. (eds.) 32nd
International Conference on Concurrency Theory, CONCUR 2021, August 24-27,
2021, Virtual Conference. LIPIcs, vol. 203, pp. 26:1–26:18. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2021)

7. Brenguier, R., Clemente, L., Hunter, P., Pérez, G.A., Randour, M., Raskin, J.,
Sankur, O., Sassolas, M.: Non-zero sum games for reactive synthesis. In: Dediu, A.,
Janousek, J., Martín-Vide, C., Truthe, B. (eds.) Language and Automata Theory
and Applications - 10th International Conference, LATA 2016, Prague, Czech
Republic, March 14-18, 2016, Proceedings. Lecture Notes in Computer Science,
vol. 9618, pp. 3–23. Springer (2016)

8. Brihaye, T., Delgrange, F., Oualhadj, Y., Randour, M.: Life is random, time is not:
Markov decision processes with window objectives. In: Fokkink and van Glabbeek
[19], pp. 8:1–8:18

9. Bruyère, V., Filiot, E., Randour, M., Raskin, J.: Meet your expectations with
guarantees: Beyond worst-case synthesis in quantitative games. Inf. Comput. 254,
259–295 (2017)

10. Bruyère, V., Hautem, Q., Randour, M.: Window parity games: an alternative
approach toward parity games with time bounds. In: Cantone, D., Delzanno, G.
(eds.) Proceedings of the Seventh International Symposium on Games, Automata,
Logics and Formal Verification, GandALF 2016, Catania, Italy, 14-16 September
2016. EPTCS, vol. 226, pp. 135–148 (2016)

11. Bruyère, V., Hautem, Q., Randour, M., Raskin, J.: Energy mean-payoff games. In:
Fokkink and van Glabbeek [19], pp. 21:1–21:17

12. Chatterjee, K., Doyen, L.: Partial-observation stochastic games: How to win when
belief fails. In: Proceedings of the 27th Annual IEEE Symposium on Logic in
Computer Science, LICS 2012, Dubrovnik, Croatia, June 25-28, 2012. pp. 175–184.
IEEE Computer Society (2012)

13. Chatterjee, K., Randour, M., Raskin, J.: Strategy synthesis for multi-dimensional
quantitative objectives. Acta Inf. 51(3-4), 129–163 (2014)

14. Condon, A.: The complexity of stochastic games. Inf. Comput. 96(2), 203–224
(1992)

15. Cristau, J., David, C., Horn, F.: How do we remember the past in randomised
strategies? In: Montanari, A., Napoli, M., Parente, M. (eds.) Proceedings First
Symposium on Games, Automata, Logic, and Formal Verification, GANDALF 2010,
Minori (Amalfi Coast), Italy, 17-18th June 2010. EPTCS, vol. 25, pp. 30–39 (2010)

Different Strokes in Randomised Strategies 5

16. Delgrange, F., Katoen, J., Quatmann, T., Randour, M.: Simple strategies in multi-
objective MDPs. In: Biere, A., Parker, D. (eds.) Tools and Algorithms for the
Construction and Analysis of Systems - 26th International Conference, TACAS
2020, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Proceedings, Part I.
Lecture Notes in Computer Science, vol. 12078, pp. 346–364. Springer (2020)

17. Ehrenfeucht, A., Mycielski, J.: Positional strategies for mean payoff games. Int.
Journal of Game Theory 8(2), 109–113 (1979)

18. Emerson, E.A., Jutla, C.S.: The complexity of tree automata and logics of programs.
SIAM J. Comput. 29(1), 132–158 (1999)

19. Fokkink, W., van Glabbeek, R. (eds.): 30th International Conference on Concurrency
Theory, CONCUR 2019, August 27-30, 2019, Amsterdam, the Netherlands, LIPIcs,
vol. 140. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)

20. Gimbert, H., Zielonka, W.: Games where you can play optimally without any
memory. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005 - Concurrency Theory,
16th International Conference, CONCUR 2005, San Francisco, CA, USA, August
23-26, 2005, Proceedings. Lecture Notes in Computer Science, vol. 3653, pp. 428–442.
Springer (2005)

21. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games:
A Guide to Current Research [outcome of a Dagstuhl seminar, February 2001],
Lecture Notes in Computer Science, vol. 2500. Springer (2002)

22. Main, J.C.A., Randour, M.: Different strokes in randomised strategies: Revisiting
kuhn’s theorem under finite-memory assumptions. In: Klin, B., Lasota, S., Muscholl,
A. (eds.) 33rd International Conference on Concurrency Theory, CONCUR 2022,
September 12-16, 2022, Warsaw, Poland. LIPIcs, vol. 243, pp. 22:1–22:18. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik (2022)

23. Maitra, A., Sudderth, W.: Stochastic games with Borel payoffs. In: Neyman, A.,
Sorin, S. (eds.) Stochastic Games and Applications. pp. 367–373. Springer Nether-
lands, Dordrecht (2003)

24. Osborne, M.J., Rubinstein, A.: A course in game theory. The MIT Press, Cambridge,
USA (1994), electronic edition

25. Randour, M.: Automated synthesis of reliable and efficient systems through game
theory: A case study. In: Proc. of ECCS 2012, pp. 731–738. Springer Proceedings
in Complexity XVII, Springer (2013)

26. Randour, M., Raskin, J., Sankur, O.: Percentile queries in multi-dimensional Markov
decision processes. Formal Methods Syst. Des. 50(2-3), 207–248 (2017)

27. Shapley, L.S.: Stochastic games. Proceedings of the National Academy of Sciences
39(10), 1095–1100 (1953)

28. Velner, Y., Chatterjee, K., Doyen, L., Henzinger, T.A., Rabinovich, A.M., Raskin,
J.: The complexity of multi-mean-payoff and multi-energy games. Inf. Comput. 241,
177–196 (2015)

29. Zielonka, W.: Infinite games on finitely coloured graphs with applications to au-
tomata on infinite trees. Theor. Comput. Sci. 200(1-2), 135–183 (1998)

Reactive Synthesis of Linear Temporal Logic on
Finite Traces: An Evolving Journey

Shufang Zhu

University of Oxford
shufang.zhu@cs.ox.ac.uk

Abstract. Reactive synthesis holds the promise of automatically gener-
ating a verifiably correct program from a high-level specification. In this
work, we focus on reactive synthesis problems of Linear Temporal Logic
on finite traces (ltlf) and present an evolving journey. We first present
the advances in ltlf synthesis. Then we show that when concerning en-
vironment specifications expressed in ltl, we can practically diminish
the difficulty of the challenging problem of ltl synthesis and keep the
simplicity of ltlf synthesis in interesting cases.

1 Introduction

Reactive synthesis promises to automatically generate a verifiably correct pro-
gram from a high-level specification [18]. A popular such specification language
is Linear Temporal Logic (ltl) [17]. Unfortunately, synthesizing programs from
general LTL formulas, which rely on first constructing a game arena and then
solving the game, remains challenging [13, 16]. Nevertheless, the synthesis prob-
lem of a finite trace variant of ltl, which is ltlf [14], has shown to be much
simpler than ltl synthesis [12]. The key idea is that synthesizing ltlf formulas
only involves games on finite traces instead of infinite traces as for ltl, though
both problems share the same worst-case complexity of 2EXPTIME-complete.

In this paper, we will review an evolving journey motivated by this idea. We
start from an attempt to devise a symbolic ltlf synthesis framework [22], which
consists of a backward reachability game on the constructed Deterministic Finite
Automaton (DFA) of the corresponding ltlf formula and has demonstrated its
significant efficiency in various application scenarios. Then, the journey evolves
into a forward ltlf synthesis technique that synthesizes a strategy while con-
structing the DFA, thus being possible to avoid the 2EXPTIME worst-case com-
plexity [19, 11]. Next, we study ltlf synthesis under environment specifications,
which are constraints on the environment that rule out certain environment
behaviours [1, 6]. A key observation is that even if we consider an agent with
ltlf tasks on finite traces, environment specifications need to be expressed over
infinite traces since accomplishing the agent tasks may require an unbounded
number of environment actions [1, 6]. While a naive solution to ltlf synthesis
under environment specifications expressed in ltl would be reducing the prob-
lem to ltl synthesis, which remains challenging [1, 6], we show in this paper

2 Shufang Zhu

that we can avoid the detour to ltl synthesis and keep the simplicity of ltlf
synthesis in interesting cases. More specifically, we consider the following cer-
tain environment specifications: safety [7], simple fairness and stability [20], and
Generalized-Reactivity(1) (GR(1)) [8]. Furthermore, we show that even when
the environment specifications are expressed in general ltl, we can still par-
tially avoid the full detour to ltl synthesis [9].

2 ltlf Synthesis

Reactive synthesis can be viewed as a game between the environment and the
agent, contrasting each other by controlling two disjoint sets of variables X and
Y, respectively. Reactive synthesis aims to synthesize an agent strategy such
that no matter how the environment behaves, the combined trace from two
players satisfies desired properties [18]. An environment strategy is a function
γ : (2Y)+ → 2X , and an agent strategy is a function σ : (2X)∗ → 2Y . A
trace π = (X0 ∪ Y0)(X1 ∪ Y1) · · · ∈ (2X∪Y)ω, is compatible with an environment
strategy γ if γ(Y0Y1 . . . Yi) = Xi for every i ≥ 0. A trace π being compatible with
an agent strategy σ is defined analogously. Sometimes, we write σ(πk) instead
of σ(X0X1 · · ·Xk) for simplicity. We denote the unique infinite sequence that
is compatible with γ and σ as π(σ, γ). The synthesis problem for an agent task
specified as an ltlf formula φ is to find an agent strategy σ : (2X)∗ → 2Y such
that for every environment strategy γ : (2Y)+ → 2X , there exists k ≥ 0, chosen
by the agent, such that the finite trace π(σ, γ)k |= φ i.e., φ is agent realizable.
One can solve ltlf synthesis by translating φ to an ltl formula ψ and then
solving ltl synthesis on ψ [22].

Backward ltlf Synthesis. The first solution to ltlf synthesis problem was
based on a reduction to reachability game [12], which proceeds as follows: build
the corresponding DFA of the agent task φ, solve the reachability game over it,
and hence return the winning strategy for the agent. However, the size of the
constructed DFA can be, in the worst case, doubly-exponential in the size of
the formula. To combat this difficulty, we proposed a symbolic ltlf synthesis
framework representing the DFA as Boolean formulas [22] using Binary Decision
Diagrams (BDDs) [5]. This synthesis framework has shown outperformance com-
pared to the explicit approach described in [12] and the solution of reducing to
ltl synthesis. Furthermore, it also has been integrated into state-of-the-art ltlf
synthesizers, e.g., Lisa [3] and Lydia [10]. The main difficulty of this synthesis
framework is that it requires computing the entire DFA of the ltlf specification,
hence cannot avoid the worst-case 2EXPTIME blowup.

Forward ltlf Synthesis. To combat the worst-case 2EXPTIME blowup, we
investigated ltlf forward synthesis adopting an AND-OR graph search that can
create on-the-fly the DFA corresponding to the ltlf specification [19, 11]. This
technique exploits formula progression to build directly deterministic transitions
from a current state. Crucially, in [11] we exploit the structure that formula
progression provides to branch on propositional formulas (representing several

Reactive Synthesis of Linear Temporal Logic on Finite Traces 3

evaluations) instead of individual evaluations as in [19]. This drastically reduces
the branching factor of the AND-OR graph to be searched.

3 ltlf Synthesis Under Environment Specifications

In standard synthesis, the agent assumes the environment to be free to choose an
arbitrary move at each step, but in reality, often the agent has some knowledge
of how the environment works, which it can exploit to enforce the goal, specified
as an ltlf formula φ. Here, we specify the environment behavior by an ltl
formula env and call it environment specification [1]. Given an ltl formula env,
we say that an agent strategy (resp. environment strategy) enforces φ, written
σ � env (resp., γ � env), if for every environment strategy γ (resp. agent strategy
σ), we have π(σ, γ) |= φ. This ltl formula env, in particular, specifies the set of
environment strategies that enforces env. As usual, we require that env must be
environment realizable, i.e., the set of environment strategies that enforce env is
nonempty. The problem of synthesis under environment specifications is to find
an agent strategy σ such that ∀γ � env, trace(σ, γ)k |= φ for some k ∈ N .

In the following, we present the solutions of ltlf synthesis under ltl envi-
ronment specifications for certain types of environment specifications.
Safety Environment Specifications. Intuitively, a safety property excludes
traces whose “badness” follows from a finite prefix. One can write a safety en-
vironment specification either with Safety ltl, a syntactic fragment of ltl or
ltlf in all prefix semantics, for more details of which, we refer to [21, 2] and [8],
respectively. To solve the problem, we can first translate the safety environment
specification env into a Deterministic Safety Automaton (DSA) S [21] and solve
a safety game for the environment on S. By restricting S to the environment
winning region, we can obtain all the environment strategies that can enforce
env. Finally, we need to solve the reachability game over the product of the
corresponding DFA of ltlf formula φ and the restricted part of the DSA S [7],
thus obtaining an agent winning strategy if there exists one.
Fairness and Stability Environment Specifications. We consider two dif-
ferent basic forms of environment specifications: a basic form of fairness 23α
(always eventually α) and a basic form of stability 32α. The key idea of solv-
ing such problems is integrating the environment specification as the winning
condition of the reduced game between the environment and the agent [20]. We
can solve the problem as follows. First, translate the ltlf formula φ into a
DFA D. Then, in case of fairness environment specifications, solve the fair DFA
game on D, in which the environment (resp. the agent) winning condition is
to remain in a region (resp., to avoid the region), where α holds infinitely of-
ten. Meanwhile, the accepting states are forever avoidable by applying a nested
fixed-point computation on D. Analogous solution techniques apply to the case
of stability environment specifications.
Generalized-Reactivity(1) Specifications. There have been great successes
with ltl synthesis on the GR(1) [4] approach: focusing on a significant syntactic
fragment of ltl that uses safety conditions to determine the possible transitions

4 Shufang Zhu

in a game between the environment and the agent, plus one powerful notion of
fairness. We brought it together with the successes on ltlf synthesis, devising
an approach to solve ltlf synthesis of agent task φ under GR(1) environment
specification envgr1 [8]. In more detail, we first observe that the agent’s goal is to
satisfy ¬envgr1∨φ, while the environment’s goal is to satisfy envgr1∧¬φ. Then,
focusing on the environment point of view, we show that the problem of ltlf
synthesis under GR(1) environment specification can be reduced into a GR(1)
game, in which the game arena is the complement of the DFA for φ, i.e., a DSA
expressing safety conditions, and envgr1 is the GR(1) winning condition. Since
we want a winning strategy for the agent, we need to deal with the complement
of the GR(1) game to obtain a winning strategy for the antagonist.

General LTL Environment Specifications. Regarding ltlf synthesis with
general ltl environment specifications, dealing with ltl synthesis seems to be
unavoidable. Nevertheless, we developed a two-stage technique that maximizes
the simplicity of ltlf synthesis and mitigates the difficulty of ltl synthesis [9].
Intuitively, the two-stage technique first solely deals with the agent task, ltlf
formula φ, and thus confines the difficulty of handling the ltl environment
specification env to the bare minimum in the second stage. In detail, the two-
stage techniques proceed as follows: (i) Build the DFA D of φ and solve the
reachability game for the agent over D. If the agent has a winning strategy σ
in D then the algorithm returns σ. Otherwise, continue to Stage 2. (ii) Perform
the following steps: (ii.a) Remove from D the agent winning region, obtaining
D′; (ii.b) Build the Deterministic Parity Automaton (DPA) P of env and get
the product of D′ and P , obtaining a new DPA A = D′×P , and solve the parity
game for the environment over A; (ii.c) If the agent has a winning strategy in
A, then the synthesis problem is realizable and hence returns the agent winning
strategy as a combination of the agent winning strategies in the two stages.

4 Conclusion

Reactive synthesis on ltlf has been an exciting research problem. Our work on
this problem spans from standard ltlf synthesis to synthesis concerning envi-
ronment specifications with efficient solution techniques. In the future, we would
like to consider environment specifications expressed in different languages, e.g.,
PDDL [15], a popular specification language in planning.

Acknowledgments

We thank the contributions of all the co-authors (in the order of publications):
Jianwen Li, Geguang Pu, Lucas M. Tabajara, Moshe Y. Vardi, Giuseppe De
Giacomo, Antonio Di Stasio, Giuseppe Perelli, Shengping Xiao, Yingying Shi,
Marco Favorito, Suguman Bansal and Yong Li. This work is partially supported
by the ERC Advanced Grant WhiteMech (No. 834228).

Reactive Synthesis of Linear Temporal Logic on Finite Traces 5

References

1. Aminof, B., De Giacomo, G., Murano, A., Rubin, S.: Planning under LTL envi-
ronment specifications. In: ICAPS. pp. 31–39 (2019)

2. Bansal, S., De Giacomo, G., Di Stasio, A., Li, Y., Y. Vardi, M., Zhu, S.: Compo-
sitional safety LTL synthesis. In: VSTTE. pp. 1–19

3. Bansal, S., Li, Y., Tabajara, L.M., Vardi, M.Y.: Hybrid Compositional Reasoning
for Reactive Synthesis from Finite-Horizon Specifications. In: AAAI. pp. 9766–9774
(2020)

4. Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of Reac-
tive(1) designs. vol. 78, pp. 911–938 (2012)

5. Bryant, R.E.: Symbolic Boolean Manipulation with Ordered Binary-Decision Dia-
grams. ACM Comput. Surv. 24(3), 293–318 (1992)

6. Camacho, A., Bienvenu, M., McIlraith, S.A.: Finite LTL synthesis with environ-
ment assumptions and quality measures. In: KR. pp. 454–463 (2018)

7. De Giacomo, G., Di Stasio, A., Perelli, G., Zhu, S.: Synthesis with mandatory stop
actions. In: KR. pp. 237–246 (2021)

8. De Giacomo, G., Di Stasio, A., Tabajara, L.M., Vardi, M.Y., Zhu, S.: Finite-trace
and generalized-reactivity specifications in temporal synthesis. In: IJCAI (2021)

9. De Giacomo, G., Di Stasio, A., Vardi, M.Y., Zhu, S.: Two-stage technique for LTLf

synthesis under LTL assumptions. In: KR (2020)
10. De Giacomo, G., Favorito, M.: Compositional approach to translate ltlf/ldlf into

deterministic finite automata. In: ICAPS (to appear). vol. 14 (2021)
11. De Giacomo, G., Favorito, M., Li, J., Y. Vardi, M., Xiao, S., Zhu, S.: Ltlf synthesis

as AND-OR graph search: Knowledge compilation at work. In: IJCAI. pp. 2591–
2598 (2022)

12. De Giacomo, G., Vardi, M.Y.: Synthesis for LTL and LDL on Finite Traces. In:
IJCAI (2015)

13. Finkbeiner, B.: Synthesis of reactive systems. In: Dependable Software Systems
Engineering, pp. 72–98 (2016)

14. Giacomo, G.D., Vardi, M.Y.: Linear Temporal Logic and Linear Dynamic Logic
on Finite Traces. In: IJCAI (2013)

15. McDermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso, M., Weld,
D., Wilkins, D.: Pddl – the planning domain definition language – version 1.2.
Tech. rep., TR-98-003, Yale Center for Computational Vision and Contro (1998)

16. Meyer, P.J., Sickert, S., Luttenberger, M.: Strix: Explicit reactive synthesis strikes
back! In: Chockler, H., Weissenbacher, G. (eds.) CAV. pp. 578–586 (2018)

17. Pnueli, A.: The temporal logic of programs. In: FOCS. pp. 46–57 (1977)
18. Pnueli, A., Rosner, R.: On the Synthesis of a Reactive Module. In: POPL (1989)
19. Xiao, S., Li, J., Zhu, S., Shi, Y., Pu, G., Vardi, M.Y.: On-the-fly synthesis for LTL

over finite traces. In: AAAI. pp. 6530–6537 (2021)
20. Zhu, S., De Giacomo, G., Pu, G., Vardi, M.Y.: LTLf synthesis with fairness and

stability assumptions. In: AAAI. pp. 3088–3095 (2020)
21. Zhu, S., Tabajara, L.M., Li, J., Pu, G., Vardi, M.Y.: A Symbolic Approach to

Safety LTL Synthesis. In: HVC. pp. 147–162 (2017)
22. Zhu, S., Tabajara, L.M., Li, J., Pu, G., Vardi, M.Y.: Symbolic LTLf Synthesis. In:

IJCAI. pp. 1362–1369 (2017)

Probabilistic Judgment Aggregation with
Conditional Independence Constraints

Magdalena Ivanovska1[0000−0002−3916−3486] and Marija
Slavkovik2[0000−0003−2548−8623]

1 BI Norwegian Business School, Oslo, Norway
magdalena.ivanovska@bi.no

2 University of Bergen, Bergen, Norway
marija.slavkovik@uib.no

Abstract. Probabilistic judgment aggregation is concerned with aggre-
gating judgments about probabilities of logically related issues. It takes
as input imprecise probabilistic judgments over the issues given by a
group of agents and defines rules of aggregating the individual judg-
ments into a collective opinion representative for the group. The process
of aggregation can be subject to constraints, i.e., aggregation rules can
be required to satisfy certain properties. We explore how probabilistic
independence constraints can be incorporated into the aggregation pro-
cess.

Keywords: probabilistic logic · judgment aggregation · conditional in-
dependence.

1 Introduction

Judgment aggregation (JA) is concerned with aggregating judgments about the
truth of logically related statements [10, 5]. Consider the following example of a
discursive dilemma: A committee of three academics is deciding on whether to
award tenure to a candidate based on excellence in research (r), teaching (t),
and service (s). As we can see in the table below, using the majority aggregation
rule gives an inconsistent outcome. Suppose that, instead of judging categorically

r t s r ∧ t ∧ s
A1 true false true false
A2 false true true false
A3 true true false false

maj true true true →true ↓false

on the candidate performing well in research, teaching, service, and tenure, the
committee members express their beliefs over {r, t, s, r ∧ t ∧ s} as numbers from
the [0, 1] interval, and the aggregation is done by a threshold majority rule. This

2 M. Ivanovska and M. Slavkovik

not only offers a more flexible representation framework, but also increases the
possibilities for consistent aggregation. The probabilistic judgment aggregation
we introduce in [8] takes this a step further and allows for imprecise probabilities
over the issues. In [8] we define several classes of aggregators and properties that
they might satisfy.

The case of mutually exclusive and exhaustive set of issues and precise proba-
bilities, reduces to opinion pooling [3]. An impossibility result in opinion pooling
states that the only aggregation rules that satisfy some basic desirable properties
are the linear pools. However, linear pools do not in general preserve probabilistic
independence of events. It is not hard to imagine that the committee members’
assumptions about a candidate’s abilities in research influence those in teaching
and vice versa. A committee member might think that the candidate that per-
forms well in research can not possibly do well in teaching due to lack of time
and focus; or that bad teaching performance indicates poor research abilities as
well; or that these two abilities are independent on each other. We are interested
in representing the opinions about conditional independencies among the issues
and incorporating them into the aggregation process.

2 Probabilistic judgement aggregation framework

We use the framework introduced in [8] and modified in [9]. Let L be a set of
propositional logic formulas. An agenda is a finite set of issues Φ ⊂ L,

Φ = {φ1, . . . , φm} , (1)

where φi, i = 1, . . . ,m, is neither a tautology nor a contradiction. We call Φ∪ =
Φ ∪ {¬φ | φ ∈ Φ} the extended agenda of Φ. A likelihood judgement on the
issue φ ∈ Φ∪ is a simple likelihood formula of the type ℓ(φ) ≥ a, where a ∈
[0, 1], expressing that the likelihood (interpreted as probability in this paper)
of the statement φ being true is at least a. This formula is an instance of the
logic of likelihood (see [4] and [6]), the language of which consists of Boolean
combinations of linear likelihood formulas of the type

a1ℓ(φ1) + . . .+ amℓ(φm) ≥ b , (2)

where ai, b are real numbers, and φi are pure propositional formulas.3 The se-
mantics is provided by probability spaces, where ℓ(φ) is interpreted as the prob-
ability of the event (set of worlds) where φ is true. In [4], the authors provide
a sound and complete axiomatic system which is a combination of axioms for
propositional reasoning, reasoning about inequalities, and probability axioms.

We model the information sources as sets of likelihood judgements on Φ∪.
Given a set of n agents N = {1, . . . , n}, n ≥ 2, a likelihood profile is the tuple
P̂ = (Ĵ1, . . . , Ĵn), where Ĵk is the set of likelihood judgements of the agent k ∈ N :

Ĵk = {ℓ(φ) ≥ ak(φ) | φ ∈ Φ∪} , (3)

3 Expressions with other inequalities or equality can be defined as abbreviations.

Probabilistic JA with Conditional Independence Constraints 3

where ak(φ) ∈ [0, 1] are called the judgement coefficients of the k-th agent.
Each agent provides judgment coefficients (probability lower bounds) for both
an issue φ and its negation which, in accordance with the probability axioms,
provides a likelihood interval for the issue. In the cases where ak(φ)+ak(¬φ) = 1,
these intervals collapse into a point, i.e., we obtain precise likelihood judgments.
Abstention on φ can be modelled by taking ak(φ) ≥ 0 and ak(¬φ) ≥ 0.

A probabilistic judgement set Ĵ is rational if it is consistent (as a set of for-
mulas in the logic of likelihood) and final (it does not imply stronger judgments,
i.e., narrower likelihood intervals, than the ones it contains. The full details about
the probabilistic JA framework can be found in [9].

3 Conditional independence constraints

Conditional probability can be expressed in the logic of likelihood: ℓ(φ|ψ) ≥ a as
an abbreviation of ℓ(φ ∧ ψ)− aℓ(ψ) ≥ 0. However, as noticed in [6], probabilis-
tic independence is not expressible in this logic since it requires multiplication
of likelihood terms. One can extend the logic by defining polynomial likelihood
formulas, or by adding conditional independence statements directly in the lan-
guage. We choose to do the latter, as a more intuitive way of expression that is
also compatible with probabilistic graphical models like Bayesian networks.

Definition 1. Given an alphabet L, a conditional independence (CI) statement
is a formula of the form

I(α, β|γ), (4)

where α, β, and γ are pure propositional formulas. We read it as: ”The likelihood
of α is independent of the truth of β if γ is true.” If γ = ⊤, the independence is
unconditional and we denote it by I(α, β).

In a given probability space, the statement (4) is interpreted through condi-
tional independence of events. The following theorem is a direct consequence of
this interpretation.

Theorem 1. Let α, β, β1, β2, and γ be propositions over a language L. Then:
(CI1) If I(α, β|γ), then I(β, α|γ),
(CI2) I(α,⊤|γ),
(CI3) If I(α, β|γ), then I(α,¬β|γ),
(CI4) If β1 ∧ β2 = ⊥, I(α, β1|γ), and I(α, β2|γ), then I(α, β1 ∨ β2|γ),
(CI5) I(α, β|γ) iff I(α, β ∧ γ|γ).

Using the theorem, we can prove that independence of logically related issues
is only possible in the special case when the issues are either true or false.

Proposition 1. Let α and β be two logically related issues. (There are truth
value assignments of α and β that cannot co-exist.) Then I(α, β|γ) iff ℓ(α|γ) = a
or ℓ(β|γ) = b, where a, b ∈ {0, 1}.

4 M. Ivanovska and M. Slavkovik

Given an alphabet L and an agenda Φ, we will call the elements of L∩Φ ba-
sic issues, and the rest of the elements of Φ we call composite issues. As noticed
in [2], it is more intuitive to assume that the agents will have an opinion about
probabilistic independence of the basic issues. This is partly supported by the
above theorem and proposition. Hence, we can limit ourselves to only represent-
ing probabilistic independence judgments over the basic issues in the agenda.
An exception can be made in the conditioning proposition γ in (4) if we, for
example, want to represent context-specific independence, i.e., situations where
only one of I(α, β|γ) and I(α, β|¬γ) holds. For example, we might think that,
given that the candidate is good in research, the probability of good teaching
performance is independent of good community service, I(t, s|r). However, if we
know that the research is not good, then knowing the status of teaching might
change the probability of good service, i.e., I(t, s|¬r) is not the case.

We suggest including judgments about probabilistic independence in the form
of (conditional) independence statements either as: 1. part of the judgment pro-
file, i.e., independence statements given by each agent in addition to its likelihood
judgments; or as 2. aggregation constraints imposed by an agenda setter. In the
first case, the CI statements of each agent should be consistent with its likeli-
hood statements (as an additional rationality requirement of the profile) and they
should be prioritized in the aggregation process: The collective CI statements
are derived first, then the likelihood judgments are updated accordingly, after
which they are aggregated. In the second case, the aggregated CI statements are
applied on the aggregated likelihoods only.

In order to update the likelihoods, similarly as in [7], we introduce the fol-
lowing axiom that connects independence and likelihood formulas:

(LCI) From I(α, β|γ) and ℓ(α|γ) ≥ (≤)a, it follows ℓ(α|β ∧ γ) ≥ (≤)a.

The above axiom together with the other axioms of the logic of likelihood is
used for updating either the individual or the collective likelihood judgements.

4 Conclusions and related work

We introduce a way of representing opinions about probabilistic independence of
events in the probabilistic JA profiles. We suggest methods of aggregation that
prioritize the qualitative information about conditional independence over the
quantitative information about likelihoods of statements, as a more reliable one.

Bradley et al. [1] consider aggregating probabilistic judgments expressed as
causal Bayesian networks. The aggregation is done by first aggregating the in-
dividual graphs into a single one, then refactoring the individual probability
distributions according to the resulting graph, and at last aggregating the re-
spective conditional probability distributions. It is possible to follow their ideas
in order to aggregate the CI information. The axiomatic approach, however,
provides the possibility for representing context-specific independences as well.

Probabilistic JA with Conditional Independence Constraints 5

References

1. Bradley, R., Dietrich, F., List, C.: Aggregating causal judgments. Philosophy of
Science 81(4), 491–515 (2014), http://www.jstor.org/stable/10.1086/678044

2. Dietrich, F., List, C.: Probabilistic opinion pooling generalized. part two: the
premise-based approach. Social Choice and Welfare 39, 787–814 (2017)

3. Dietrich, F., List, C.: Probabilistic opinion pooling. In: Hajek, A., Hitchcock, C.
(eds.) Oxford Handbook of Philosophy and Probability. Oxford: Oxford University
Press (2016)

4. Fagin, R., Halpern, J.Y., Megiddo, N.: A Logic for Reasoning about Probabilities.
Information and Computation 87, 78–128 (1990). https://doi.org/10.1016/0890-
5401(90)90060-U

5. Grossi, D., Pigozzi, G.: Judgment Aggregation: A Primer. Mor-
gan and Claypool Publishers, San Rafael, CA, USA (2014).
https://doi.org/10.2200/S00559ED1V01Y201312AIM027

6. Halpern, J.Y.: Reasoning about uncertainty. MIT Press (2005),
https://mitpress.mit.edu/books/reasoning-about-uncertainty-second-edition

7. Ivanovska, M., Giese, M.: Probabilistic logic with conditional independence for-
mulae. In: Proceedings of ECAI 2010 - 19th European Conference on Artificial
Intelligence. pp. 983–984 (2010). https://doi.org/10.3233/978-1-60750-606-5-983

8. Ivanovska, M., Slavkovik, M.: Aggregating probabilistic judgments. In: Moss,
L.S. (ed.) Proceedings Seventeenth Conference on Theoretical Aspects of Ra-
tionality and Knowledge, TARK 2019. EPTCS, vol. 297, pp. 273–292 (2019).
https://doi.org/10.4204/EPTCS.297.18, https://doi.org/10.4204/EPTCS.297.18

9. Ivanovska, M., Slavkovik, M.: Probabilistic judgement aggregation by opinion up-
date. In: Torra, V., Narukawa, Y. (eds.) Modeling Decisions for Artificial Intel-
ligence - 19th International Conference, MDAI 2022, Sant Cugat, Spain, August
30 - September 2, 2022, Proceedings. Lecture Notes in Computer Science, vol.
13408, pp. 26–37. Springer (2022). https://doi.org/10.1007/978-3-031-13448-7 3,
https://doi.org/10.1007/978-3-031-13448-7 3

10. List, C., Puppe, C.: Judgment aggregation: A survey. In: Anand,
P., Puppe, C., Pattanaik, P. (eds.) The Handbook of Ratio-
nal and Social Choice. Oxford University Press, UK (2009).
https://doi.org/10.1093/acprof:oso/9780199290420.003.0020

ltlf Synthesis Under Environment Specifications
for Reachability and Safety Properties

Benjamin Aminof1, Giuseppe De Giacomo1,2, Antonio Di Stasio2,
Hugo Francon3, Sasha Rubin4, and Shufang Zhu2

1 Sapienza University of Rome, Italy
benj@forsyte.at

2 University of Oxford, UK
{giuseppe.degiacomo, antonio.distasio, shufang.zhu}@cs.ox.ac.uk

3 ENS Rennes, France
hugo.francon@ens-rennes.fr

4 The University of Sydney, Australia
sasha.rubin@sydney.edu.au

Abstract. In this paper, we study ltlf synthesis under environment
specifications for arbitrary reachability and safety properties. We con-
sider both kinds of properties for both agent tasks and environment
specifications, providing a complete landscape of synthesis algorithms.
For each case, we devise a specific algorithm (optimal wrt complexity of
the problem) and prove its correctness. All these algorithms adopt some
common building blocks, though combining them in different ways. While
some cases are already studied in literature others are studied here for
the first time.

1 Introduction

Synthesis under environment specifications consists of synthesizing an agent
strategy (aka plan or program) that realizes a given task against all possible
environment responses (i.e., environment strategies). The agent has some indi-
rect knowledge of the possible environment strategies through an environment
specification, and it will use such knowledge to its advantage when synthesizing
its strategy [1,2,14]. This problem is tightly related to planning in adversarial
nondeterministic domains [11], as discussed, e.g., in [3,8].

In this paper, we study synthesis under environment specifications, consid-
ering both agent task specifications and environment specifications expressed in
Linear Temporal Logic on finite traces (ltlf). These are logics that look at fi-
nite traces or finite prefixes of infinite traces. For concreteness, we focus on ltlf
[9,10], but the techniques presented here extend immediately to other temporal
logics on finite traces, such as Linear Dynamic Logics on finite traces, which is
more expressive than ltlf [9], and Pure-Past ltl, which has the same expres-
siveness as ltl but evaluates a trace backward from the current instant towards
the initial instant [4].

2 Aminof et al.

Linear temporal logics on finite traces provide a nice embodiment of the
notable triangle among Logics, Automata, and Games [12]. These logics are
full-fledged logics with high expressiveness over finite traces, and they can be
translated into classical regular finite state automata; moreover, they can be
further converted into deterministic finite state automata (dfas). This transfor-
mation yields a game represented on a graph. In this game, one can analyze
scenarios where the objective is to reach certain final states. Finally, despite
the fact that producing a dfa corresponding to an ltlf formula can require
double-exponential time, the algorithms involved — generating alternating au-
tomata (linear), getting the nondeterministic one (exponential), determinizing
it (exponential), playing games (poly) — are particularly well-behaved from the
practical computational point of view [15,16,20].

In this paper, however, we consider ltlf specifications in two contexts which
we denote as

∃φ and ∀φ with φ an arbitrary ltlf formula
The first one specifies a reachability property: there exists a finite prefix π<k

of an infinite trace π such that π<k |= φ. This is the classical use of ltlf to
specify synthesis tasks [10]. The second one specifies a safety property: every
finite prefix π<k of an infinite trace π is such that π<k |= φ. This is the classical
use of ltlf to specify environment behaviours [1,6]. The formulas ∀φ and ∃φ with
φ in ltlf capture exactly two well-known classes of ltl properties in Manna
and Pnueli’s Temporal Hierarchy [13]. Specifically, ∃φ captures the co-safety
properties and ∀φ captures the safety properties (in [13], expressed respectively
as ♢ψ and □ψ with ψ an arbitrary Pure-Past ltl formulas, which consider only
past operators.)

We let Env and Task denote an environment specification and a task specifica-
tion, respectively, consisting of a safety (∀φ) and/or reachability property (∃φ).
This gives rise to 12 possible cases: 3 without any environment specifications,
3 with safety environment specifications (∀φ), 3 with reachability environment
specifications (∃φ), and 3 with both safety and reachability environment speci-
fications (∃φ∧∀φ). For each of these, we provide an algorithm, which is optimal
wrt the complexity of the problem, and prove its correctness. When the problem
was already solved in literature, we give appropriate references (e.g., Task = ∃φ
and Env = true is classical ltlf synthesis, solved in [10]). In fact, we handle all
the cases involving reachability in the environment specifications by providing
a novel algorithm that solves the most general case of Env = ∃φ1 ∧ ∀φ2 and
Task = ∃φ3 ∧ ∀φ4.5

All these algorithms use the same common building blocks, though combin-
ing them in different ways: the construction of the dfas of the ltlf formulas,
Cartesian products of such dfas, consider these dfas as the game arena and
play games for reachability/safety objectives. Also, all these problems have a
2EXPTIME-complete complexity. The hardness comes from ltlf synthesis [10],
and the membership comes from the ltlf -to-dfa construction, which domi-

5 In fact, this algorithm can solve all cases, but it’s much more involved compared to
the direct algorithms we provide for each case.

ltlf Synthesis Under Env. for Reach. and Safe. Properties 3

nates the complexity since computing the Cartesian products and solving reach-
ability/safety games is polynomial.6 Towards the actual application of our al-
gorithms, we observe that although the dfas of ltlf formulas are worst-case
double-exponential, there is empirical evidence showing that the determinization
of nfa, which causes one of the two exponential blow-ups, is often polynomial
in the nfa [16,20]. Moreover, in several notable cases, e.g., in all DECLARE
patterns [17], the dfas are polynomial in the ltlf formulas, and so are our
algorithms.

It is worth noting that all the cases studied here are specific Boolean com-
binations of ∃φ and ∀ϕ. It is of interest to indeed devise algorithms to handle
arbitrary Boolean combinations. Indeed, considering that ltlf is expressively
equivalent to pure-past ltl, an arbitrary Boolean combination of ∃φ and ∀ϕ
would correspond to a precise class of ltl properties in Manna & Pnueli’s Tem-
poral Hierarchy [13]: the so-called obligation properties. We leave this interesting
research direction for future work.

2 Problem Description

Reactive Synthesis. Reactive Synthesis (aka Church’s Synthesis) is the problem of
turning a specification of an agent’s task and of its environment into a strategy
(aka policy). This strategy can be employed by the agent to achieve its task,
regardless of how the environment behaves. In this framework, the agent and the
environment are considered players in a turn-based game, in which players move
by picking an evaluation of the propositions they control. Thus, we partition
the set Prop of propositions into two disjoint sets of propositions X and Y, and
with a little abuse of notation, we denote such a partition as Prop = Y ∪ X .
Intuitively, the propositions in X are controlled by the environment, and those
in Y are controlled by the agent. In this work (in contrast to the usual setting
of reactive synthesis), the agent moves first. The agent moves by selecting an
element of 2Y , and the environment responds by selecting an element of 2X . This
is repeated forever, and results in an infinite trace (aka play).

An agent strategy is a function σag : (2X)∗ → 2Y . An environment strategy is
a function σenv : (2Y)+ → 2X . A strategy σ is finite-state (aka finite-memory) if
it can be represented as a finite-state input/output automaton that, on reading
an element h of the domain of σ, outputs the action σ(h). A trace π = (Y0 ∪
X0)(Y1 ∪ X1) . . . ∈ (2Y∪X)ω follows an agent strategy σag : (2X)∗ → 2Y if
Y0 = σag(ϵ) and Yi+1 = σag(X0X1 . . . Xi) for every i ≥ 0, and it follows an
environment strategy σenv if Xi = σenv(Y0Y1 . . . Yi) for all i ≥ 0. We denote
the unique infinite sequence (play) that follows σag and σenv as play(σag, σenv).
Let P be a property over the alphabet Σ = 2Prop , specified by formula or da.
An agent strategy σag (resp., environment strategy σenv) enforces P if for every
environment strategy σenv (resp., agent strategy σag), we have that play(σag, σenv)
is in P . In this case, we write σag ▷ P (resp. σenv ▷ P). We say that P is agent
6 For pure-past ltl, obtaining the dfa from a pure-past ltl formula is single exponen-

tial [4], and indeed the problems and all our algorithms become EXPTIME-complete.

4 Aminof et al.

(resp., environment) realizable if there is an agent (resp. environment) strategy
that enforces P .

Synthesis under Environment Specifications. Typically, an agent has some
knowledge of how the environment works, represented as a fully observable model
of the environment, which it can exploit to enforce its task [2]. Formally, let Env
and Task be properties over alphabet Σ = 2Prop , denoting the environment
specification and the agent task, respectively.

Note that while the agent task Task denotes the set of desirable traces from
the agent’s perspective, the environment specification Env denotes the set of en-
vironment strategies that describe how the environment reacts to the agent’s
actions (no matter what the agent does) in order to enforce Env. Specifically,
Env is treated as a set of traces when we reduce the problem of synthesis under
environment specification to standard reactive synthesis. We require a consis-
tency condition of Env, i.e., there must exist at least one environment strategy
that enforces Env.

An agent strategy σag enforces Task under the environment specification Env,
written σag ▷Env Task, if for all σenv ▷ Env we have that play(σag, σenv) |= Task.
Note that if Env = true then this just says that σag enforces Task.

In [2] is shown that for any linear-time property, synthesis under environment
specifications can be reduced to synthesis without environment specifications.
Thus, in order to show that Task is realizable under Env it is sufficient to show
that Env→Task is realizable. Moreover, to solve the synthesis problem for Task
under Env, it is enough to return a strategy that enforces Env→ Task.

In this work, we provide a landscape of algorithms for ltlf synthesis con-
sidering reachability and safety properties for both agent tasks and environment
specifications. However, these synthesis problems are complex and challenging
due to the combination of reachability and safety properties. To tackle this issue,
one possible approach is to reduce ltlf synthesis problems to ltl synthesis prob-
lems through suitable translations, e.g., [5,7,18,19]. However, there is currently
no methodology for performing such translations when considering combinations
of reachability and safety properties.

Additionally, synthesis algorithms for ltl specifications are generally more
challenging than those for ltlf specifications, both theoretically and practi-
cally [6,7,18,19]. In this work, we show that for certain combinations, we can
avoid the detour to ltl synthesis and keep the simplicity of ltlf synthesis.
Specifically, we consider that Task and Env take the following forms:

∃φ1,∀φ1,∃φ1 ∧ ∀φ2 where the φi are ltlf formulas,

and in addition we consider the case of no environment specification (formally,
Env = true). This results in 12 combinations. The algorithms developed in this
work optimally solve all the combinations.

ltlf Synthesis Under Env. for Reach. and Safe. Properties 5

References

1. Benjamin Aminof, Giuseppe De Giacomo, Aniello Murano, and Sasha Rubin. Plan-
ning and synthesis under assumptions. CoRR, 2018.

2. Benjamin Aminof, Giuseppe De Giacomo, Aniello Murano, and Sasha Rubin. Plan-
ning under LTL environment specifications. In ICAPS, pages 31–39, 2019.

3. Alberto Camacho, Meghyn Bienvenu, and Sheila A. McIlraith. Towards a unified
view of AI planning and reactive synthesis. In ICAPS, pages 58–67, 2019.

4. Giuseppe De Giacomo, Antonio Di Stasio, Francesco Fuggitti, and Sasha Rubin.
Pure-past linear temporal and dynamic logic on finite traces. In IJCAI, pages
4959–4965, 2020.

5. Giuseppe De Giacomo, Antonio Di Stasio, Giuseppe Perelli, and Shufang Zhu.
Synthesis with mandatory stop actions. In KR, pages 237–246, 2021.

6. Giuseppe De Giacomo, Antonio Di Stasio, Luca M. Tabajara, Moshe Y. Vardi,
and Shufang Zhu. Finite-trace and generalized-reactivity specifications in temporal
synthesis. In IJCAI, pages 1852–1858, 2021.

7. Giuseppe De Giacomo, Antonio Di Stasio, Moshe Y. Vardi, and Shufang Zhu. Two-
stage technique for LTLf synthesis under LTL assumptions. In KR, pages 304–314,
2020.

8. Giuseppe De Giacomo and Sasha Rubin. Automata-theoretic foundations of FOND
planning for LTLf and LDLf goals. In IJCAI, pages 4729–4735, 2018.

9. Giuseppe De Giacomo and Moshe Y. Vardi. Linear Temporal Logic and Linear
Dynamic Logic on Finite Traces. In IJCAI, pages 854–860, 2013.

10. Giuseppe De Giacomo and Moshe Y. Vardi. Synthesis for LTL and LDL on Finite
Traces. In IJCAI, pages 1558–1564, 2015.

11. Hector Geffner and Blai Bonet. A Coincise Introduction to Models and Methods
for Automated Planning. Morgan&Claypool, 2013.

12. Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata, Logics,
and Infinite Games: A Guide to Current Research [outcome of a Dagstuhl seminar,
February 2001], volume 2500 of Lecture Notes in Computer Science. Springer, 2002.

13. Zohar Manna and Amir Pnueli. A hierarchy of temporal properties. In PODC,
pages 377–410, 1990.

14. Amir Pnueli and Roni Rosner. On the Synthesis of a Reactive Module. In POPL,
pages 179–190, 1989.

15. Lucas M. Tabajara and Moshe Y. Vardi. Ltlf synthesis under partial observability:
From theory to practice. In GandALF, volume 326 of EPTCS, pages 1–17, 2020.

16. Deian Tabakov and Moshe Y. Vardi. Experimental evaluation of classical automata
constructions. In LPAR, volume 3835 of Lecture Notes in Computer Science, pages
396–411, 2005.

17. Michael Westergaard. Better algorithms for analyzing and enacting declarative
workflow languages using LTL. In BPM, volume 6896 of Lecture Notes in Computer
Science, pages 83–98, 2011.

18. Shufang Zhu, Giuseppe De Giacomo, Geguang Pu, and Moshe Y. Vardi. LTLf

synthesis with fairness and stability assumptions. In AAAI, pages 3088–3095,
2020.

19. Shufang Zhu, Lucas M. Tabajara, Jianwen Li, Geguang Pu, and Moshe Y. Vardi.
Symbolic LTLf Synthesis. In IJCAI, pages 1362–1369, 2017.

20. Shufang Zhu, Lucas M. Tabajara, Geguang Pu, and Moshe Y. Vardi. On the
power of automata minimization in temporal synthesis. In GandALF, volume 346
of EPTCS, pages 117–134, 2021.

Reasoning about Exceeding Risk Threshold⋆

Maksim Gladyshev, Natasha Alechina, Mehdi Dastani, and Dragan Doder

Utrecht University, Utrecht, The Netherlands
{m.gladyshev, n.a.alechina, m.m.dastani, d.doder}@uu.nl

Abstract. The problem of tracing the responsibility for unsafe out-
comes to decision-making actors in multi-agent systems is urgent. While
all existing approaches focus on deterministic outcomes, assuming that
(a group of) agents can be held responsible for φ only if φ actually hap-
pens and agents could act differently to prevent φ, we find this notion
of responsibility insufficient in many scenarios. In this work we combine
coalition ability operator [G] from [12] with a probabilistic operator Lα

from [5] that allow us to reason about probabilities and their changes.
This approach allows us to claim that a group of agents can be held
responsible for the unsafe outcome even if this outcome does not actu-
ally happen, but the group has caused its probability to be increased
to an (unacceptably) high level. The proposed logic could be useful for
analysing and assigning responsibility to groups of agents for their risky
and unsafe behaviors. Finally, we establish (weak) completeness and de-
cidability results for the proposed logic.

Keywords: Risk · Probabilistic Logic · Coalition Logic.

1 Introduction

Safety of AI systems is a well-recognised and important concern. In multi-agent
settings, where autonomous agents interact in complex ways, it is important to
not only be able to determine whether an unsafe outcome is possible in principle,
but also, when such an outcome occurs, determine why it occurred, which ac-
tions by which agents have caused it, and whether it could have been prevented.
The existing approaches [13, 10] assume that the responsibility for an (unsafe or
undesirable) outcome can be assigned to a group of agents if the (unsafe or un-
desirable) outcome actually holds. However, unsafe outcomes are not necessarily
the states of affairs where a bad event has actually happened, but also the states
of affairs where the probability that the bad event happens is unacceptably high.

In order to formally investigate this broad notion of responsibility, we propose
and investigate a logic combining coalition ability operator from [12] with a
probabilistic operator from [5] that allow reasoning about probabilities and their
changes. In this logic, we can express that the probability of an event is greater

⋆ The extended version of this paper will appear in the proceedings of 20th Interna-
tional Conference on Principles of Knowledge Representation and Reasoning.

2 M. Gladyshev et al.

than a certain number. This allows us to analyse various aspects of AI systems
that involve reasoning about risks and probabilistic uncertainty in general.

This paper belongs to a large body of work on combining modalities in order
to analyse AI systems. There are well-known logics that combine temporal and
probabilistic modalities as well as temporal and strategic. Recently, logics com-
bining strategic modalities with probabilities have also been proposed, but they
concentrate on probabilities of the outcomes of actions and strategies, rather
than strategies to enforce a particular probability distribution [3, 11, 6, 9, 2].

2 Logic for Reasoning about Risk

2.1 Models

Definition 1 (CGS, pointed). A concurrent game structure (CGS) is a tu-
ple Γ = (AG, S,Act, d, o), comprising a nonempty finite set of all agents AG ={1, . . . , k}, a nonempty finite set of states S, where S0 ⊆ S denotes the set
of initial states, and a nonempty finite set of (atomic) actions Act. Function
d ∶ AG × S Ð→ P(Act)/{∅} defines nonempty sets of actions available to agents
at each state, and o is a (deterministic) transition function that assigns the out-
come state s′ = o(s, (α1, . . . , αk)) to a state s and a tuple of actions (α1, . . . , αk)
with αi ∈ d(i, s) and 1 ≤ i ≤ k, that can be executed by AG in s. For αG that
is an action profile of a non-grand coalition G ⊂ AG, o(s,αG) is defined as the
set containing all outcomes of αG completed by actions of agents outside the
coalition. A pointed CGS is given by (Γ, s), where Γ is a CGS and s is a state
in it.

Given a CGS Γ , a positional (memoryless) strategy for an agent a ∈ AG or
a-strategy, is a function stra ∶ S Ð→ d(a,S). Given a coalition G = {a1, . . . , am},
a positional strategy strG = ⟨stra1 , . . . , stram⟩ maps each state from S to a tuple
of actions ⟨stra1(s), . . . , stram(s)⟩.

A modelM= (AG, S,Act, d, o,Past, P, V) of our logic is a CGS endowed with
a temporal relation Past, a probability function P and a valuation function V .
For a temporal relation Past ⊆ S × S we use s′ ∈ Past(s) to denote sPasts′, i.e.
s′ is one-step reachable from s by Past relation. We require that ∀s, x, y ∈ S ∶
if x ∈ Past(s) and y ∈ Past(s), then x = y i.e., each state has at most one
temporal predecessor. By this reason we can use s′ ∈ Past(s) and s′ = Past(s)
interchangeably. We use this extension to ensure that given a state s ∈ S we
can always identify the unique previous state s′ = Past(s). This assumption is
important since verifying responsibility requires evaluating strategic power of
the agents on the previous step. To guarantee that this temporal relation Past
and a transition function o are aligned, we impose the following constraints:

R0 ∀s ∈ S, s0 ∈ S0 ∶ s0 ≠ o(s, strAG) for any strategy strAG
R1 ∀s, s′ ∈ S ∶ s′ ∈ Past(s), then s ∉ S0

R2 s ∉ S0 ⇒ ∃s′ ∈ S ∶ s′ ∈ Past(s)
R3 s′ ∈ Past(s) ⇒ ∃strAG, s = o(s′, strAG)

Reasoning about Exceeding Risk Threshold 3

Intuitively, R0 states that the grand coalition cannot enforce an initial state.
R1 means that initial states have no past. Property R2 means that non-initial
states have a past. And R3 implies that if s′ is the past of s, then the grand
coalition must be able to move from s′ to s. As a result of this semantic choice
each initial state s0 ∈ S0 generates a tree of transitions: each state has a unique
Past predecessor and a non-empty set of o-successors.

We also require that our model is also endowed with a probability function
P ∶ S ↦ (2S ↦ [0,1]) assigning each state with a probability measure on S.
Every P (s) must satisfy the following conditions for all s ∈ S:
P1 P (s)(S) = 1,
P2 P (s)(∅) = 0,
P3 P (s) is (finitely) additive, i.e.

P (s)(⋃
0≤i≤mXi) = ∑

0≤i≤mP (s)(Xi),
where Xi ∩Xj = ∅ for any i ≠ j,

P4 P (s) is reflexive, i.e. P (s)({s}) > 0,
P5 P (s)({s′}) > 0 implies P (s) = P (s′).
The first three conditions are standard properties of probability, and reflexivity
(the actual state of affairs has a non-zero probability) is a natural property of
probability measure associated with states. Condition P5 enforces the fact that
given a state s ∈ S and another state s′ ∈ S, such that s assigns s′ a non-negative
probability (i.e. s′ belongs to the support set of S), it holds that s and s′ share
the same counterfactual probabilistic information, so P (s) = P (s′). Finally, V is
a standard valuation function V ∶ PropÐ→ 2S .

2.2 Language and Semantics

In this section we introduce a logic for reasoning about group responsibility for
taking risk denoted GRR.

Definition 2 (Language). The language of GRR is defined by the following
grammar

φ ∶∶= p ∣ ¬φ ∣ φ ∧ φ ∣ Lαφ ∣ [G]φ ∣ ⊟φ,
where p ranges over Prop ∪ {init}, G ranges over 2AG and α ∈ Q ∩ [0,1].
We use this special proposition variable init to distinguish initial states.

Lαφ operator means “probability of φ is at least α”. Derived operators Mαφ
“probability of φ is at most α” and Iαφ “probability of φ is equal (identical) to
α” can be defined as Mαφ ≡ L1−α¬φ and Iαφ ≡ Lαφ ∧Mαφ respectively. It also
follows that ¬Lαφ and ¬Mαφ can be read as ’probability of φ is strictly smaller
than α’ and ’probability of φ is strictly greater than α’ respectively. Formula[G]φ reads as “group G can enforce φ to be true” and the formula ⊟φ reads as
“φ was true at the previous step”. The Boolean connectives ∨,→,↔,� and ⊺ are
defined in the usual manner using ¬ and ∧. The dual operator for ⊟ is defined
in the standard way: ◇−φ ≡ ¬ ⊟ ¬φ.

4 M. Gladyshev et al.

Axioms: (A2) Lα⊺
(Taut) All propositional tautologies (A5) Lαφ→ ¬Lβ¬φ, where α + β > 1
(CL1) ¬[G]� (A8) ¬Lαφ→Mαφ
(CL2) [G]⊺ (T) L1φ→ φ
(CL3) ¬[∅]¬φ→ [AG]φ (4’) Lαφ→ L1Lαφ
(CL4) [G](φ ∧ ψ) → [G]φ (5’) ¬Lαφ→ L1¬Lαφ
(CL5) [G1]φ ∧ [G2]ψ → [G1 ∪G2](φ ∧ ψ), Rules:

where G1 ∩G2 = ∅ (MP) From φ and φ→ ψ, infer ψ
(CL6) ¬[AG]init (Eq) From φ↔ ψ, infer [G]φ↔ [G]ψ
(K⊟) ⊟(φ→ ψ) → (⊟φ→ ⊟ψ) (Nec⊟) From φ, infer ⊟φ
(U⊟) ◇−φ→ ⊟φ (A6) From φ↔ ψ infer Lαφ↔ Lαψ
(1⊟) init→ ⊟� (B) From (φ1, . . . , φm) ↔ (ψ1, . . . , ψn),
(2⊟) ¬init→◇− ⊺ infer

m⋀
i=1Lαiφi ∧ n⋀

j=2Mβjψj → Lγψ1,

(3⊟) ¬init ∧ φ→ ⊟[AG]φ where
(A1) L0φ γ = (α1 + ⋅ ⋅ ⋅ + αm) − (β2 + ⋅ ⋅ ⋅ + βn)

Table 1. The proof system for GRR.

Definition 3 (Semantics). Given a model M and a state s ∈ S we define ⊧
relation in the following way:M, s ⊧ p iff s ∈ V (p);M, s ⊧ ¬φ iffM, s ⊭ φ;M, s ⊧ φ ∧ ψ iffM, s ⊧ φ andM, s ⊧ ψ;M, s ⊧ [G]φ iff there is a strategy strG for G, such that for all s′ ∈ o(s, strG) it
holds thatM, s′ ⊧ φ;M, s ⊧ Lαφ iff P (s)([φ]M) ≥ α1;M, s ⊧ ⊟φ iff ∀s′ ∈ Past(s) ∶M,s′ ⊧ φ.

Now, we can establish the following results. The detailed overview can be
found in the extended version of this paper.

Theorem 1 (Completeness). Logic GRR is complete, i.e. ⊧ φ iff ⊢GRR φ.
Theorem 2 (Decidability). The satisfiability problem for GRR is decidable.

3 Conclusion and Future Work

Our work also has some limitations that inspire directions for future research. We
build GRR over a Coalition logic CL which is essentially a Next-fragment of ATL
logic [1]. The choice of the use of Coalition logic was to consider strategic ability
in the simplest abstract setting. Other work, e.g., Yazdanpanah et al. [13], have
used ATL to define a group of agents responsible for an outcome if the group
had an alternative to prevent the outcome at some point in the past. Another
direction of future research is incorporating imperfect information in the spirit
of [7, 8, 4, 10]. This however involves solving the problem of axiomatising CL or
ATL under the strongly uniform strategies semantics.

1 Here [φ]M abbreviates for {s ∈ S ∣ M, s ⊧ φ}.

Reasoning about Exceeding Risk Threshold 5

References

1. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic.
J. ACM 49(5), 672–713 (sep 2002). https://doi.org/10.1145/585265.585270,
https://doi.org/10.1145/585265.585270

2. Aminof, B., Kwiatkowska, M., Maubert, B., Murano, A., Rubin, S.: Probabilistic
strategy logic. In: Kraus, S. (ed.) Proceedings of the Twenty-Eighth International
Joint Conference on Artificial Intelligence, IJCAI 2019. pp. 32–38 (2019)

3. Bulling, N., Jamroga, W.: What agents can probably enforce. Fundam. Informat-
icae 93(1-3), 81–96 (2009)

4. Fervari, R., Herzig, A., Li, Y., Wang, Y.: Strategically knowing how. In: Pro-
ceedings of the Twenty-Sixth International Joint Conference on Artificial Intelli-
gence, IJCAI-17. pp. 1031–1038 (2017). https://doi.org/10.24963/ijcai.2017/143,
https://doi.org/10.24963/ijcai.2017/143

5. Heifetz, A., Mongin, P.: Probability logic for type spaces. Games and economic
behavior 35(1-2), 31–53 (2001)

6. Huang, X., Su, K., Zhang, C.: Probabilistic alternating-time temporal logic of
incomplete information and synchronous perfect recall. In: Hoffmann, J., Selman,
B. (eds.) Proceedings of the Twenty-Sixth AAAI. AAAI Press (2012)

7. Jamroga, W.: Some remarks on alternating temporal epistemic logic. In: Dunin-
Keplicz, B., Verbrugge, R. (eds.) Proceedings of Formal Approaches to Multi-Agent
Systems (FAMAS 2003). pp. 133–139 (2003)

8. Jamroga, W., van der Hoek, W.: Agents that know how to play. Fundamenta
Informaticae 63(2-3), 185–219 (2004)

9. Naumov, P., Tao, J.: Knowing-how under uncertainty. Artificial Intel-
ligence 276, 41–56 (2019). https://doi.org/10.1016/j.artint.2019.06.007,
https://doi.org/10.1016/j.artint.2019.06.007

10. Naumov, P., Tao, J.: An epistemic logic of blameworthiness. Artificial Intelligence
283, 103269 (2020). https://doi.org/https://doi.org/10.1016/j.artint.2020.103269

11. Novák, P., Jamroga, W.: Agents, actions and goals in dynamic environments. In:
Twenty-Second International Joint Conference on Artificial Intelligence (2011)

12. Pauly, M.: A Modal Logic for Coalitional Power in Games. Journal of Logic and
Computation 12(1), 149–166 (02 2002). https://doi.org/10.1093/logcom/12.1.149,
https://doi.org/10.1093/logcom/12.1.149

13. Yazdanpanah, V., Dastani, M., Jamroga, W., Alechina, N., Logan, B.: Strategic re-
sponsibility under imperfect information. In: Proceedings of the 18th International
Conference on Autonomous Agents and MultiAgent Systems. p. 592–600. AAMAS
’19, International Foundation for Autonomous Agents and Multiagent Systems,
Richland, SC (2019)

First order synthesis for data words revisited

Julien Grange1[0009−0005−0470−1781] and Mathieu Lehaut2[0000−0002−6205−0682]

1 Univ Paris Est Creteil, LACL, F-94010 Creteil, France
julien.grange@lacl.fr

2 University of Gothenburg, Sweden
lehaut@chalmers.se

Abstract. We carry on the study of the synthesis problem on data
words for fragments of �rst order logic, and delineate precisely the border
between decidability and undecidability.3

The reactive synthesis problem, dating back to Church [4], is about generat-
ing a correct-by-construction program with respect to a given speci�cation. It is
often formulated as a two-player game between an uncontrollable Environment
and the System that alternate picking an input and an output letter respectively.
This creates an in�nite execution, and the goal of the System is to make every ex-
ecution satisfy the speci�cation, whatever Environment does. If the System has
a strategy to ensure this result, it then corresponds to a program that is sure to
respect the speci�cation. The original problem is decidable and was solved by
Büchi and Landweber [3], and several improvements and extensions have since
been studied. However, it only encompasses �nite alphabets, which are inade-
quate for representing executions of distributed systems involving a number of
processes which is not �xed; this occurs in communication protocols, distributed
algorithms, multi-agent systems, swarm robotics, or with ad-hoc networks.

We thus consider an extension of this problem that deals with alphabets
whose size is not �xed. For that, we use data words, introduced in [2], to represent
executions. System and Environment have disjoint �nite sets of actions AS and
AE. As for the processes, we distinguish between processes from PSE that can
be activated by both players, and processes from PS (resp. PE) that can only
be played by System (resp. Environment). These sets of processes are �nite,
but their size is unbounded. A data word is a �nite or in�nite sequence w =
(a0, p0)(a1, p1) . . . over AS × (PS ∪ PSE) ∪ AE × (PE ∪ PSE).

It remains to choose a formalism to express the speci�cation that should
be satis�ed by System. As always, there is a trade o� between expressiveness
of the formalism and tractability of the synthesis problem. Many speci�cation
languages for data words have been studied, and the synthesis problem has
been studied for some of them, such as register automata [6] and the Logic of
Repeating Values [5]. Here we follow the steps of [1] and consider �rst order logic
FO and its fragment FO2 where only two reusable variables are allowed. A data
word is seen as a structure whose domain is the set of all the positions (ai, pi),

3 A longer version of this paper is available on arXiv.

2 J. Grange and M. Lehaut

with a binary predicate ∼ such that x ∼ y if the two positions x and y belong
to the same process. On top of that, we consider the binary relations < and +1,
corresponding to the order and the successor in the sequence. Moreover, a unary
predicate is introduced for each action from AS and AE, to mark the positions
where this action has been played. On this basis, we consider a variety of logics
FO[∼], FO2[∼, <,+1], FO2[∼, <], etc., depending on which binary predicates
are allowed.

A strategy for System is a function S that, given a �nite data word (repre-
senting the history of the game), outputs some move in AS× (PS∪PSE)∪{ε}. A
data word w is said to be an S-compatible execution if each move from System
in w is consistent with S wrt. the history preceding this position; furthermore
if w is �nite, S(w) = ε. With this de�nition we intuitively allow Environment
to block System from playing anytime Environment wants to play, which could
potentially be forever. To prevent pathological cases, we will consider only fair

executions: if during the execution, System asked in�nitely often to make an
action (di�erent from ε), then the execution has in�nitely many actions from
System. Finally, we say that S is winning if all executions that are S-compatible
and fair satisfy φ.

In this paper we focus on two speci�c con�gurations for processes: when all
processes are shared, and when they are partitioned between players. We say
that the processes are shared when PS = PE = ∅, i.e. when all processes can
be a�ected both by System and Environment. The synthesis problem for logic
L with shared processes is denoted by SharedSynth(L): it amounts, given an
alphabet AS ∪ AE of actions and a formula φ ∈ L, to decide whether there
exists a �nite set of processes PSE and a winning strategy S for φ. Since the
identity of the shared processes does not matter and only the cardinality of PSE

is relevant, we say in that case that S is a |PSE|-winning strategy for φ. On the
other hand, we say that the processes are partitioned if PSE = ∅. In that case,
each player has their own pool of processes on which they can play, but that
their opponent cannot use. The synthesis problem for logic L with partitioned
processes is denoted PartSynth(L). As above, it is the problem of deciding,
given AS ∪ AE and φ ∈ L, whether System has a winning strategy for φ with
PSE = ∅ and some arbitrary �nite sets PS and PE. Similarly, we say in that case
that S is a (|PS|, |PE|)-winning strategy for φ.

Boja«czyk et al. [2] proved that the satis�ability problem for FO2[∼, <,+1]
on data words is decidable. Note that this corresponds to the synthesis problem
for FO2[∼, <,+1] when both PE and PSE are empty. They also showed that as
soon as a third variable is available, this problem becomes undecidable, even
without the order (i.e. for FO3[∼,+1]). Decidability of the satis�ability problem
for the two-variable logic in this setting is what prompted Bérard et al. to con-
sider the synthesis problem on data words, for several fragments of �rst order
logic [1]. They proved that the synthesis problem for FO[∼] is decidable in the
partitioned case [1], but where the number of Environment processes is �xed. In
contrast, they established undecidability results for FO[∼] and FO

2[∼, <,+1]
when processes are shared.

First order synthesis for data words revisited 3

We summarize the contributions of this paper in the following table, in bold
font. Results from [1] are also mentioned. As can be seen, we bridge all the gaps
left open by [1].

Logic \ Processes Partitioned Shared

FO
2[∼] decidable (Th 1) undecidable (Th 3)

FO[∼] decidable (Th 1) undecidable [1]
FO

2[∼, <] undecidable (Th 2) undecidable (Th 3)
FO

2[∼,+1] undecidable (Th 2) undecidable (Th 3)
FO

2[∼, <,+1] undecidable (Th 2) undecidable [1]

FO[∼] with processes partitioned between players

First, we turn to the case where processes are partitioned between System and
Environment. It has been shown in [1] that in that case, the synthesis problem
for FO[∼] is decidable when System has an arbitrary number of processes, but
Environment only has access to a �xed number of processes. We extend this
result by lifting this restriction:

Theorem 1. PartSynth(FO[∼]) is decidable.

The idea of the proof is to show that beyond a certain threshold (which depends
only on the formula), having access to more processes in PE is always a boon for
the Environment. Note that this is note true for small cardinalities of PE: it is
not hard to design a game where Environment wins if PE = ∅ but loses as soon as
|PE| ≥ 1. We then use a result from [1] stating that for a �xed nE , if System has
an (nS , nE)-winning strategy then they already has such a strategy for a small
nS wrt. nE . Combining both results, we reduce the search for a winning strategy
for φ to some �nite (and computable) set [0, nS]× [0, nE]. To conclude the proof,
note that when the number of processes is �xed, the synthesis problem on data
words reduces to the (decidable [3]) synthesis problem on words, by duplicating
each letter from AS (resp. AE) for each process in PS (resp. PE).

Undecidability results

As soon as we are able to compare the relative positions of two processes, syn-
thesis becomes undecidable, even when restricting ourselves to the two-variable
setting, and when having access only to one positional relation (< or +1):

Theorem 2. Both PartSynth(FO2[∼, <]) and PartSynth(FO2[∼,+1]) are

undecidable.

We prove this theorem by reduction from the halting problem for two-counter
Minsky machines. Given such a machine M , we exhibit a formula φM , com-
putable from M , such that there exists a halting run for M i� System has an
(nS , 1)-winning strategy for φM for some nS ∈ N.

Environment has two letters okE and koE , while System has a letter for each
state and transition of M , as well as letters inc0, dec0, inc1, dec1, noop, okS and

4 J. Grange and M. Lehaut

koS . Let us give an example of a data word encoding a halting run. Suppose

that M has two counters c0 and c1, states {q0, q1, q2, qh} and t0 : q0
c0++−−−→ q0,

t1 : q0
c0−−−−−→ q1, t2 : q1

c0−−−−−→ q2 and t3 : q2
c0==0−−−−→ qh

The halting run (t0 · t0 · t1 · t2 · t3) of M could be represented as the following
data word, where we denote System's processes by integers, and Environment's
process as •.

(0, okS)(•, okE)(0, q0)(0, t0)(0, inc0)(0, okS)(•, okE)
(0, q0)(0, t0)(1, inc0)(0, okS)(•, okE)
(0, q0)(0, t1)(0, dec0)(0, okS)(•, okE)
(0, q1)(0, t2)(1, dec0)(0, okS)(•, okE)
(0, q2)(0, t3)(0, noop)(0, okS)(•, okE)(0, qh)

We encode the run with a succession of (_, q)(_, t)(_, l)(_, okS)(_, okE) where
l is either noop, an inci or a deci. Eventually, the data word stops in the halting
state qh. At any point during the run, the value of c0 is equal to the number of
System processes on which an inc0 has been played, but no dec0. Thus, following
a transition increasing a counter, φM will force System to play an inci on a new
process. Similarly, after each transition decreasing a counter, System will have
to play a deci on a process on which an inci has been played, but no deci yet.
When the transition is a zero-check, φM grants Environment an immediate win
if there exists a process on which an inci and no deci have been played.

If System tries to cheat, then Environment immediately responds by playing
koE , and conversely System plays koS when detecting a fraud from Environment.
Once a koE or koS has been played, φM checks whether the ko is justi�ed. If
the other player was indeed cheating, then the player who ko'ed wins, otherwise
they lose. With a bit of care, one can write sentences enforcing these rules both
in FO2[∼, <] and FO2[∼,+1].

When processes are shared, things are worse: SharedSynth(FO[∼]) was
shown to be undecidable in [1]. This result actually extends to FO2[∼] as well.

Theorem 3. SharedSynth(FO2[∼]) is undecidable.

Conclusion

In this paper, we have answered the questions left open in [1]. It appears that
when positions between two processes can be compared, the synthesis problem
quickly becomes undecidable. As a next step, it thus seems natural to consider
the case of partitioned processes for an intermediate logic between FO2[∼] and
FO

2[∼, <]: FO2[≲], where one can compare only positions pertaining to the
same process.

References

1. Bérard, B., Bollig, B., Lehaut, M., Sznajder, N.: Parameterized synthesis for frag-
ments of �rst-order logic over data words. In: Foundations of Software Science and
Computation Structures FOSSACS. Springer (2020)

First order synthesis for data words revisited 5

2. Bojanczyk, M., Muscholl, A., Schwentick, T., Segou�n, L., David, C.: Two-variable
logic on words with data. In: 21th IEEE Symposium on Logic in Computer Science
LICS. IEEE Computer Society (2006)

3. Büchi, J.R., Landweber, L.H.: Solving sequential conditions by �nite-state strate-
gies. Transactions of the American Mathematical Society 138, 295�311 (Apr 1969)

4. Church, A.: Applications of recursive arithmetic to the problem of circuit synthesis.
In: Summaries of the Summer Institute of Symbolic Logic � Volume 1. pp. 3�50.
Institute for Defense Analyses (1957)

5. Figueira, D., Praveen, M.: Playing with repetitions in data words using energy
games. In: Dawar, A., Grädel, E. (eds.) Proceedings of the 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12,
2018. pp. 404�413. ACM (2018). https://doi.org/10.1145/3209108.3209154

6. Khalimov, A., Maderbacher, B., Bloem, R.: Bounded synthesis of register transduc-
ers. In: Lahiri, S.K., Wang, C. (eds.) Automated Technology for Veri�cation and
Analysis - 16th International Symposium, ATVA 2018, Los Angeles, CA, USA, Oc-
tober 7-10, 2018, Proceedings. Lecture Notes in Computer Science, vol. 11138, pp.
494�510. Springer (2018). https://doi.org/10.1007/978-3-030-01090-4_29

Failure Handling in BDI Plans
via Runtime Enforcement

Angelo Ferrando1[0000−0002−8711−4670] and Rafael C.
Cardoso2[0000−0001−6666−6954]

1 University of Genoa, Italy
angelo.ferrando@unige.it

2 University of Aberdeen, United Kingdom
rafael.cardoso@abdn.ac.uk

1 Introduction

Engineering a software system can be a complex process. This is especially true
when the system under consideration presents some degree of autonomy. In the
context of Multi-Agent Systems (MAS), multiple entities called agents are pro-
grammed and deployed in a distributed fashion to solve various types of tasks.

In this paper, we consider MAS designed and developed following the princi-
ples of the Belief Desire Intention (BDI) model [10]. We choose the BDI model
because it is one of the most popular architectures for the development of MAS.
The BDI model is part of the symbolic approaches to Artificial Intelligence (AI)
development, hence it expects the developer to fully specify how an agent be-
haves. This is obtained by defining, beliefs, goals, and especially plans, which
denote – step by step – the agent’s reasoning process. Through such plans,
the developer has complete control over the agent. However, the resulting pro-
gramming process is not trivial. BDI languages, such as AgentSpeak(L) [9], are
notoriously different from traditional programming languages and usually come
with a steep learning curve. The process of testing [12], debugging [13], and ver-
ifying [7], such systems can be quite complex. When these BDI languages are
applied to safety-critical scenarios, in which an error can be costly, any solution
which may make the BDI development more reliable is of uttermost importance.

The main idea of this work is to use Runtime Verification (RV) [2] as a way
to enforce safety properties [1] on BDI agents. These properties can only be vi-
olated at runtime, which means the resulting monitor can only report negative
and inconclusive verdicts. This is due to the fact that safety properties are sat-
isfied only by infinite traces of events, and at runtime we only have access to
finite traces. BDI agents can be applied to dynamic scenarios, where it may be
difficult to guarantee that their behaviour will always be consistent with the de-
velopers’ expectations. Runtime verification is usually more focused on detecting
unexpected behaviours, rather than enforcing the system to actually behave in
a correct way. Enforcing a behaviour leads to Runtime Enforcement [8].

We synthesise runtime monitors (called safety shields) to enforce the correct
behaviour of existing BDI agents. In this paper, we summarise the main features

2 A. Ferrando and R. C. Cardoso

of such safety shields, along with their generation and integration into the BDI
architecture. A safety shield works as a sandbox for the agent. Every command
(actions, addition/removal of beliefs, and so on) performed in the agent’s shielded
plans are checked by their respective safety shields before being executed. In this
way, in case the command would violate the safety specification, the safety shield
can intervene and stop such command from being completed.

2 AgentSpeak(L) operational Semantics

An AgentSpeak(L) configuration C is a tuple ⟨I, E,A,R,Ap, ι, ρ, ϵ⟩ where: I is
the set of intentions {i, i′, . . .}. Each intention i is a stack of partially instantiated
plans [p1|p2 . . . pn]. We use the | symbol to separate plans in an intention. E is
a set of events {⟨te, i⟩, ⟨te′, i′⟩, . . .}. Each event is a pair ⟨te, i⟩, where te is a
triggering event and the intention i are plans associated with te. A is a set of
actions {⟨a, i⟩, ⟨a′, i′⟩, . . .}. Each event is a pair ⟨a, i⟩, where a is an action and
the intention i are plans associated with a. R is a set of relevant plans. Ap is
a set of applicable plans. ι, ϵ and ρ keep the record of a particular intention,
event and applicable plan (respectively) being considered in the current agent’s
reasoning cycle. This notation is similar to the ones presented in [9, 11, 5].

To keep the notation compact, we adopt the following notations: (i) if C is an
AgentSpeak(L) configuration, we write CE to make reference to the component
E of C (same for the other components of C); (ii) we write Cι = to indicate
there is no intention considered in the agent’s execution (same for Cρ and Cϵ);
(iii) we write i[p] to denote the intention that has p on its top.

3 Safety Shields

In this section, we introduce the notion of safety shields for the BDI model.
Specifically, we extend the standard AgentSpeak(L) operational semantics (i.e.,
the inference rules). Due to space constraints, we present only some of the rules
that need to be extended.

A shield is a component which can be attached to an agent’s plan to check
whether such plan violates a formal specification during its execution. In such
case, the shield enforces the plan to conform.

Safety Shield Specification The first aspect to tackle is how, and when, a safety
shield is specified. We achieve this by annotating the plans which we want to
“shield”. Annotating plans is a common practice in existing BDI programming
languages and can be found for example in [4, 6]. An annotation is a structured
label attached to a plan. More formally, a shield annotation can be specified
as follows: @shield[φ1, . . . , φn] with (n ≥ 1) where shield is a custom label to
identify that a shield annotation is being added, and φi (with 1 ≤ i ≤ n) is
the formal property the shield will look out for. By design, annotations do not
have any specific semantics. The agent’s reasoning cycle does not consider them,
unless the developer explicitly modifies it to do so.

Failure Handling in BDI Plans via Runtime Enforcement 3

Adding and Removing Safety Shields This is obtained by extending the inference
rules in the agent’s reasoning cycle. First, we have to consider where the shields
are stored. Since each shield is attached to a certain plan and each plan is
executed as an intention, then a shield can be attached to such intention. Thus,
the shield is used to analyse events concerning the corresponding intention.

Catching Violations (Failure Detection) Since the entire agent’s reasoning cycle
depends on which plans are selected as relevant3 and, consequently, applicable.
One possible way to enforce the satisfaction of a formal property is by extending
the standard RelP lans function. The goal of such an extension is to take a
property into consideration while selecting the relevant plans for a triggering
event. The updated version is as follows:

RelP lans(plans, te, S) =
{pσ | p ∈ plans ∧ σ = mgu(te, TE(p)) ∧ ̸ ∃s∈S .sσ · te ̸|= sφ}

where S denotes the set of shields associated to the current selected intention,
and · denotes the concatenation amongst trace of events. In this way, we can
check whether the triggering event te violates at least one shield s in S (with sσ
the trace observed up to now by s, and sφ the property checked by s). If that is
the case, RelP lans returns the empty set.

Besides updating the RelP lans function, we also need to update the corre-
sponding rule that makes use of it in the operational semantics. In particular
the Rel1 rule, which is defined as follows:

(Rel1)
RelP lans(plans, te) ̸= ∅
C, beliefs→ C′, beliefs

Cϵ=⟨te,i⟩, CAp=CR=∅

where C ′
R = RelP lans(plans, te)

Rel1 takes the current event in Cϵ, and extracts the set of relevant plans
for the specific triggering event te. Its extension, which uses the new version of
RelP lans, is defined as follows:

(Rel1′)
RelP lans(plans, te, S) ̸= ∅
C, beliefs→ C′, beliefs

Cϵ=⟨te,i⟩, CAp=CR=∅, ⟨i,S⟩∈CI

where C ′
R = RelP lans(plans, te, S)

C ′
I = (CI \ {⟨i, S⟩}) ∪ {⟨i, S′⟩}

S′ = {⟨σ′, φ, i′⟩ | ⟨σ, φ, i′⟩ ∈ S ∧ σ′ = σ · te}
The updated rule is necessary to keep track of the events into S’s shields.

Each time an event is considered in the agent’s reasoning cycle, it is also stored
in every active shield in S for the corresponding intention i, to be evaluated in
future executions.

Note that, when the triggering event (te) violates at least one shield in S,
RelP lans returns the empty set. Thus, no relevant plan is available (CR = ∅),
as well as no applicable plan (CAp = ∅); since AppP lans is defined on top of

3 A plan is relevant for a triggering event if the triggering event can successfully be
unified with the plan’s head.

4 A. Ferrando and R. C. Cardoso

RelP lans. Consequently, no plan can be selected and the resulting plan failure
handling is triggered; as shown in Appl rule, this is achieved by adding the
corresponding plan deletion event (−%at).

(Appl)
AppP lans(CR, beliefs) = ∅
C, beliefs→ C′, beliefs

Cϵ=⟨te,i⟩, CAp=∅, CR ̸=∅

where C ′
E =

{
CE ∪ {⟨−%at, i⟩} if te = +%at with % ∈ {!, ?}
CE ∪ {Cϵ} otherwise

By updating RelP lans to consider a formal specification in the plan selection,
we can enforce the reasoning cycle to only consider events which do not violate
a certain property.

4 Implementation

As a proof of concept, we implemented a prototype4 in the JaCaMo multi-
agent development framework [3]. Jason [4], which is the implementation of
AgentSpeak(L) used in JaCaMo, is one of the most used and well-known BDI
programming languages.

Specifically, we decided to use JaCaMo instead of Jason, because the former
supports artifacts which are well-suited for implementing the shields and inter-
facing with the monitors. Artifacts allows agents to have better control over their
shields, while in Jason this would have to be done in a shared Java environment.
The artifact maintains all the information on the shields, and it is the object
consulted when a shield needs to be added, removed, or updated.

5 Conclusions and Future Work

In this extended abstract, we summarise the design and implementation of safety
shields for BDI agents. We formally specify how to enhance the agent’s reason-
ing cycle to enforce the satisfaction of safety properties through shields. Some
resulting extended inference rules are reported. The contribution is not only
theoretical, but it comprises a practical component as well. A prototype of our
approach is proposed, along with its integration in the JaCaMo platform.

For future work, we are interested in improving the integration in JaCaMo.
The current implementation is based on instrumentation, which is a less invasive
way to approach the problem at the implementation level. However, instrumen-
tation has implications at the engineering level, and it is less ideal in the long run
w.r.t. the actual agent’s reasoning cycle modification (as proposed in the theory
of this work). Also on the implementation side, we are interested in extending
the work from using one single artifact per agent, to one artifact per shield. This
extension should bring to better performances, above all in the case of nested
shields.

4 https://github.com/AngeloFerrando/SafetyShieldsBDI

Failure Handling in BDI Plans via Runtime Enforcement 5

References

1. Alpern, B., Schneider, F.B.: Recognizing safety and liveness. Distributed Comput.
2(3), 117–126 (1987). https://doi.org/10.1007/BF01782772

2. Bartocci, E., Falcone, Y., Francalanza, A., Reger, G.: Introduction to runtime veri-
fication. In: Lectures on Runtime Verification - Introductory and Advanced Topics,
Lecture Notes in Computer Science, vol. 10457, pp. 1–33. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-75632-5 1, https://doi.org/10.1007/978-3-319-
75632-5 1

3. Boissier, O., Bordini, R.H., Hübner, J.F., Ricci, A., Santi, A.: Multi-agent oriented
programming with JaCaMo. Science of Computer Programming 78(6), 747–761
(Jun 2013). https://doi.org/10.1016/j.scico.2011.10.004

4. Bordini, R., Hübner, J., Wooldridge, M.: Programming Multi-Agent Systems in
AgentSpeak Using Jason, vol. 8. John Wiley & Sons, Ltd, United Kingdom (10
2007). https://doi.org/10.1002/9780470061848

5. Bordini, R.H., Hübner, J.F.: Semantics for the Jason variant of AgentSpeak
(plan failure and some internal actions). In: 19th European Conference on Ar-
tificial Intelligence. Frontiers in Artificial Intelligence and Applications, vol. 215,
pp. 635–640. IOS Press (2010). https://doi.org/10.3233/978-1-60750-606-5-635,
https://doi.org/10.3233/978-1-60750-606-5-635

6. Cranefield, S., Winikoff, M., Dignum, V., Dignum, F.: No pizza for you: Value-
based plan selection in BDI agents. In: Proceedings of the Twenty-Sixth Inter-
national Joint Conference on Artificial Intelligence. pp. 178–184. IJCAI (2017).
https://doi.org/10.24963/ijcai.2017/26, https://doi.org/10.24963/ijcai.2017/26

7. Dennis, L.A., Fisher, M., Webster, M.P., Bordini, R.H.: Model check-
ing agent programming languages. Autom. Softw. Eng. 19(1), 5–63 (2012).
https://doi.org/10.1007/s10515-011-0088-x, https://doi.org/10.1007/s10515-011-
0088-x

8. Falcone, Y., Mounier, L., Fernandez, J., Richier, J.: Runtime enforcement
monitors: composition, synthesis, and enforcement abilities. Formal Methods
Syst. Des. 38(3), 223–262 (2011). https://doi.org/10.1007/s10703-011-0114-4,
https://doi.org/10.1007/s10703-011-0114-4

9. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable lan-
guage. In: 7th European Workshop on Modelling Autonomous Agents in a
Multi-Agent World, Eindhoven, The Netherlands, January 22-25, 1996. Lec-
ture Notes in Computer Science, vol. 1038, pp. 42–55. Springer (1996).
https://doi.org/10.1007/BFb0031845, https://doi.org/10.1007/BFb0031845

10. Rao, A.S., Georgeff, M.P.: BDI agents: From theory to practice. In: Proceedings of
the First International Conference on Multiagent Systems, June 12-14, 1995, San
Francisco, California, USA. pp. 312–319. The MIT Press (1995)

11. Vieira, R., Moreira, Á.F., Wooldridge, M.J., Bordini, R.H.: On the formal seman-
tics of speech-act based communication in an agent-oriented programming lan-
guage. J. Artif. Intell. Res. 29, 221–267 (2007). https://doi.org/10.1613/jair.2221,
https://doi.org/10.1613/jair.2221

12. Winikoff, M.: BDI agent testability revisited. Auton. Agents Multi Agent
Syst. 31(5), 1094–1132 (2017). https://doi.org/10.1007/s10458-016-9356-2,
https://doi.org/10.1007/s10458-016-9356-2

13. Winikoff, M.: Debugging agent programs with why?: Questions. In: Proceed-
ings of the 16th Conference on Autonomous Agents and MultiAgent Systems,
AAMAS 2017, São Paulo, Brazil, May 8-12, 2017. pp. 251–259. ACM (2017),
http://dl.acm.org/citation.cfm?id=3091166

Lorenzen-style strategies as proof-search strategies

Matteo Acclavio1 and Davide Catta2

1 University of Southern Denmark, Odense, Denmark
2 Università degli studi di Napoli, Federico II, Naples, Italy

Abstract. Dialogical logic, originated in the work of Lorenzen and his student
Lorenz, is an approach to logic in which the validity of a certain formula is defined
as the existence of a winning strategy for a particular kind of turn-based two-
players games. This paper studies the relationship between winning strategies
for Lorenzen-style dialogical games and sequent calculus derivations. We define
three different classes of dialogical logic games for the implicational fragment
of intuitionistic logic, showing that winning strategies for such games naturally
correspond to classes of derivations defined by uniformly restraining the rules of
the sequent calculus.

Keywords: Dialogical Logic · Sequent Calculus · Game Semantics

1 Introduction
Dialogical logic is an approach to the study of logical reasoning, introduced by Loren-
zen and his student Lorenz [12, 13], in which the validity of a formula is defined as
the existence of a winning strategy for a turn-based two-player game. These games are
articulated as argumentative dialogues in which the Proponent player P (she/her) aims
at showing that a given formula is valid, while the Opponent player O (he/him) aims at
finding possible fallacies disproving it. More precisely, each play starts with P assert-
ing a certain formula. O takes his turn and attacks the claim made by P according to
its logical form. The player P can, either, defend his previous claim or counter-attack.
The debate evolves following this pattern. The player P wins whenever she has the last
word, i.e., when O cannot attack anymore without violating the game’s rules.

Dialogical logic was initially conceived as a foundation for the meaning of the con-
nectives and quantifiers of intuitionistic logic, and it has gradually become detached
from its connection with intuitionism over the years, becoming a subject of research in
the formal semantics of natural language [5, 4], in proof theory [2, 9, 7, 15, 8, 18] and
inspiring a series of work in formal argumentation theory and multi-agent systems [16,
17, 14, 11]. In proof theory, the soundness and completeness of a dialogical system is
proved by establishing the equivalence between the existence of a winning strategy in
specific games and the notion of validity in a given logic. This result is typically attained
by defining a procedure that reconstructs a formal derivation from a winning strategy
(and vice versa) in a sound and complete system for a given logic [7, 6, 2]. In this pa-
per, we study the correspondence between certain classes of winning strategies for a
given dialogic system and the structure of the corresponding formal derivations in the
sequent calculus. We study winning strategies in which P moves are restricted accord-
ing to O precedent moves (e.g., if O plays a move A→ B as a response to a move of P

2 M. Acclavio and D. Catta

of a special kind, then the P has to immediately reply to this move). We prove that for
each of the classes of winning strategies we consider, we have a correspondence with
a proof-search strategy in the sequent calculus GKi for the →-fragment of intuition-
istic logic [19]. This latter result is obtained by showing that it is possible to narrow
the proof-search space in sequent calculus without losing the soundness and complete-
ness of the sequent system (as, e.g., in focusing [3]) and that there is a straightforward
correspondence between such focused proofs and winning strategies.

2 Dialogical Logic
Notation and terminology. We denote by |σ| the length of a countable3 sequence σ =
σ1, σ2, . . . , by σ≤i the prefix σ1, . . . , σi. The parity of an element σi in σ is the parity
of i. It is even or odd iff i is. Given two sequences σ and τ, we write σ ⊑ τ if σ = τ≤i

for a given i ≤ |τ| and we denote by σ · τ their concatenation. We consider formulas
generated from a countable non-empty set of atomic propositions A = {a, b, c, . . .} and
the implication connective→ (and the parenthesis symbols). In the following, we may
write (A1 · · · An) → c as a shortcut for A1 → (· · · → (An → c) · · ·). The implication
fragments of intuitionistic logic IL→, is the smallest set of formulas containing each
instance of the two axioms A→ (B→ A) and A→ (B→ C)→ ((A→ B)→ (A→ C))
and closed for modus ponens, that is: if A ∈ IL→ and A→ B ∈ IL→ then B ∈ IL→. We say
that a formula F is valild if and only if F ∈ IL→.
Dialogical Games. A challenge is a pair ⟨?, s⟩ where s is either an occurrence of the
symbol •, in which case such a challenge is said atomic, or where s is formula F.
A defense is a pair ⟨!, F⟩ where F is a formula. An assertion (of F) is a non-atomic
challenge ⟨?, F⟩ or a defense ⟨!, F⟩. A move is an assertion or an atomic-challenge. An
augmented sequence is a pair ⟨σ, ϕ⟩ where σ is a non-empty sequence of moves, and
ϕ is a function mapping any σi with i > 1 to a σ j = ϕ(σi) with opposite parity and
such that j < i. A move σi in σ is called P-move (denoted σP

i) if i is odd, and O-move
(denoted σO

i) if i is even. It is a repetition if there is j < i such that i and j have opposite
parity and σi and σ j are assertions of the same formula.

Definition 1. Let ⟨σ, ϕ⟩ be an augmented sequence and i ≤ |σ|.
1. A challenge σi is justified whenever:

(a) eitherσi is an atomic-challenge and ϕ(σi) is an assertion of an atomic formula;
(b) or σi = ⟨?, A⟩ and ϕ(σi) is an assertion of a formula A→ B.

2. A defense is σi is justified whenever:
(a) either σi and ϕ(ϕ(σi)) are assertions of a same atomic formula a ∈ A and

ϕ(σi) is an atomic challenge;
(b) or σi is an assertion of a formula B, ϕ(σi) is a justified challenge of the form
⟨?, A⟩, and ϕ(ϕ(σi)) is an assertion of A→ B.

If σi is a justified move, we say ϕ(σi) justifies σi and that σi is justified by ϕ(σi). A
challenge σi is unanswered if there is no defense σk such that σk is justified by σi. A
justified challenge σi is a counterattack if ϕ(σi) is a challenge. A justified sequence is
an augmented sequence in which any move except the first one is justified.

3 We use the adjective countable in the standard mathematical sense: a set is countable iff it is
in a one-to-one correspondence with a (finite or infinite) subset of the set of natural numbers.

Lorenzen-style strategies as proof-search strategies 3

Definition 2 (Play). A play for F is a justified sequence p = ⟨σ, ϕ⟩ starting with P
defending F, that is, σ1 = ⟨!, F⟩ and such that the following holds for any 1 < i ≤ |σ|:
1. each O-move is justified by the immediately preceding P-move, that is, ϕ(σ2k) =

σ2k−1 for any 2k ≤ |σ|;
2. if P states a defense, such defense is justified by the last unanswered challenge

stated by O, that is, if σ2k+1 = ⟨!, F⟩, then ϕ(σ2k+1) = σ2h is the unanswered
challenge with maximal 2h ≤ 2k;

3. if P state a defense and such a defense is an assertion of an atomic formula, then
there must be another preceding O assertion of the same atomic formula. That is,
if σ2k+1 = ⟨!, a⟩ with a ∈ A, then σ2k+1 is a repetition;

4. Only O can challenge assertions of atomic formulas and these assertions must be
challenges. That is, if σi = ⟨?, •⟩, then i must be even and ϕ(σi) is a challenge.

A play p = ⟨σ, ϕ⟩ is finite if σ is. and its length |p| is the length σ. A move m is legal for
p if ⟨σ · m, ϕ ∪ {⟨m, σi⟩}⟩ is a play for a i ≤ |σ|. The player P wins a play p = ⟨σ, ϕ⟩ if
σ is finite and ends with a P-move ⟨!, a⟩ with a ∈ A. Otherwise, O wins.

Definition 3. Let p = ⟨σ, ϕ⟩ be a play.
1. p is a Lorenzen-Felscher play (or LF-play) if any P-assertion of an atomic formula

is a repetition. That is, if σ2k+1 ∈ {⟨!, a⟩, ⟨?, a⟩ | a ∈ A}, then there is h ≤ k such
that σ2h = ⟨⋆, a⟩ for ⋆ ∈ {?, !}

2. p is a Stubborn play (or ST-play) if the following hold:
(a) whenever O assert a complex formula A → B as a defense from a preceding

challenge, then P’s next move is a challenge of such a formula. That is, if
σ′ ·mO ⊑ σ and m = ⟨!, A→ B⟩, then σ′ ·mO · nP ⊑ σ for a n = ⟨?, A⟩ justified
by m.

(b) whenever O assert an atomic formula c as a defense from a preceding chal-
lenge, then P’s next move is a defense asserting c. That is, if σ′ · mO ⊑ σ and
m = ⟨!, c⟩, then σ = σ′ · mO · nP where n = ⟨!, c⟩.

Definition 4. Let A be a formula. The game for A is a pair GA = ⟨RA, ϕA⟩ where
RA = ⟨NA,EA⟩ is a tree of moves and ϕ : NA → NA is a map such that:
1. for each path P of RA, the pair ⟨P, ϕA|P⟩ is a play for A;
2. for each node v of RA, all and only the children of v are legal move of the play in
GA ending with v.

A node v ofG is a P-node (resp. O-node) if is its height is odd (resp. even). A strategy for
A is a pair S = ⟨T , ψ⟩ such that T is a subtree of RA (and ψ is defined as the restriction
of ϕA on the nodes in T) in which every O-node has at most one child. It is winning
when T is finite and any of its branch is a play won by P. A Lorenzen-Felscher strategy
(resp. Stubborn strategy) is a strategy such that each branch of S is is a LF-play (resp. a
ST-play).

3 Sequent Calculus
A sequent is an expression Γ ⊢ C where C is a formula and Γ is a finite (possibly empty)
multiset of formulas. A derivation D is a finite tree of sequents constructed using the
rules in Figure 1 in which each leaf is obtained by an Ax-rule and each non-leaf sequent
is obtained by →R-rule or a →L-rule. A sequent Γ ⊢ C is GKi-provable if it admits a
derivation in the sequent calculus GKi, whose root (or conclusion) is Γ ⊢ C.

4 M. Acclavio and D. Catta

Ax
Γ, a ⊢ a

Γ, A→ B ⊢ A Γ, A→ B, B ⊢ C →L

Γ, A→ B ⊢ C

Γ, A ⊢ B →R

Γ ⊢ A→ B

Fig. 1. Rules for the sequent calculus GKi. In each rule we have underlined its principal formula
in the conclusion, and the active formulas in each premise.

Definition 5. Let D be a derivation of some sequent ∆ ⊢ F in GKi. We say that:

1. D is a strategic derivation (or S-derivation) when each left-hand side premise of
→L-rule of the form Γ ⊢ A→ B is the conclusion of a→R-rule;

2. D is a LF-derivation if the left-hand side premise of each →L-rule is always the
conclusion of a→R-rule or an Ax-rule;

3. D is a ST-derivation if is a S-derivation and the active formula of the right-hand
premise of each →L-rule in D is the principal formula of this premise. That is,
if Γ, A → B, B ⊢ C is the right-hand premise of a →L-rule, then either it is the
conclusion of a Ax if B = C is atomic, or it is the conclusion of a→L-rule. In both
cases B is the principal formula of Γ, A→ B, B ⊢ C

Theorem 1. Let F be a formula, It is valid iff it admits a S-derivation iff it admits a
LF-derivation iff it admits a ST-derivation.

Theorem 2. The following statements hold:
1. The set of S-derivations is in one-to-one correspondence with the set of winning

strategies;
2. The set of LF-derivations is in one-to-one correspondence with the set of Lorenzen-

Felscher winning strategies
3. The set of ST-derivations is in one-to-one correspondence with the set of Stubborn

winning strategies.

4 Conclusion and Future Work
We have defined different classes of Lorenzen-style dialogical plays for intuitionistic
logic by restricting the way in which P can play during a game. Winning strategies for
such games naturally corresponds to particular GKi derivations obtained by limiting the
application of GKis-rules in proof search procedures.

In future work, we want to extend our definitions to full intuitionistic propositional
logic with disjunction ∨, conjunction ∧, and absurdity ⊥. In addition, we want to study
the correspondence between the class of ST-derivations and terms of the simply typed
lambda calculus [10]. Moreover, the results in [1] would suggest a way to define a
dialogical system for the constructive modal logic CK.

The semantics of formal argumentation systems are often specified through the help
of concepts originated in dialogic logic (e.g. E-strategies see [14]). We think it would
be interesting to study a more abstract version of our stubborn strategies in the context
of formal argumentation.
Acknowledgments. The first author is supported by Villum Fonden, grant no. 50079.
The second author is supported by the PRIN project RIPER (No. 20203FFYLK)

Lorenzen-style strategies as proof-search strategies 5

References
1. Acclavio, M., Catta, D., Straßburger, L.: Game semantics for constructive modal logic. In: ,

TABLEAUX 2021. Springer International Publishing (2021)
2. Alama, J., Knoks, A., Uckelman, S.: Dialogues games for classical logic (short paper), pp.

82–86. Universiteit Bern (2011)
3. Andreoli, J.M.: Logic programming with focusing proofs in linear logic. Journal of Logic

and Computation 2, 297–347 (1992)
4. Catta, D., Moot, R., Retoré, C.: Dialogical argumentation and textual entailment. In:

Loukanova, R. (ed.) Natural Language Processing in Artificial Intelligence—NLPinAI
2020., Studies in Computational Intelligence, vol. 939. Springer (2021)

5. Catta, D., Stevens-Guille, S.: Lorenzen won the game, lorenzen did too: Dialogical logic for
anaphora and ellipsis resolution. In: WoLLIC 2021. Springer (2021)

6. Felscher, W.: Dialogues, strategies, and intuitionistic provability. Annals of Pure and Applied
Logic 28(3), 217 – 254 (1985). https://doi.org/https://doi.org/10.1016/0168-0072(85)90016-
8

7. Fermüller, C.G.: Parallel dialogue games and hypersequents for intermediate logics. In:
Cialdea Mayer, M., Pirri, F. (eds.) Automated Reasoning with Analytic Tableaux and Re-
lated Methods. pp. 48–64. Springer Berlin Heidelberg, Berlin, Heidelberg (2003)

8. Fermüller, C.G.: Connecting sequent calculi with lorenzen-style dialogue games. Paul
Lorenzen–Mathematician and Logician pp. 115–141 (2021)

9. Herbelin, H.: Séquents qu’on calcule : de l’interprétation du calcul des séquents comme
calcul de λ-termes et comme calcul de stratégies gagnantes. Phd thesis, Université Paris 7
(Janvier 1995), https://tel.archives-ouvertes.fr/tel-00382528/file/These-Her95.pdf

10. Hindley, J.R.: Basic Simple Type Theory, Cambridge Tracts in Theoretical Computer Sci-
ence, vol. 42. Cambridge University Press (1997), corrected edition, 2008

11. Kacprzak, M., Budzynska, K.: Reasoning about dialogical strategies. In:
KES 2012,. Springer (2012). https://doi.org/10.1007/978-3-642-37343-5 18,
https://doi.org/10.1007/978-3-642-37343-5 18

12. Lorenzen, P.: Logik und agon. Atti Del XII Congresso Internazionale di Filosofia 4, 187–194
(1958)

13. Lorenzen, P., Lorenz, K.: Dialogische Logik. Wissenschaftliche Buchgesellschaft, [Abt. Ver-
lag] (1978)

14. Modgil, S., Caminada, M.: Proof theories and algorithms for abstract argumenta-
tion frameworks. In: Simari, G.R., Rahwan, I. (eds.) Argumentation in Artificial In-
telligence, pp. 105–129. Springer (2009). https://doi.org/10.1007/978-0-387-98197-0 6,
https://doi.org/10.1007/978-0-387-98197-0 6

15. Pavlova, A.: Dialogue games for minimal logic. Logic and Logical Phi-
losophy 30(2), 281–309 (Nov 2020). https://doi.org/10.12775/LLP.2020.022,
https://apcz.umk.pl/LLP/article/view/LLP.2020.022

16. Prakken, H.: Coherence and flexibility in dialogue games for argumentation. J.
Log. and Comput. 15(6), 1009–1040 (dec 2005). https://doi.org/10.1093/logcom/exi046,
https://doi.org/10.1093/logcom/exi046

17. Prakken, H., Sartor, G.: A dialectical model of assessing conflicting arguments in legal
reasoning. Artif. Intell. Law 4(3-4), 331–368 (1996). https://doi.org/10.1007/BF00118496,
https://doi.org/10.1007/BF00118496

18. Sticht, M.: Multi-agent dialogue games and dialogue sequents for proof search and schedul-
ing. In: Proceedings of the 31st Italian Conference on Computational Logic. CEUR-WS.org
(2016), https://ceur-ws.org/Vol-1645/paper 20.pdf

19. Troelstra, A., Schwichtenberg, H.: Basic Proof Theory. Cambridge University Press, USA
(1996)

Strategy Repair in Reachability Games ⋆

Pierre Gaillard1, Fabio Patrizi2, and Giuseppe Perelli2

1 ENS Paris-Saclay, University Paris-Saclay
2 Sapienza University of Rome

Reachability Games (RGs) [2] can serve as semantic models for reasoning
about dynamic domains, with the resulting strategy representing the behavior
that an agent can execute, in order to achieve a desired state. Typically, how-
ever, at execution time, models deviate from the actual trajectory that stems
from strategy execution, resulting in a situation where the actual state does not
match that of the model. There may also be situations where the goal changes
during strategy execution. In both these examples, the agent is unable to keep
executing the computed strategy (which was originally winning) and take ap-
propriate actions to achieve the desired goal. Thus, the problem arises of coming
up with a new strategy that guarantees goal achievement.

The original strategy might have been designed to guarantee not only goal
achievement, but also a number of additional properties, such as cost minimiza-
tion, reward maximization, or forbidden-state avoidance, which might yield a
significant additional computational effort. Thus, when the unexpected changes
are small and yield only a slightly different problem wrt the original one, i.e., only
few target states are added or removed and state mismatches occur rarely, it is
reasonable to seek for a solution obtained as a slight modification of the original
one, under the assumption that the new strategy will retain all (or part of) the
properties featured by the initial strategy, without needing the computational
overhead required to achieve such properties.

This paper investigates this approach from the general perspective of RGs.
We introduce a problem, called Strategy Repair, which requires, given a losing
strategy σ0, to find a minimal amount of modifications which turn σ0 into a
winning strategy.

We make the following contributions. Firstly, we formally define the problem
by introducing a notion of distance between two strategies, which intuitively
corresponds to the number of states over which the strategies differ. Then, based
on this notion, we devise a solution algorithm and characterize its complexity.
Specifically, we prove, by reduction from Vertex Cover, that the decision version
of Strategy Repair is NP-complete. We then investigate more efficient, but sub-
optimal, alternatives, devising a polynomial greedy algorithm with an effective
heuristic, called MustFix, which can be integrated also in the optimal algorithm.
Finally, we report on an experimental analysis, which shows that the polynomial
algorithm, together with the MustFix heuristic, yields impressive results in terms
of running time, scalability and accuracy (measured as distance from the optimal
solution). Also the optimal algorithm greatly benefits from the MustFix heuristic,
outperforming the running times of the basic version by orders of magnitude.
⋆ Extended version to appear at ECAI-23 [1]

2 P. Gaillard et al.

References

1. Gaillard, P., Patrizi, F., Perelli, G.: Strategy repair in reachability games. In: 26th
European Conference on Artificial Intelligence, ECAI (2023), to appear

2. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games: A
Guide to Current Research [outcome of a Dagstuhl seminar, February 2001], Lecture
Notes in Computer Science, vol. 2500. Springer (2002). https://doi.org/10.1007/
3-540-36387-4, https://doi.org/10.1007/3-540-36387-4

Incentive Engineering for Concurrent Games

David Hyland
University of Oxford

Oxford, United Kingdom
david.hyland@cs.ox.ac.uk

Julian Gutierrez
Monash University

Melbourne, Australia
julian.gutierrez@monash.edu

Michael Wooldridge
University of Oxford

Oxford, United Kingdom
mjw@cs.ox.ac.uk

We consider the problem of incentivising desirable behaviours in multi-agent systems by way of
taxation schemes. Our study employs the concurrent games model: in this model, each agent is
primarily motivated to seek the satisfaction of a goal, expressed as a Linear Temporal Logic (LTL)
formula; secondarily, agents seek to minimise costs, where costs are imposed based on the actions
taken by agents in different states of the game. In this setting, we consider an external principal
who can influence agents’ preferences by imposing taxes (additional costs) on the actions chosen
by agents in different states. The principal imposes taxation schemes to motivate agents to choose
a course of action that will lead to the satisfaction of their goal, also expressed as an LTL formula.
However, taxation schemes are limited in their ability to influence agents’ preferences: an agent will
always prefer to satisfy its goal rather than otherwise, no matter what the costs. The fundamental
question that we study is whether the principal can impose a taxation scheme such that, in the re-
sulting game, the principal’s goal is satisfied in at least one or all runs of the game that could arise
by agents choosing to follow game-theoretic equilibrium strategies. We consider two different types
of taxation schemes: in a static scheme, the same tax is imposed on a state-action profile pair in
all circumstances, while in a dynamic scheme, the principal can choose to vary taxes depending on
the circumstances. We investigate the main game-theoretic properties of this model as well as the
computational complexity of the relevant decision problems.

1 Introduction

Rational verification is the problem of establishing which temporal logic properties will be satisfied
by a multi-agent system, under the assumption that agents in the system choose strategies that form a
game-theoretic equilibrium [18, 51, 25]. Thus, rational verification enables us to verify which desirable
and undesirable behaviours could arise in a system through individually rational choices. This article,
however, expands beyond verification and studies methods for incentivising outcomes with favourable
properties while mitigating undesirable consequences.

We take as our starting point the work of [50], who considered the possibility of influencing one-shot
Boolean games by introducing taxation schemes, which impose additional costs onto a game at the level
of individual actions. In the model of preferences considered in [50], agents are primarily motivated to
achieve a goal expressed as a (propositional) logical formula, and only secondarily motivated to minimise
costs. This logical component limits the possibility to influence agent preferences: an agent can never be
motivated by a taxation scheme away from achieving its goal. In related work, Wooldridge et al. defined
the following implementation problem: given a game G and an objective ϒ, expressed as a propositional
logic formula, does there exists a taxation scheme τ that could be imposed upon G such that, in the
resulting game Gτ , the objective ϒ will be satisfied in at least one Nash equilibrium [50].

We develop these ideas by applying models of finite-state automata to introduce and motivate the
use of history-dependent incentives in the context of concurrent games [2]. In a concurrent game, play
continues for an infinite number of rounds, where at each round, each agent simultaneously chooses an

2 Incentive Engineering for Concurrent Games

action to perform. Preferences in such a multiplayer game are defined by associating with each agent i a
Linear Temporal Logic (LTL) goal γi, which agent i desires to see satisfied. In this work, we also assume
that actions incur costs, and that agents seek to minimise their limit-average costs.

Since, in contrast to the model of [50], play in our games continues for an infinite number of rounds,
we find there are two natural variations of taxation schemes for concurrent games. In a static taxation
scheme, we impose a fixed cost on state-action profiles so that the same state-action profile will always
incur the same tax, no matter when it is performed. In a dynamic taxation scheme, the same state-action
profile may incur different taxes in different circumstances: it is history-dependent. We first show that
dynamic taxation schemes are strictly more powerful than static taxation schemes, making them a more
appropriate model of incentives in the context of concurrent games, characterise the conditions under
which an LTL objective ϒ can be implemented in a game using dynamic taxation schemes, and begin to
investigate the computational complexity of the corresponding decision problems.

References
[1] Natasha Alechina, Giuseppe De Giacomo, Brian Logan & Giuseppe Perelli (2022): Automatic Synthesis of

Dynamic Norms for Multi-Agent Systems. In: 19th International Conference on Principles of Knowledge
Representation and Reasoning, KR 2022: KR 2022, doi:10.24963/kr.2022/2.

[2] Rajeev Alur, Thomas A. Henzinger & Orna Kupferman (2002): Alternating-time temporal logic. J. ACM
49(5), pp. 672–713, doi:10.1145/585265.585270.

[3] Robert J. Aumann (1961): The core of a cooperative game without side payments. Transactions of the
American Mathematical Society 98(3), pp. 539–552, doi:10.2307/1993348.

[4] Jan Balaguer, Raphael Koster, Christopher Summerfield & Andrea Tacchetti (2022): The Good Shepherd:
An Oracle Agent for Mechanism Design. arXiv preprint arXiv:2202.10135, doi:10.48550/arXiv.2202.10135.

[5] Roderick Bloem, Krishnendu Chatterjee, Thomas A. Henzinger & Barbara Jobstmann (2009): Better Quality
in Synthesis through Quantitative Objectives. In Ahmed Bouajjani & Oded Maler, editors: Computer Aided
Verification, 21st International Conference, CAV 2009, Grenoble, France, June 26 - July 2, 2009. Proceed-
ings, Lecture Notes in Computer Science 5643, Springer, pp. 140–156, doi:10.1007/978-3-642-02658-4-14.
Available at https://doi.org/10.1007/978-3-642-02658-4_14.

[6] Michael Bräuning, Eyke Hüllermeier, Tobias Keller & Martin Glaum (2017): Lexicographic preferences
for predictive modeling of human decision making: A new machine learning method with an application in
accounting. European Journal of Operational Research 258(1), pp. 295–306, doi:10.1016/j.ejor.2016.08.055.

[7] Nils Bulling & Mehdi Dastani (2016): Norm-based mechanism design. Artificial Intelligence 239, pp. 97–
142, doi:10.1016/j.artint.2016.07.001.

[8] Henrique Lopes Cardoso & Eugénio Oliveira (2009): Adaptive Deterrence Sanctions in a Normative Frame-
work. In: 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent
Technology, 2, pp. 36–43, doi:10.1109/WI-IAT.2009.123.

[9] Roberto Centeno & Holger Billhardt (2011): Using incentive mechanisms for an adaptive regulation of
open multi-agent systems. In: Twenty-Second International Joint Conference on Artificial Intelligence,
doi:10.5591/978-1-57735-516-8/IJCAI11-035.

[10] Georgios Chalkiadakis, Edith Elkind & Michael J. Wooldridge (2011): Computational Aspects of Coop-
erative Game Theory. Synthesis Lectures on Artificial Intelligence and Machine Learning, Morgan &
Claypool Publishers, doi:10.2200/S00355ED1V01Y201107AIM016. Available at http://dx.doi.org/10.2200/
S00355ED1V01Y201107AIM016.

[11] Krishnendu Chatterjee, Thomas A. Henzinger & Marcin Jurdzinski (2005): Mean-Payoff Parity Games. In:
20th IEEE Symposium on Logic in Computer Science (LICS 2005), 26-29 June 2005, Chicago, IL, USA,
Proceedings, IEEE Computer Society, pp. 178–187, doi:10.1109/LICS.2005.26.

D. Hyland, J. Gutierrez, & M.J. Wooldridge 3

[12] Davide Dell’Anna, Mehdi Dastani & Fabiano Dalpiaz (2020): Runtime Revision of Sanctions in Normative
Multi-Agent Systems. Autonomous Agents and Multi-Agent Systems 34(2), doi:10.1007/s10458-020-09465-
8.

[13] Paul E. Dunne, Wiebe van der Hoek, Sarit Kraus & Michael J. Wooldridge (2008): Cooperative Boolean
games. In Lin Padgham, David C. Parkes, Jörg P. Müller & Simon Parsons, editors: 7th International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2008), Estoril, Portugal, May 12-16,
2008, Volume 2, IFAAMAS, pp. 1015–1022, doi:10.1145/1402298.1402363. Available at https://dl.acm.org/
citation.cfm?id=1402363.

[14] Andrzej Ehrenfeucht & Jan Mycielski (1979): Positional strategies for mean payoff games. International
Journal of Game Theory 8(2), pp. 109–113, doi:10.1007/BF01768705.

[15] Mahmoud Elbarbari, Florent Delgrange, Ivo Vervlimmeren, Kyriakos Efthymiadis, Bram Vanderborght &
Ann Nowé (2022): A framework for flexibly guiding learning agents. Neural Computing and Applications,
pp. 1–17, doi:10.1007/s00521-022-07396-x.

[16] E. Allen Emerson (1990): Temporal and Modal Logic. In Jan van Leeuwen, editor: Handbook of Theoret-
ical Computer Science, Volume B: Formal Models and Semantics, Elsevier and MIT Press, pp. 995–1072,
doi:10.1016/b978-0-444-88074-1.50021-4.

[17] E. Allen Emerson & Charanjit S. Jutla (1991): Tree automata, mu-calculus and determinacy,
doi:10.1109/SFCS.1991.185392.

[18] Dana Fisman, Orna Kupferman & Yoad Lustig (2010): Rational synthesis. In: International Conference on
Tools and Algorithms for the Construction and Analysis of Systems, Springer, pp. 190–204, doi:10.1007/978-
3-642-12002-2_16.

[19] Sanford J. Grossman & Oliver D. Hart (1992): An analysis of the principal-agent problem. In: Foundations
of insurance economics, Springer, pp. 302–340, doi:10.1007/978-94-015-7957-5_16.

[20] Julian Gutierrez, Paul Harrenstein & Michael J. Wooldridge (2017): Reasoning about equilibria in game-like
concurrent systems. Annals of Pure and Applied Logic 169(2), pp. 373–403, doi:10.1016/j.apal.2016.10.009.

[21] Julian Gutierrez, Sarit Kraus & Michael J. Wooldridge (2019): Cooperative Concurrent Games. AAMAS
’19, International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC, p. 1198–1206,
doi:10.1016/j.artint.2022.103806.

[22] Julian Gutierrez, Aniello Murano, Giuseppe Perelli, Sasha Rubin, Thomas Steeples & Michael J. Wooldridge
(2021): Equilibria for games with combined qualitative and quantitative objectives. Acta Informatica 58(6),
pp. 585–610, doi:10.1007/s00236-020-00385-4.

[23] Julian Gutierrez, Aniello Murano, Giuseppe Perelli, Sasha Rubin & Michael Wooldridge (2017): Nash Equi-
libria in Concurrent Games with Lexicographic Preferences. doi:10.24963/ijcai.2017/148.

[24] Julian Gutierrez, Muhammad Najib, Giuseppe Perelli & Michael J. Wooldridge (2019): Equilib-
rium Design for Concurrent Games. In: 30th International Conference on Concurrency Theory,
doi:10.4230/LIPIcs.CONCUR.2019.22.

[25] Julian Gutierrez, Muhammad Najib, Giuseppe Perelli & Michael J. Wooldridge (2020): Automated temporal
equilibrium analysis: Verification and synthesis of multi-player games. Artificial Intelligence 287, p. 103353,
doi:10.1016/j.artint.2020.103353.

[26] Paul Harrenstein, Paolo Turrini & Michael J. Wooldridge (2014): Hard and soft equilibria in boolean games.
In Ana L. C. Bazzan, Michael N. Huhns, Alessio Lomuscio & Paul Scerri, editors: International confer-
ence on Autonomous Agents and Multi-Agent Systems, AAMAS ’14, Paris, France, May 5-9, 2014, IFAA-
MAS/ACM, pp. 845–852, doi:10.5555/2615731.2615867. Available at http://dl.acm.org/citation.cfm?id=
2615867.

[27] Paul Harrenstein, Paolo Turrini & Michael J. Wooldridge (2017): Characterising the Manipulability of
Boolean Games. In Carles Sierra, editor: Proceedings of the Twenty-Sixth International Joint Conference
on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August 19-25, 2017, ijcai.org, pp. 1081–1087,
doi:10.24963/ijcai.2017/150.

4 Incentive Engineering for Concurrent Games

[28] Bengt Holmstrom (1982): Moral hazard in teams. The Bell journal of economics, pp. 324–340,
doi:10.2307/3003457.

[29] Xiaowei Huang, Ji Ruan, Qingliang Chen & Kaile Su (2016): Normative Multiagent Systems: A Dynamic
Generalization. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence,
IJCAI’16, AAAI Press, p. 1123–1129.

[30] Rodrigo Toro Icarte, Toryn Klassen, Richard Valenzano & Sheila McIlraith (2018): Using reward machines
for high-level task specification and decomposition in reinforcement learning. In: International Conference
on Machine Learning, PMLR, pp. 2107–2116.

[31] Kenneth S. Lyon & Dug Man Lee (2001): Pigouvian tax and the congestion externality: a benefit side
approach. Economics Research Institute Study Paper 10, p. 1.

[32] Moamin A. Mahmoud, Mohd Sharifuddin Ahmad, Mohd Zaliman Mohd Yusoff & Aida Mustapha
(2014): A review of norms and normative multiagent systems. The Scientific World Journal 2014,
doi:10.1155/2014/684587.

[33] N. Gregory Mankiw (2009): Smart taxes: An open invitation to join the pigou club. Eastern Economic
Journal 35(1), pp. 14–23, doi:10.1057/EEJ.2008.43.

[34] Bastien Maubert, Munyque Mittelmann, Aniello Murano & Laurent Perrussel (2021): Strategic reasoning in
automated mechanism design. In: Proceedings of the International Conference on Principles of Knowledge
Representation and Reasoning, 18, pp. 487–496, doi:10.24963/kr.2021/46.

[35] David Mguni, Joel Jennings, Emilio Sison, Sergio Valcarcel Macua, Sofia Ceppi & Enrique Munoz de Cote
(2019): Coordinating the Crowd: Inducing Desirable Equilibria in Non-Cooperative Systems. In: Proceed-
ings of the 18th International Conference on Autonomous Agents and MultiAgent Systems, AAMAS ’19,
International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC, p. 386–394.

[36] David Mguni & Marcin Tomczak (2019): Efficient reinforcement dynamic mechanism design. In: GAIW:
Games, agents and incentives workshops, at AAMAS, Montreal, Canada.

[37] Munyque Mittelmann, Bastien Maubert, Aniello Murano & Laurent Perrussel (2022): Automated synthesis
of mechanisms. In: 31st International Joint Conference on Artificial Intelligence (IJCAI-22), International
Joint Conferences on Artificial Intelligence Organization, pp. 426–432, doi:10.24963/ijcai.2022/61.

[38] Sai Kiran Narayanaswami, Swarat Chaudhuri, Moshe Vardi & Peter Stone (2022): Automating Mechanism
Design with Program Synthesis. Proc. of the Adaptive and Learning Agents Workshop (ALA 2022).

[39] Cyrus Neary, Zhe Xu, Bo Wu & Ufuk Topcu (2020): Reward Machines for Cooperative Multi-Agent Rein-
forcement Learning. doi:10.5555/3463952.3464063.

[40] David C Parkes, Ruggiero Cavallo, Florin Constantin & Satinder Singh (2010): Dynamic incentive mecha-
nisms. Ai Magazine 31(4), pp. 79–94, doi:10.1609/aimag.v31i4.2316.

[41] Giuseppe Perelli (2019): Enforcing equilibria in multi-agent systems. In: Proceedings of
the 18th International Conference on Autonomous Agents and MultiAgent Systems, pp. 188–196,
doi:10.5555/3306127.3331692.

[42] Arthur C. Pigou & Nahid Aslanbeigui (2017): The Economics of Welfare. Routledge,
doi:10.4324/9781351304368.

[43] Amir Pnueli (1977): The Temporal Logic of Programs. In: 18th Annual Symposium on Foundations of
Computer Science, Providence, Rhode Island, USA, 31 October - 1 November 1977, IEEE Computer Society,
pp. 46–57, doi:10.1109/SFCS.1977.32.

[44] Amir Pnueli & Roni Rosner (1989): On the Synthesis of an Asynchronous Reactive Module. In Giorgio
Ausiello, Mariangiola Dezani-Ciancaglini & Simona Ronchi Della Rocca, editors: Automata, Languages
and Programming, 16th International Colloquium, ICALP89, Stresa, Italy, July 11-15, 1989, Proceedings,
Lecture Notes in Computer Science 372, Springer, pp. 652–671, doi:10.1007/BFb0035790.

D. Hyland, J. Gutierrez, & M.J. Wooldridge 5

[45] Lillian J Ratliff, Roy Dong, Shreyas Sekar & Tanner Fiez (2019): A perspective on incentive design: Chal-
lenges and opportunities. Annual Review of Control, Robotics, and Autonomous Systems 2, pp. 305–338,
doi:10.1146/ANNUREV-CONTROL-053018-023634.

[46] Lillian J Ratliff & Tanner Fiez (2020): Adaptive incentive design. IEEE Transactions on Automatic Control
66(8), pp. 3871–3878, doi:10.1109/tac.2020.3027503.

[47] Weiran Shen, Pingzhong Tang & Song Zuo (2019): Automated Mechanism Design via Neural Networks. In:
Proceedings of the 18th International Conference on Autonomous Agents and MultiAgent Systems, AAMAS
’19, International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC, p. 215–223,
doi:10.5555/3306127.3331696.

[48] A. Prasad Sistla & Edmund M. Clarke (1985): The Complexity of Propositional Linear Temporal Logics. J.
ACM 32(3), pp. 733–749, doi:10.1145/3828.3837.

[49] Michael Ummels & Dominik Wojtczak (2011): The complexity of Nash equilibria in limit-average games.
In: International Conference on Concurrency Theory, Springer, pp. 482–496, doi:10.1007/978-3-642-23217-
6_32.

[50] Michael J. Wooldridge, Ulle Endriss, Sarit Kraus & Jérôme Lang (2013): Incentive engineering for Boolean
games. Artif. Intell. 195, pp. 418–439, doi:10.1016/j.artint.2012.11.003.

[51] Michael J. Wooldridge, Julian Gutierrez, Paul Harrenstein, Enrico Marchioni, Giuseppe Perelli & Alexis
Toumi (2016): Rational Verification: From Model Checking to Equilibrium Checking. In Dale Schuurmans &
Michael P. Wellman, editors: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, Febru-
ary 12-17, 2016, Phoenix, Arizona, USA, AAAI Press, pp. 4184–4191, doi:10.1016/J.ARTINT.2017.04.003.
Available at http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12268.

[52] Jiachen Yang, Ethan Wang, Rakshit Trivedi, Tuo Zhao & Hongyuan Zha (2021): Adaptive Incen-
tive Design with Multi-Agent Meta-Gradient Reinforcement Learning. arXiv preprint arXiv:2112.10859,
doi:10.5555/3535850.3536010.

[53] Ningyuan Zhang, Wenliang Liu & Calin Belta (2022): Distributed Control using Reinforcement Learning
with Temporal-Logic-Based Reward Shaping. In: Learning for Dynamics and Control Conference, PMLR,
pp. 751–762, doi:10.48550/arXiv.2203.04172.

Learning Task Automata for Reinforcement Learning
using Hidden Markov Models

Alessandro Abate, Yousif Almulla, James Fox, David Hyland, Michael Wooldridge
University of Oxford

aabate@cs.ox.ac.uk, yousif.almulla38@gmail.com, james.fox@cs.ox.ac.uk, david.hyland@cs.ox.ac.uk, mjw@cs.ox.ac.uk

Abstract
Training reinforcement learning (RL) agents using scalar re-
ward signals is often infeasible when an environment has
sparse and non-Markovian rewards. Moreover, handcrafting
these reward functions before training is prone to misspec-
ification. This work proposes a novel pipeline for learning
non-Markovian finite task specifications as finite-state ‘task
automata’ from episodes of agent experience within unknown
environments. First, we learn a product MDP, a model com-
posed of the specification’s automaton and the environment’s
MDP (both initially unknown), by treating it as a partially ob-
servable MDP and employing algorithms for hidden Markov
models. Second, we propose a novel method for distilling the
task automaton (assumed to be a deterministic finite automa-
ton - DFA) from the learnt product MDP. Our learnt task au-
tomaton enables a task to be decomposed into sub-tasks, so
an RL agent can later synthesise an optimal policy more effi-
ciently. It is also an interpretable encoding of high-level task
features, so a human can verify that the agent has learnt tasks
with no misspecifications. We also take steps towards ensur-
ing that the learnt automaton is environment-agnostic, mak-
ing it well-suited for use in transfer learning.

1 Description of Work
Reinforcement Learning (RL) can be prohibitively sample
inefficient at learning an optimal policy when the reward
signal is sparse and non-Markovian because of the credit as-
signment problem (e.g., see Mnih et al. (2015) ’s score on
Montezuma’s Revenge). Nevertheless, this setting is com-
mon for real-world applications, where tasks can involve a
sequence of sequential sub-tasks such that no reward is given
until all sub-tasks are completed. As an example, consider a
house robot, which must collect coffee for the guest on the
couch before turning on the TV and then ascending the stairs
(Figure 1).

Three existing approaches for improving learning in this
setting are hierarchical RL (Sutton, Precup, and Singh 1999;
Pateria et al. 2021), which allows agents to plan at various
levels of abstraction; transfer learning, which expedites the
learning rate by utilising knowledge learnt from similar tasks
(Taylor and Stone 2007); and temporal logic planning ap-
proaches, which guide the agent’s exploration by focusing
it on the portion of the MDP that satisfies a linear tempo-
ral logic (LTL) property (Hasanbeig, Abate, and Kroening

Accepted as a full paper to ECAI 2023.

Ò

b [

b b

�

é

é

¹

(a)

q0start q1

q2

q3q4

¬ Ò

Ò

¬ é

é

¬�

�

¬

(b)

Figure 1: (a) A labelled MDP environment and (b) a 5-state
TA (namely, a DFA) representing the task specification.

2018; Camacho et al. 2019; Araki et al. 2021; Thiébaux et al.
2006; Jothimurugan et al. 2021; Neary et al. 2022). In the
latter, an LTL property specifying a task is usually repre-
sented as an automaton, which makes it similar to work on
reward machines (Icarte et al. 2022, 2018) – finite-state ma-
chines that represent non-Markovian reward functions.

We concentrate on the following task: how can one best
learn the task automaton (TA) representing a task speci-
fication in sparse, non-Markovian environments? Our ap-
proach learns a model of the underlying MDP along with the
TA. Extensive work on temporal logic planning (Hasanbeig,
Abate, and Kroening 2018; Camacho et al. 2019; Araki et al.
2021; Thiébaux et al. 2006; Jothimurugan et al. 2021; Neary
et al. 2022), sample-efficient model-based RL approaches
(Wang et al. 2019), or other methods (Baier and Katoen
2008; Tkachev et al. 2017) can then be used to synthesise
an optimal policy.

Contributions: We devise an algorithmic pipeline to
jointly learn both a task specification as a TA (encoded as
a deterministic finite automaton(DFA)) and a model of the
MDP, from episodes of agent experience within an unknown
environment with non-Markovian reward. The reward is also
sparse: it is only given when the full (and unknown) task is
accomplished. This addresses existing sample inefficiency
in these settings in three ways. First, a learnt TA exposes
the sequential and separable nature of the task specification;
sub-tasks can be independently solved (for an optimal pol-
icy) by the RL agent more efficiently (Hasanbeig et al. 2021;
Icarte et al. 2022). Second, our approach is model-based
and requires far fewer training episodes than related work

for learning automata; the learnt model also helps the agent
learn, with the TA, an optimal policy more efficiently. Third,
we take steps to remove environmental bias from our learned
TA, making it more interpretable and better-suited for use in
transfer learning (Taylor and Stone 2007).

We learn the TA via an intermediate product MDP struc-
ture, composed of the environment’s ‘spatial’ MDP and the
task specification’s TA, both of which are initially unknown.
The product MDP is partially observable – the agent ob-
serves the spatial MDP’s states and whether it has received
a reward, but not the TA-state component (i.e., its progress
through the unknown task). The product MDP is learnt in
two steps. First, we learn an estimate of the spatial MDP us-
ing the Baum-Welch algorithm (Baum and Petrie 1966) and
a uniform prior. Second, we use this learnt spatial MDP as
an inductive bias for learning the full product MDP.

We then show that once the product MDP is learnt, distill-
ing the TA is computationally efficient. This results in two
further contributions. First, our learnt product MDP is useful
for transfer learning because if the environment changes, the
agent only needs to update the affected part of the product
MDP before re-distilling the TA. Second, our efficient ‘Cone
Lumping’ method can be used to determinise any product-
MDP structure, which can also expedite (bi)simulation or
model reduction studies (Larsen and Skou 1991).

References
Araki, B.; Li, X.; Vodrahalli, K.; DeCastro, J.; Fry, M.; and
Rus, D. 2021. The logical options framework. In Interna-
tional Conference on Machine Learning, 307–317. PMLR.
Baier, C.; and Katoen, J.-P. 2008. Principles of model check-
ing. MIT press.
Baum, L. E.; and Petrie, T. 1966. Statistical inference for
probabilistic functions of finite state Markov chains. The
annals of mathematical statistics, 37(6): 1554–1563.
Camacho, A.; Icarte, R. T.; Klassen, T. Q.; Valenzano, R. A.;
and McIlraith, S. A. 2019. LTL and Beyond: Formal Lan-
guages for Reward Function Specification in Reinforcement
Learning. In IJCAI, volume 19, 6065–6073.
Hasanbeig, M.; Abate, A.; and Kroening, D. 2018.
Logically-constrained reinforcement learning. arXiv
preprint arXiv:1801.08099.
Hasanbeig, M.; Jeppu, N. Y.; Abate, A.; Melham, T.; and
Kroening, D. 2021. Deepsynth: Automata synthesis for au-
tomatic task segmentation in deep reinforcement learning.
In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 35, 7647–7656.
Icarte, R. T.; Klassen, T.; Valenzano, R.; and McIlraith, S.
2018. Using reward machines for high-level task specifi-
cation and decomposition in reinforcement learning. In In-
ternational Conference on Machine Learning, 2107–2116.
PMLR.
Icarte, R. T.; Klassen, T. Q.; Valenzano, R.; and McIlraith,
S. A. 2022. Reward machines: Exploiting reward function
structure in reinforcement learning. Journal of Artificial In-
telligence Research, 73: 173–208.

Jothimurugan, K.; Bansal, S.; Bastani, O.; and Alur, R. 2021.
Compositional reinforcement learning from logical specifi-
cations. Advances in Neural Information Processing Sys-
tems, 34: 10026–10039.
Larsen, K. G.; and Skou, A. 1991. Bisimulation through
probabilistic testing. Information and computation, 94(1):
1–28.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Ve-
ness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidje-
land, A. K.; Ostrovski, G.; et al. 2015. Human-level control
through deep reinforcement learning. nature, 518(7540):
529–533.
Neary, C.; Verginis, C.; Cubuktepe, M.; and Topcu, U. 2022.
Verifiable and compositional reinforcement learning sys-
tems. In Proceedings of the International Conference on
Automated Planning and Scheduling, volume 32, 615–623.
Pateria, S.; Subagdja, B.; Tan, A.-h.; and Quek, C. 2021. Hi-
erarchical reinforcement learning: A comprehensive survey.
ACM Computing Surveys (CSUR), 54(5): 1–35.
Sutton, R. S.; Precup, D.; and Singh, S. 1999. Between
MDPs and semi-MDPs: A framework for temporal abstrac-
tion in reinforcement learning. Artificial intelligence, 112(1-
2): 181–211.
Taylor, M. E.; and Stone, P. 2007. Cross-domain transfer for
reinforcement learning. In Proceedings of the 24th interna-
tional conference on Machine learning, 879–886.
Thiébaux, S.; Gretton, C.; Slaney, J.; Price, D.; and Kabanza,
F. 2006. Decision-theoretic planning with non-Markovian
rewards. Journal of Artificial Intelligence Research, 25: 17–
74.
Tkachev, I.; Mereacre, A.; Katoen, J.-P.; and Abate, A.
2017. Quantitative model-checking of controlled discrete-
time Markov processes. Information and Computation, 253:
1–35.
Wang, T.; Bao, X.; Clavera, I.; Hoang, J.; Wen, Y.; Lan-
glois, E.; Zhang, S.; Zhang, G.; Abbeel, P.; and Ba, J. 2019.
Benchmarking model-based reinforcement learning. arXiv
preprint arXiv:1907.02057.

LTLf Best-Effort Synthesis in Nondeterministic
Planning Domains

Giuseppe De Giacomoa,b, Gianmarco Parrettib and Shufang Zhua

aUniversity of Oxford, UK
bUniversity of Rome “La Sapienza”, Italy

1 Introduction
Recently there has been quite some interest in synthesis [11, 9] for
realizing goals (or tasks) φ against environment specifications E
[2, 3], especially when both φ and E are expressed in Linear Tem-
poral Logic on finite traces (LTLf) [7, 8], the finite trace variant of
LTL [12]. In this setting, synthesis amounts to finding an agent strat-
egy that wins, i.e., generates a trace satisfying φ, whatever is the
(counter-)strategy chosen by the environment, which in turn has to
satisfy its specification E .

Obviously, a winning strategy for the agent may not exist. To
handle this possibility, the notion of strong cyclic plans was intro-
duced [5]: if a (strong) plan does not exist, there may still exist a plan
that could win assuming the environment is not strictly adversarial.
Building on this intuition, Aminof et al. [1] proposed the notion of
best-effort strategies (or plans), which formally capture the idea that
the agent could do its best by adopting a strategy that wins against
a maximal set (though not all) of possible environment strategies.
Best-effort strategies have some notable properties: (i) they always
exist, (ii) if a winning strategy exists, then best-effort strategies are
exactly the winning strategies, (iii) best-effort strategies can be com-
puted in 2EXPTIME as winning strategies (best-effort synthesis is
indeed 2EXPTIME-complete) [4].

In [4] an algorithm for LTLf best-effort synthesis has been pre-
sented. Using this technique, we can also capture best-effort syn-
thesis in nondeterministic planning domains. In particular, one can
simply re-express nondeterministic planing domains (FOND) in
LTLf [7, 2, 10] and then use the LTLf best-effort synthesis approach
directly. However, observe that in planning, while the (temporally ex-
tended) goal φ is typically small, the environment specification E is
large, being the entire planning domain. This observation motivates
our paper.

We study LTLf best-effort synthesis directly in the context of non-
deterministic (adversarial) planning domains and present a technique
to solve it. Our technique consists of constructing and solving two
variants of reachability games, namely adversarial and cooperative,
played over a shared game arena obtained from composing the plan-
ning domain’s transition systems and the agent goal’s DFA, and com-
bining their solutions. We implemented our technique by leveraging
the symbolic LTLf framework in [13, 6] and performed an empirical
evaluation of the effectiveness of the approach. Our results show that
computing best-effort strategies for LTLf goals in nondeterministic
domains is much more effective than using LTLf best-effort syn-

thesis directly. Our technique can be implemented quite efficiently,
with only a small overhead wrt to computing winning strategies (i.e.,
strong plans) in FOND.

Acknowledgments
This work has been partially supported by the ERC-ADG White-
Mech (No. 834228), the EU ICT-48 2020 project TAILOR (No.
952215), the PRIN project RIPER (No. 20203FFYLK), and the
PNRR MUR project FAIR (No. PE0000013). This work has been
carried out while Gianmarco Parretti was enrolled in the Italian Na-
tional Doctorate on Artificial Intelligence run by Sapienza University
of Rome.

References
[1] Benjamin Aminof, Giuseppe De Giacomo, Alessio Lomuscio, Aniello

Murano, and Sasha Rubin, ‘Synthesizing strategies under expected and
exceptional environment behaviors’, in IJCAI, pp. 1674–1680, (2020).

[2] Benjamin Aminof, Giuseppe De Giacomo, Aniello Murano, and Sasha
Rubin, ‘Planning and synthesis under assumptions’, arXiv, (2018).

[3] Benjamin Aminof, Giuseppe De Giacomo, Aniello Murano, and Sasha
Rubin, ‘Planning under LTL environment specifications’, in ICAPS, pp.
31–39, (2019).

[4] Benjamin Aminof, Giuseppe De Giacomo, and Sasha Rubin, ‘Best-
Effort Synthesis: Doing Your Best Is Not Harder Than Giving Up’, in
IJCAI, pp. 1766–1772, (2021).

[5] Alessandro Cimatti, Marco Pistore, Marco Roveri, and Paolo Traverso,
‘Weak, strong, and strong cyclic planning via symbolic model check-
ing.’, AIJ, 1–2(147), 35–84, (2003).

[6] Giuseppe De Giacomo, Gianmarco Parretti, and Shufang Zhu, ‘Sym-
bolic LTLf Best-Effort Synthesis’, in EUMAS, (2023). To appear.

[7] Giuseppe De Giacomo and Moshe Y. Vardi, ‘Linear Temporal Logic
and Linear Dynamic Logic on Finite Traces’, in IJCAI, pp. 854–860,
(2013).

[8] Giuseppe De Giacomo and Moshe Y. Vardi, ‘Synthesis for LTL and
LDL on Finite Traces’, in IJCAI, pp. 1558–1564, (2015).

[9] Bernd Finkbeiner, ‘Synthesis of Reactive Systems.’, Dependable Soft-
ware Systems Eng., 45, 72–98, (2016).

[10] Keliang He, Andrew M Wells, Lydia E Kavraki, and Moshe Y Vardi,
‘Efficient Symbolic Reactive Synthesis for Finite-Horizon Tasks’, in
ICRA, pp. 8993–8999, (2019).

[11] A. Pnueli and R. Rosner, ‘On the synthesis of a reactive module’, in
POPL, p. 179–190, (1989).

[12] Amir Pnueli, ‘The temporal logic of programs’, in FOCS, pp. 46–57,
(1977).

[13] Shufang Zhu, Lucas M. Tabajara, Jianwen Li, Geguang Pu, and
Moshe Y. Vardi, ‘Symbolic LTLf Synthesis’, in IJCAI, pp. 1362–1369,
(2017).

